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Abstract: The impact of COVID-19 is global, and uncertain information will affect product quality
and worker efficiency in the complex supply chain network, thus bringing risks. Aiming at individual
heterogeneity, a partial mapping double-layer hypernetwork model is constructed to study the supply
chain risk diffusion under uncertain information. Here, we explore the risk diffusion dynamics,
drawing on epidemiology, and establish an SPIR (Susceptible–Potential–Infected–Recovered) model
to simulate the risk diffusion process. The node represents the enterprise, and hyperedge represents
the cooperation among enterprises. The microscopic Markov chain approach (MMCA) is used to
prove the theory. Network dynamic evolution includes two removal strategies: (i) removing aging
nodes; (ii) removing key nodes. Using Matlab to simulate the model, we found that it is more
conducive to market stability to eliminate outdated enterprises than to control key enterprises during
risk diffusion. The risk diffusion scale is related to interlayer mapping. Increasing the upper layer
mapping rate to strengthen the efforts of official media to issue authoritative information will reduce
the infected enterprise number. Reducing the lower layer mapping rate will reduce the misled
enterprise number, thereby weakening the efficiency of risk infection. The model is helpful for
understanding the risk diffusion characteristics and the importance of online information, and it has
guiding significance for supply chain management.

Keywords: hypernetwork; partial mapping; dynamic evolution; supply chain risk; epidemic model

1. Introduction

A supply chain consists of manufacturers, distributors, retailers, consumers, and so
on. Products, funds, and information flow through the supply chain. To become bigger
and stronger, enterprises will integrate into a larger economic environment, which has led
to a shift in the supply chain from a traditional chain structure to a supply chain network
structure. Enterprises on the supply chain network are interdependent, and any problem
with one enterprise may affect other cooperating enterprises. In April 2020, COVID-19
caused serious damage to the world. According to data released by the World Health
Organization, the global cumulative number of COVID-19 cases reached 3,018,952, and
there were 2,934,583 confirmed cases outside China. Factory productivity declined, the
household consumption index fell, and the real economy slumped significantly. Various
risks brought by the epidemic have affected the increasingly complex supply chain net-
work [1]. The risk diffusion process on the supply chain network is an extremely complex
phenomenon, and its outbreak is often accompanied by the emergence of unconfirmed in-
formation. Social software such as Microblog, Forum, YouTube, and so on have accelerated
the spread of uncertain information during the epidemic and intensified the risk diffusion.
The official media guides the public’s cognition and is conducive to market stability [2].
In fact, not all enterprises have online social accounts that obtain uncertain information,
and not all accounts follow the official media. The heterogeneity of individuals determines
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that the partially mapped double-layer hypernetwork is more suitable for studying the risk
diffusion process under uncertain information. It helps managers realize the importance of
Internet information management and is an important part of coupling dynamics research.

Research on supply chain risk is crucial to financial risk management [3,4]. There is
a need to study the performance indicators and characteristics of the supply chain and
develop a conceptual model for identifying supply chain risks [5], design an intuitionistic
fuzzy two-stage supply chain network considering multi-mode demand and multi-mode
transportation [6], and utilize machine learning to optimize supply chain management
and maximize benefits on block-chained big data [7]. In addition to the main supply chain
research mentioned above, the study of supply chain risk diffusion behavior referencing
epidemic models is also a hot topic. In 1927, Kermark and McKendrick first constructed the
SIR (Susceptible–Infected–Recovered) model to study the spreading scale of the London
Black Death [8]. After that, considering that individuals will be susceptible again, the
threshold theory of the SIS (Susceptible–Infected–Susceptible) model was proposed [9],
which laid the foundation for future dynamics research [10]. The epidemic model is suitable
for describing the risk diffusion behavior with contagiousness in the supply chain network.
Wang et al. [11] used the SIR model to discuss the impact of multiple drivers including
network heterogeneity on supply chain risk diffusion. Liang et al. [12] proved that there
is a significant relationship between network structure and risk transmission and supply
network health.

The above research found that the propagation dynamics model is mostly based on the
theoretical knowledge of complex networks represented by graphs [3,11,12]. As a complex
system, the supply chain has the characteristics of complexity, dynamics, and coordination.
It is not the binary relationship that ordinary graphs express. At this time, it is particularly
important to use nested mathematical theoretical tools to express multiple relationships.
The hypernetwork was proposed by Sheff in 1985 [13]. It has the characteristics of multi-
layer, multi-level, multi-dimensional, multi-attribute, and so on. Later, Estrada et al. [14]
used hypergraphs to represent complex networks, extending the concepts of subgraph
centrality and clustering. Hypergraphs have been applied in various fields. Suo et al.
studied the dynamic process and macro behavior of the supply chain system with the evo-
lutionary hypergraph theory [15]. Nodes represent individuals and hyperedges represent
the relationship among individuals. Yin et al. described the non-uniform evolution of social
networks [16] and obtained the explicit analytical expression of hyperdegree distribution.
Hypernetworks are also used for risk dynamics research to explore the formation and
development process of risk [17].

However, risk diffusion in supply chain networks is influenced by multiple factors. It
is not comprehensive to capture the risk diffusion behavior of each node by building an
isolated network [11,12]. Mukunda et al. [18] constructs a two-layer supply chain model un-
der dynamic demand to optimize supply chain profits. Huo et al. [19] constructed multiple
networks to analyze the impact of herd psychology and risk preference on risk propagation
under warning information. To mitigate the damage caused by risk, it is reasonable to
establish a risk transmission model with an information transmission effect [20]. Clear
information will eliminate uncertainty and curb risk diffusion. Establishing a two-layer
dynamic model and discussing the detailed process characteristics of the multiplexing
network are of great significance [21,22]. Based on the above reasons, we deeply discuss
the interaction between uncertain information and supply chain risk diffusion in partially
mapping double-layer hypernetworks with the help of the SEIR epidemic model. The main
contributions are as follows:

• Based on the partially mapping double-layer hypernetwork model, the randomness of
the mapping between layers is proposed, and the interaction between supply chain
risk and uncertain information is described.

• Two removal strategies are proposed to describe the network dynamic evolution
process. The contribution of control means to market stability is analyzed.
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• The supply chain risk diffusion process in a partially mapping double-layer hypernet-
work with MATLAB is simulated, the effectiveness of MMCA is proved, and the risk
diffusion trend under two strategies and dynamic evolution parameters is grasped.

The rest of the article is as follows. Section 2 describes the partially mapping double-
layer hypernetwork structure and explains the applicability of the UBU-SPIR compartment
model. Section 3 makes a detailed theoretical analysis of the risk diffusion process through
MMCA. Section 4 uses MATLAB to carry out the numerical simulation, test the influence
of parameters, and verify the correctness of the theoretical analysis. Finally, we sum up
and prospect the risk diffusion dynamics in Section 5.

2. Model Description

In the complex supply chain network, risk diffusion is not an independent event. It
will be affected by instant messages [23]. Correct information will improve vigilance [19],
while uncertain information has the characteristics of wide coverage, strong communi-
cation power, and low communication cost, which will affect the public psychology and
knowledge system [24] and give incorrect guidance to people’s activities. Therefore, it is
in line with the actual need to use a hypernetwork to abstract the supply chain network
system and analyze the risk diffusion process under the influence of uncertain information.

2.1. Hypernetwork Model

Hypernetworks are represented by hypergraphs. Suppose the supply chain network
has n enterprises. There are complex cooperative relationships among enterprises. The hy-
pergraph H =

{
V, Eh

}
represents the supply chain network, the node set

V = {v1, v2, · · · , vn} represents all enterprises in the supply chain network, and the node
vi represents enterprises i. The hyperedge Ei =

{
vi1, vi2, · · · , vigi

}(
viy ∈ V, y = 1, 2, · · · gi

)
represents the cooperation formed by some enterprises, and the hyperedge set
Eh = {E1, E2, · · · , Em} represents all cooperation in the supply chain network. Based
on the hypernetwork theory, this paper discusses the interaction between uncertain in-
formation on virtual social networks and risk diffusion on supply chain networks. The
hypernetwork representation of virtual social networks is similar [16]. In virtual social
networks, the node represents the enterprise, and the hyperedge represents information
exchanges that accompany cooperation between enterprises. Assume that the dynamic
evolution of virtual social networks and supply chain networks is consistent, and some
hyperedges added randomly represent the communication between non-cooperative enter-
prises. To simplify the model, assume the nodes in the double-layer network correspond
to each other. However, only some enterprises have social accounts, and only some ac-
counts follow official media, so only some nodes have mapping. In this paper, the vector
L = {l1, l2, · · · , lN} represents the mapping between nodes in virtual social networks and
nodes in supply chain networks, used to describe whether nodes in the supply chain
networks have social accounts for information exchange in the virtual social networks.
Introduce the official media O to suppress the uncertain information circulating in virtual
social networks; the vector L′ = {l1′, l2′, · · · , lN

′} represents the mapping between the
official media and each node in the virtual social network, used to describe whether nodes
in the virtual social network follow official media accounts.

The market environment is changing rapidly, and commercial orders change frequently.
The supply chain network continues to develop and expand with the growth of emerging
enterprises, the increase in cooperation projects, and the withdrawal of some enterprises
from the initial small-scale development to regionalization and even globalization. Assume
that the rate of nodes entering and exiting the supply chain network is λ1 and λ2(λ1 > λ2),
respectively, following the Poisson process. The number of nodes in each batch is fixed.
The evolution behavior of the supply chain network gradually has certain regularity over
time. Next, we describe the dynamic evolution process of the supply chain network with
the knowledge of hypernetwork theory:
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1. Enterprises in the supply chain network establish new cooperative relations.

Add m hyperedges with probability p. First, select a node randomly in the current
supply chain network, and then form a new hyperedge with a nodes selected through the
hyperdegree preferential attachment mechanism [25]. This process is repeated m times,
corresponding to m new cooperation in the supply chain network.

2. When the contract expires, some enterprises no longer renew the contract with former
partners but cooperate with new partners.

Rewire m hyperedges with probability q. First, select node i randomly in the current
network to delete one of its hyperedges ei, and then select node a as in Process 1 to form
a new hyperedge

∼
ei. This process is repeated m times, corresponding to the end of m old

cooperation and the generation of m new cooperation in the supply chain network.

3. New enterprises enter, and some enterprises withdraw from the market.

Add m2 nodes and remove m1 nodes with probability r. Different strategies lead to
different removal rules. The old node in the supply chain network is more vulnerable
to risks than others because of its outdated technology and weak resistance to risks. If
key enterprises are infected by risk, it will cause multiple nodes to be affected by risk.
Therefore, we consider removing aging nodes according to the appearance order of the
node or removing key nodes according to the hyperdegree to inhibit the risk diffusion.

Figure 1 is an example of the dynamic evolution of the supply chain network. Table 1
shows the parameters related to the model.
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q  Probability of rewiring the hyperedge 

Figure 1. Dynamic evolution of the network. One of the three processes will occur at t + 1. (a) Add
hyperedge e3 containing nodes 1, 3, and 4; (b) Randomly select a hyperedge e1 containing node 3 to
remove, and then form a hyperedge e4 with nodes 2 and 5; (c) Remove node 3 and add nodes 6 and 7
in the system. Blue node represents the old node, pink node represents the new node.

Table 1. Parameter and meaning.

Parameter The Meaning of the Parameter

p Probability of adding the hyperedge
q Probability of rewiring the hyperedge
r Probability of adding and removing nodes

N(t) The total number of nodes
ωj(t, ti) The probability of the jth node in the ith batch encountering risk

β Probability of transition from the S-state to the P-state
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2.2. UBU-SPIR Compartment Model

In the process of supply chain risk diffusion, uncertain information will accelerate the
diffusion of risk, while the official media restricts the spread of uncertain information. This
paper constructs a partially mapped double-layer hypernetwork; the upper layer is the
virtual social network that describes the process of uncertain information dissemination,
and the lower layer is a supply chain network that spreads risks through cooperation. In
the past research on information dissemination, nodes only considered two states [26].
Therefore, as shown in Figure 2a, on the virtual communication layer, the enterprise
transitions between two states through the UBU (Unbelieve–Believe–Unbelieve) model. λ
indicates the probability that the U-state enterprise believes information after contacting the
B-state neighbor. δ indicates the probability that the B-state enterprises no longer believe. In
addition to the interaction between enterprises, the official media will release authoritative
information, which will prevent the spread of uncertain information. θj(t, ti) indicates
the probability that the jth B-state enterprise in the ith batch no longer believes under the
influence of the official media.

θj(t, ti) =

{
τ , lij ′ = 1
0 , lij ′ = 0

, (1)

where τ indicates the probability that enterprises that follow the official media no longer
believe after receiving the authoritative information. lij ′ denotes the mapping between
the jth node of the ith batch in the virtual communication layer and official media. The
risks on the supply chain network are contagious. If an enterprise’s demand for raw
materials decreases, it will impact the suppliers at the front end of the supply chain. If
the supplier’s raw material is insufficient, the backend of the supply chain will suffer
production damage. Any problem in any link of the supply chain will interfere with other
cooperative enterprises, leading to risk diffusion. On the risk diffusion layer. Due to the
existence of potential risks, the SPIR (Susceptible–Potential–Infected–Recovered) model is
used to simulate the risk diffusion in the supply chain network. The hyperdegree is the
number of hyperedges contained in a node. Enterprises with a greater hyperdegree hj(t, ti)
are more likely to be exposed to risks. In Figure 2b, susceptible enterprises contact with
infected enterprises or enterprises with potential risk with probability ωj(t, ti) and then
convert to the P-state with probability β. η indicates the probability of being completely
infected by the risk after the potential risk is serious. Infected enterprises recover at recovery
rate µ and no longer involve such risks.

ωj(t, ti) =
hj(t, ti)

Max(h(t))
, (2)

where hj(t, ti) indicates the hyperdegree of the jth node in the ith batch. Max(h(t)) indicates
the maximum hyperdegree at time t.

The risk diffusion on the supply chain network and the transmission of uncertain
information on the virtual social network are interactive processes. If there is a mapping
between the two layers (lij = 1), the infected enterprise in the risk diffusion layer will
immediately realize the error of the uncertain information on the virtual communication
layer, and then it will be transformed into a U-state. No mapping has no effect. For
susceptible enterprises at the risk diffusion layer, the probability of enterprises misled
by information being infected must be greater than that of Unbelieve-enterprises being
infected. Hence, enterprises that believe in uncertain information change from the S-state
to the P-state with probability β j

B(t, ti) = Γj(t, ti)β, Γj(t, ti) is an inter-layer reinforcement
factor, and βU = β denotes the probability that Unbelieve-enterprises change from the
S-state to the P-state.

Γj(t, ti) =

{
γ , lij = 1
1 , lij = 0

, (3)
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Γj(t, ti) is related to interlayer mapping. γ(γ > 1) indicates the inter-layer enhance-
ment factor. lij indicates the mapping between the two layers of the jth node in the ith
batch. β1 = γ · β indicates the probability that the B-state enterprise changes from the
S-state to the P-state when there is a mapping between the two layers. Considering the
UBU-SPIR compartment model and inter-layer influence, the enterprise in the model will
be in one of eight states: the US state (Unbelieve and Susceptible), UP state (Unbelieve and
Potential), UI state (Unbelieve and Infected), UR state (Unbelieve and Recovered), BS state
(Believe and Susceptible), BP state (Believe and Potential), BI state (Believe and Infected),
or BR state (Believe and Recovered).

Entropy 2023, 25, 747 5 of 17 
 

 

r  Probability of adding and removing nodes 
( )N t  The total number of nodes 

( , )j it tω  The probability of the j th node in the i th batch encountering risk 
β  Probability of transition from the S-state to the P-state 

2.2. UBU-SPIR Compartment Model 
In the process of supply chain risk diffusion, uncertain information will accelerate 

the diffusion of risk, while the official media restricts the spread of uncertain information. 
This paper constructs a partially mapped double-layer hypernetwork; the upper layer is 
the virtual social network that describes the process of uncertain information dissemina-
tion, and the lower layer is a supply chain network that spreads risks through cooperation. 
In the past research on information dissemination, nodes only considered two states [26]. 
Therefore, as shown in Figure 2a, on the virtual communication layer, the enterprise tran-
sitions between two states through the UBU (Unbelieve–Believe–Unbelieve) model. λ  
indicates the probability that the U-state enterprise believes information after contacting 
the B-state neighbor. δ  indicates the probability that the B-state enterprises no longer 
believe. In addition to the interaction between enterprises, the official media will release 
authoritative information, which will prevent the spread of uncertain information. 

( ),j it tθ   indicates the probability that the j  th B-state enterprise in the i  th batch no 
longer believes under the influence of the official media. 

 
(a) (b) 

Figure 2. State transition of the nodes in each layer. Left panel (a) shows the node state transition 
during the dissemination of uncertain information. Right panel (b) shows the node state transition 
in the process of supply chain risk diffusion. 

( )
'

'

 ,  1
,

0 ,  0
ij

j i
ij

l
t t

l

τ
θ

 == 
=

, (1)

where τ  indicates the probability that enterprises that follow the official media no longer 
believe after receiving the authoritative information. '

ijl  denotes the mapping between 
the j th node of the i th batch in the virtual communication layer and official media. The 
risks on the supply chain network are contagious. If an enterprise’s demand for raw ma-
terials decreases, it will impact the suppliers at the front end of the supply chain. If the 
supplier’s raw material is insufficient, the backend of the supply chain will suffer produc-
tion damage. Any problem in any link of the supply chain will interfere with other coop-
erative enterprises, leading to risk diffusion. On the risk diffusion layer. Due to the exist-
ence of potential risks, the SPIR (Susceptible–Potential–Infected–Recovered) model is 
used to simulate the risk diffusion in the supply chain network. The hyperdegree is the 
number of hyperedges contained in a node. Enterprises with a greater hyperdegree 

Figure 2. State transition of the nodes in each layer. Left panel (a) shows the node state transition
during the dissemination of uncertain information. Right panel (b) shows the node state transition in
the process of supply chain risk diffusion.

2.3. Dynamic Evolution Steps of the Model

Under the influence of uncertain information, the supply chain risk diffusion model
on the partially mapping double-layer hypernetwork first undergoes network dynamic
evolution at each time step t and then undergoes dynamic propagation. In the process of
dynamic propagation, three dynamic processes occur at the same time: the dissemination
of uncertain information (UBU), the release of authoritative information from official media,
and the diffusion of risk (SPIR). The goal of this paper is to obtain the proportion of
recovered enterprises in a stable state of the system. The dynamic evolution steps of the
entire model are as follows:

Step 1: Network initialization. The initial number of nodes is 16, and an initial network
of 1000 nodes is formed through the network dynamic evolution Process 1–3 in Section 2.1.
The upper is the virtual communication layer, the lower is the risk diffusion layer. O
represents the official media. Add 30 hyperedges randomly in the virtual communication
layer to represent the information exchange between non-cooperative enterprises.

Step 2: The dynamic evolution of the double-layer hypernetwork. At each time step
t, the dynamic evolution Process 1–3 in Section 2.1 randomly occur in the supply chain
network and virtual social network with the probabilities p, q, and r.

Step 3: Node state transition. At each time step t, nodes in the double-layer network
update states according to Figure 2. The nodes of the virtual communication layer and the
risk diffusion layer interact through partial mapping.

The supply chain risk diffusion process on the partially mapping double-layer hyper-
network continues to cycle from step 2 to step 3 until the number of nodes in each state is
stable, i.e., the system reaches the stable state. The dynamic evolution process of the entire
model is shown in Figure 3.
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Figure 3. The risk diffusion process in the partially mapping double-layer hypernetwork. The virtual
communication layer contains two states: Unbelieve (blue) and Believe (pink). The risk diffusion layer
contains four states: Susceptible (green), Potential (purple), Infected (red), and Recovered (orange).
Process (1)–(3) correspond to the three processes (a)–(c) in Figure 1. The red link represents the new
hyperedge, and the dotted line represents the deleted hyperedge. e∗1 denotes communication between
enterprises without cooperation. Numbers represent serial numbers of a node or a hyperedge.

3. Theoretical Analysis

As is known to all, the risk diffusion scale is related to the network structure [11].
Different node removal strategies lead to different network evolution processes, which will
be beneficial to inhibiting risks. To study the impact of uncertain information, we derive
the key parameters under different removal strategies and then use MMCA to obtain the
proportion of enterprise in various states when the system is stable.

3.1. Remove the Aging Node

If the removal of Process 3 is determined by the node life [27], hj(t, ti) affected by
Process 1–3 in Section 2.1 will meet the following three dynamic equations:

∂hj(t, ti)

∂t
= pm(λ1 − λ2)

 1
N(t)

+ a
hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

)
, (4)

∂hj(t, ti)

∂t
= qm(λ1 − λ2)

− 1
N(t)

+ a
hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

)
, (5)

∂hj(t, ti)

∂t
= −rm1λ2

t−1
ij

∑
ij

t−1
ij

hj(t, ti), (6)

where tij represents the time when the jth node in the ith batch enters the system.
In fact, in a unit time step, three steps occur simultaneously. Thus, the hyperdegree

hj(t, ti) change should include three dynamic processes. Combined with Equations (4)–(6),
we can obtain:

∂hj(t, ti)

∂t
=

m(λ1 − λ2)

N(t)
(p− q) + a

hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

)m(λ1 − λ2)(p + q)− rλ2m1
t−1
ij

∑
ij

t−1
ij

hj(t, ti). (7)
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When t→ ∞ , N(t) ≈ (λ1 − λ2)t,and ∑
ij

(
hj(t, ti) + 1

)
≈ [pm(1 + a) + m2 − rm1]E[N(t)].

Let A = lim
t→∞

∑
ij

t−1
ij

N(t) and G = A
m1

; Equation (7) can be written as:

∂hj(t, ti)

∂t
=

1
t

{
m(p− q) +

[
am(p + q)

pm(1 + a) + m2 − rm1
−

rλ2t−1
ij

G(λ1 − λ2)

]
hj(t, ti) +

am(p + q)
pm(1 + a) + m2 − rm1

}
. (8)

From the initial conditions, we know that the jth node in the ith batch reaches the sys-
tem at ti; thus, hj(ti, ti) = r. Let Q = am(p+q)

pm(1+a)+m2−rm1
, J = m(p− q), and

K = am(p+q)
pm(1+a)+m2−rm1

−
rλ2t−1

ij
G(λ1−λ2)

.. Solving Equation (8), we obtain

hj(t, ti) =

(
r +

J + Q
K

)(
t
ti

)K
− J + Q

K
. (9)

Therefore,

ωj(t, ti) =

(
r + J+Q

K

)(
t
ti

)K
− J+Q

K

Max(h(t))
. (10)

3.2. Remove the Key Node

If the Process 3 is to select key nodes for removal, for the three equations that hj(t, ti)
meets, the first two equations are the same as Equations (4) and (5), and the third equation
is as follows:

∂hj(t, ti)

∂t
= −rm1λ2

hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

)hj(t, ti). (11)

Combining Equations (4), (5), and (11), Equation (12) is obtained:

∂hj(t, ti)

∂t
=

m(λ1 − λ2)

N(t)
(p− q) + m(λ1 − λ2)a

hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

) (p + q)− rm1λ2
hj(t, ti) + 1

∑
ij

(
hj(t, ti) + 1

)hj(t, ti). (12)

When t→ ∞ , N(t) ≈ (λ1 − λ2)t, and ∑
ij

(
hj(t, ti) + 1

)
≈ [pm(a + 1) + m2 − rm1]E[N(t)].

Therefore,

∂hj(t, ti)

∂t
=

1
t

{
m(p− q) +

ma(λ1 − λ2)(p + q)
[pm(1 + a) + m2 − rm1](λ1 − λ2)

(
hj(t, ti) + 1

)
− rm1λ2

[pm(1 + a) + m2 − rm1](λ1 − λ2)

(
hj(t, ti) + 1

)
hj(t, ti)

}
.

(13)

Let K′ = ma(λ1−λ2)(p+q)
[pm(a+1)+m2−rm1](λ1−λ2)

, Q′ = rm1λ2
[pm(a+1)+m2−rm1](λ1−λ2)

, and J′ = m(p− q).
Then, integrate both sides of Equation (13) and finally obtain

hj(t, ti) =
K′ −Q′

2Q′
−

√
4Q′(J′ + K′) + (Q′ − K′)2

2Q′
· Pa. (14)

Pa =

2Q′r + Q′ − K′ +
√

4Q′(J′ + K′) + (Q′ − K′)2 +

[
2Q′r + Q′ − K′ −

√
4Q′(J′ + K′) + (Q′ − K′)2

](
t
ti

)−√4Q′(J′+K′)+(Q′−K′)2

2Q′r + Q′ − K′ −
√

4Q′(J′ + K′) + (Q′ − K′)2
(

t
ti

)−√4Q′(J′+K′)+(Q′−K′)2

−
[

2Q′r + Q′ − K′ +
√

4Q′(J′ + K′) + (Q′ − K′)2
] .
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The probability of the jth node in the ith batch encountering the risk is obtained by
Equations (2) and (14).

At each time step t, the node is in one of eight states with the probabilities PUS
j (t, ti),

PUP
j (t, ti), PUI

j (t, ti), PUR
j (t, ti), PBS

j (t, ti), PBP
j (t, ti), PBI

j (t, ti), and PBR
j (t, ti), respectively,

and meets the normalization conditions PUS
j (t, ti) + PUP

j (t, ti) + PUI
j (t, ti) + PUR

j (t, ti)

+PBS
j (t, ti) + PBP

j (t, ti) + PBI
j (t, ti) + PBR

j (t, ti) ≡ 1. In the risk diffusion layer, nij repre-
sents the jth node in the ith batch. If there is a relationship between the nodes nij and
nz f , then cijz f = 1; otherwise, cijz f = 0. So, in the virtual communication layer, dijz f = 1
means there is a relationship between the nodes nij and nz f , and dijz f = 0 means there is
no relationship. Let Θj(t, ti) indicate the probability that the U-state node does not receive
uncertain information from neighbors, qU

j (t, ti) indicate the probability that the U-state

node is infected by risk, and qB
j (t, ti) indicate the probability that the B-state node is infected

by risk. Combined with Figure 2, the state transition probability tree of eight states is shown
in Figure 4.

Θj(t, ti) = Π
z

Π
f

[
1− dijz f λPB

f (t, tz)
]
, (15)

qU
j (t, ti) = Π

z
Π
f

{
1− cijz f

[
PP

f (t, tz) + PI
f (t, tz)

]
κωj(t, ti)βU

}
, (16)

qB
j (t, ti) = Π

z
Π
f

{
1− cijz f

[
PP

f (t, tz) + PI
f (t, tz)

]
κωj(t, ti)βB

j (t, ti)
}

, (17)

where κ is the adjustment coefficient. PB
f (t, tz) = PBS

f (t, tz) + PBP
f (t, tz) + PBI

f (t, tz) +

PBR
f (t, tz), PP

f (t, tz) = PUP
f (t, tz) + PBP

f (t, tz), PI
f (t, tz) = PUI

f (t, tz) + PBI
f (t, tz).

MMCA has been used for dynamic research many times, including disease spreading
and information dissemination [28–30]. It can track the node state in the supply chain risk
diffusion process [19]. According to the state transition probability tree in Figure 4, the
dynamic transition process of each node state in the model is written as:

PUS
j (t + 1, ti)= PUS

j (t, ti)
{

Θj(t, ti)qU
j (t, ti) +

[
1−Θj(t, ti)

]
θj(t, ti)qU

j (t, ti)
}

+PBS
j (t, ti)

[
δqU

j (t, ti) + (1− δ)θj(t, ti)qU
j (t, ti)

] , (18)

PBS
j (t + 1, ti)= PUS

j (t, ti)
[
1−Θj(t, ti)

][
1− θj(t, ti)

]
qB

j (t, ti)

+PBS
j (t, ti)(1− δ)

[
1− θj(t, ti)

]
qB

j (t, ti)
, (19)

PUP
j (t + 1, ti)= PUS

j (t, ti)
{

Θj(t, ti)
[
1− qU

j (t, ti)
]
+
[
1−Θj(t, ti)

]
θj(t, ti)

[
1− qU

j (t, ti)
]}

+PBS
j (t, ti)

{
δ
[
1− qU

j (t, ti)
]
+ (1− δ)θj(t, ti)

[
1− qU

j (t, ti)
]}

+ PUP
j (t, ti){

Θj(t, ti)(1− η) +
[
1−Θj(t, ti)

]
θj(t, ti)(1− η)

}
+ PBP

j (t, ti)[δ(1− η)

+(1− δ)θj(t, ti)(1− η)
]

, (20)

PBP
j (t + 1, ti)= PUS

j (t, ti)
[
1−Θj(t, ti)

][
1− θj(t, ti)

][
1− qB

j (t, ti)
]
+ PBS

j (t, ti)

(1− δ)
[
1− θj(t, ti)

][
1− qB

j (t, ti)
]
+ PUP

j (t, ti)
[
1−Θj(t, ti)

]
[
1− θj(t, ti)

]
(1− η) + PBP

j (t, ti)(1− δ)
[
1− θj(t, ti)

]
(1− η)

, (21)
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PUI
j (t + 1, ti)= PUP

j (t, ti)
{

Θj(t, ti)η +
[
1−Θj(t, ti)

]
θj(t, ti)η +

[
1−Θj(t, ti)

][
1− θj(t, ti)

]
ηlij
}

+PBP
j (t, ti)

{
δη + (1− δ)θj(t, ti)η + (1− δ)

[
1− θj(t, ti)

]
ηlij
}
+ PUI

j (t, ti){
Θj(t, ti)(1− µ) +

[
1−Θj(t, ti)

]
θj(t, ti)(1− µ) +

[
1−Θj(t, ti)

][
1− θj(t, ti)

]
(1− µ)lij

}
+ PBI

j (t, ti)
[
δ(1− µ) + (1− δ)θj(t, ti)(1− µ)

] , (22)

PBI
j (t + 1, ti)= PUP

j (t, ti)
[
1−Θj(t, ti)

][
1− θj(t, ti)

]
η
(
1− lij

)
+ PBP

j (t, ti)

(1− δ)
[
1− θj(t, ti)

]
η
(
1− lij

)
+ PUI

j (t, ti)
[
1−Θj(t, ti)

][
1− θj(t, ti)

]
(1− µ)

(
1− lij

)
+ PBI

j (t, ti)(1− δ)
[
1− θj(t, ti)

]
(1− µ)

, (23)

PUR
j (t + 1, ti)= PUI

j (t, ti)
{

Θj(t, ti)µ +
[
1−Θj(t, ti)

]
θj(t, ti)µ

}
+ PBI

j (t, ti)
[
δµ + (1− δ)θj(t, ti)

µ] + PUR
j (t, ti)

{
Θj(t, ti) +

[
1−Θj(t, ti)

]
θj(t, ti)

}
+ PBR

j (t, ti)
[
δ + (1− δ)θj(t, ti)

], (24)

PBR
j (t + 1, ti)= PUI

j (t, ti)
[
1−Θj(t, ti)

][
1− θj(t, ti)

]
µ + PBI

j (t, ti)(1− δ)
[
1− θj(t, ti)

]
µ

+PUR
j (t, ti)

[
1−Θj(t, ti)

][
1− θj(t, ti)

]
+ PBR

j (t, ti)(1− δ)
[
1− θj(t, ti)

] . (25)

According to the Markov Chain Approach, node state transitions occur over time. The
state probability of any node at any time is obtained.

PR
j (t + 1, ti) = PUR

j (t + 1, ti) + PBR
j (t + 1, ti) = µPI

j (t, ti) + PR
j (t, ti), (26)

PI
j (t + 1, ti) = PUI

j (t + 1, ti) + PBI
j (t + 1, ti) = ηPP

j (t, ti) + (1− µ)PI
j (t, ti). (27)

The system tends to be stable when the time step is large enough. Thus, when t→ ∞ ,
PI

j (t + 1, ti) ≈ PI
j (t, ti) ≈ PI

ij, and PR
j (t + 1, ti) ≈ PR

j (t, ti) ≈ PR
ij . PR

j (t + 1, ti)− PR
j (t, ti) < ε.

Equation (26) can be written as

µPI
ij < ε, PI

ij <
ε

µ
. (28)

This shows that the proportion of infected enterprises approaches 0 when the system
is stable. According to Equation (27), we will obtain the probability under a stable state

PI
ij =

η

µ
PP

ij . (29)

This paper considers the heterogeneity of individuals. Official media, virtual social
networks, and supply chain networks are all partially mapped. Furthermore, we compared
the removal of key nodes with aging nodes to find the best strategy for mitigating risk.
In fact, if L = L′ = {1, 1, · · · , 1}, nodes exit according to the lifetime during the dynamic
evolution of the network (Section 3.1). The model will degenerate into the risk diffusion
model in Ref. [27].
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Figure 4. State transition probability tree.

4. Numerical Simulation

In the study of risk diffusion, the proportion of recovered enterprises ρR in the
stable state is an important indicator for judging the effect of risk mitigation. In this
section, we will discuss the influence of model parameters on ρR through Monte Carlo
(MC) simulation and MMCA iterative calculation. In the iterative calculation of MMCA,

ρR =
∑
ij

PUR
ij +PBR

ij

N × 100%. In MC simulation, ρR = NUR+NBR

N × 100%. PUR
ij and PBR

ij , respec-
tively, represent the probability that the jth node in the ith batch is in the UR and BR states,
while NUR and NBR represent the number of nodes in the UR and BR states, respectively.
N represents the total number of nodes. The setting parameter of the initial network is
a = 5, m = 2, m1 = 5, m2 = 7, p = 0.3, and q = 0.25. Consider the dynamic evolution of
the network; let, p + q + r ≡ 1. The upper layer mapping rate and the lower layer mapping

rate are defined as ψ =
∑
ij

lij ′

N × 100% and φ =
∑
ij

lij

N × 100%, respectively, where lij ′ ∈ L′, and
lij ∈ L. When the simulation starts, the mapping is randomly generated, and the mapping
rate is 80%. Furthermore, 10 nodes are randomly selected to set to the P-state. B-state nodes
are generated in the same way.
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4.1. Removal of Aging Nodes

First, to verify the effectiveness of MMCA in characterizing the supply chain risk
diffusion in the partially mapping double-layer hypernetwork under the strategy of re-
moving aging nodes, Figure 5 describes the change in the proportion of enterprises in each
state with time t. Then, the average relative error between MMCA and MC simulation is
calculated using the formula

∣∣ρMC − ρMMCA
∣∣/ρMC. The result shows that the point plot

and line plot basically overlap. The relative error of the proportion of enterprises in the
U-, B-, S-, and R-states is 1.42%, 4.58%, 1.81%, and 4.55%, respectively. Hence, MMCA can
be used to simulate the risk diffusion process of the supply chain in a partially mapping
double-layer hypernetwork.
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Figure 5. Under the strategy of removing aging nodes. (a) The fraction of U-state and B-state enter-
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0.6η = , 0.8μ = , 0.5λ = , 0.3δ = , 0.8τ = , 2γ = , and 2κ = . 

Figure 5. Under the strategy of removing aging nodes. (a) The fraction of U-state and B-state
enterprises as a function with time step t. (b) The fraction of S-state, P-state, I-state, and R-state
enterprises as a function with time step t. Parameters are set as follows: p = 0.5, q = 0.45, β = 0.5,
η = 0.6, µ = 0.8, λ = 0.5, δ = 0.3, τ = 0.8, γ = 2, and κ = 2.

Second, in Figure 6, we draw ρR as a function of β1 for different dynamic parameters
(p, q, r) and the lower layer mapping rate φ. When β1 ∈ (0, 1) is constant, it can be seen
that the proportion of recovered enterprises increases with the lower layer mapping rate φ.
There is no difference between Figure 6a,b, while the function image in Figure 6c decreases
as a whole. This is because when the lower layer mapping rate is high, most enterprises
will make wrong judgments after receiving uncertain information and then be infected
by risks. In this case, the development of new cooperation and the transfer of partners
will increase the probability of being infected, which will make risks greatly spread in the
system. Only by eliminating outdated enterprises can the proportion of infected enterprises
be reduced.

Under different dynamic parameters (p, q, r), Figure 7 shows the change in ρR with
the increase in β1 for different upper layer mapping rates ψ. Obviously, the proportion of
recovered enterprises ρR decreases with the increase in the upper mapping rate ψ. The
function images in Figure 7a,b are basically the same, and the function image in Figure 7c
moves down as a whole. Thus, too much cooperation is not suitable during the risk, and
the elimination of outdated enterprises is conducive to market stability. The improvement
of the upper layer mapping rate has increased the attention of enterprises to authoritative
information, which will inhibit the spread of uncertain information and largely prevent the
spread of risk.
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Figure 6. The impact of dynamic parameters (p, q, r) and the lower layer mapping rate φ under the
strategy of removing aging nodes. Parameters are set as follows: η = 0.6, µ = 0.8, λ = 0.5, δ = 0.3,
τ = 0.2, γ = 2, and κ = 2. (a) p = 0.9, q = 0.05, r = 0.05; (b) p = 0.05, q = 0.9, r = 0.05; (c) p = 0.05,
q = 0.05, r = 0.9.
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Figure 7. The impact of dynamic parameters (p, q, r) and the upper layer mapping rate ψ under the
strategy of removing aging nodes. Parameters are set as follows: η = 0.6, µ = 0.8, λ = 0.5, δ = 0.3,
τ = 0.8, γ = 2, and κ = 2. (a) p = 0.9, q = 0.05, r = 0.05; (b) p = 0.05, q = 0.9, r = 0.05; (c) p = 0.05,
q = 0.05, r = 0.9.

4.2. Removal of Key Nodes

It is the same as in Section 4.1. First, the effectiveness of MMCA in characterizing
supply chain risk diffusion under the strategy of removing key nodes is verified. From
Figure 8, it can be seen that the function image of the proportion of enterprises in U-, B-,
S-, P-, I-, and R-states under MC simulation and MMCA iteration is basically consistent.
For the proportion of U-state enterprises, the relative error is 1.60%. For the proportion of
enterprises in the B-state, S-state, and R-state, the relative error is 5.11%, 3.07%, and 6.79%,
respectively. Therefore, MMCA is suitable for continuing to test the impact of parameters
on supply chain risk diffusion under the strategy of removing key nodes.

Next, under different dynamic parameters (p, q, r), Figure 9 shows ρR as a function of
β1 for different lower layer mapping rates φ. It is basically consistent with the results in
Figure 6; ρR increases with the upper layer mapping rate φ. Compared with Figure 9a,b, the
function diagram of Figure 9c is significantly reduced. However, under the same parameter
settings, the proportion of recovered enterprises in Figure 9 is larger than that in Figure 6
as a whole. This shows that under the strategy of removing key nodes, the large scale of
risk diffusion leads to a large proportion of recovered enterprises. Although removing key
nodes suppresses risks, there is still a certain gap between the effect and that of removing
aging nodes.
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Figure 8. Under the strategy of removing key nodes. (a) The fraction of U-state and B-state enterprises
as a function with time step t. (b) The fraction of S-state, P-state, I-state, and R-state enterprises as a
function with time step t. Parameters are set as follows: p = 0.5, q = 0.45, β = 0.5, η = 0.6, µ = 0.8,
λ = 0.5, δ = 0.3, τ = 0.8, γ = 2, and κ = 2.
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Figure 9. The impact of dynamic parameters (p, q, r) and the lower layer mapping rate φ under the
strategy of removing key nodes. Parameters are set as follows: η = 0.6, µ = 0.8, λ = 0.5, δ = 0.3,
τ = 0.2, γ = 2, and κ = 2. (a) p = 0.9, q = 0.05, r = 0.05; (b) p = 0.05, q = 0.9, r = 0.05; (c) p = 0.05,
q = 0.05, r = 0.9.

Finally, Figure 10 shows the impact of the upper layer mapping rate ψ on the pro-
portion of recovered enterprises ρR with the increase in β1 under the different dynamic
parameters (p, q, r). The results are consistent with those in Figure 7; the proportion of
recovered enterprises ρR decreases with the increase in the upper layer mapping rate ψ. The
images in Figure 10a,b are basically the same, and the proportion of recovered enterprises
in Figure 10c decreases as a whole. This once again proves that improving the upper layer
mapping rate and removing key enterprises will curb risks, while it is not wise to cooperate
during risk. Compared with Figure 7 with the same parameter settings, the proportion
of recovered enterprises in Figure 10 increases as a whole. Therefore, in terms of curbing
the diffusion of risks, it is indeed more effective to eliminate outdated enterprises than to
eliminate key enterprises.
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Figure 10. The impact of dynamic parameters (p, q, r) and the upper layer mapping rate ψ under the
strategy of removing key nodes. Parameters are set as follows: η = 0.6, µ = 0.8, λ = 0.5, δ = 0.3,
τ = 0.8, γ = 2, and κ = 2. (a) p = 0.9, q = 0.05, r = 0.05; (b) p = 0.05, q = 0.9, r = 0.05; (c) p = 0.05,
q = 0.05, r = 0.9.

5. Conclusions

The key to supply chain management is to establish a strategic partnership, risk
taking, and control. To better suppress risk diffusion in partially mapped double-layer
hypernetworks, we consider two node removal strategies to establish a dynamic network
evolution model. The node relationships between double-layer networks in the past were
too idealized [26,29]. The inter-layer mappings in this paper are all randomly generated
to make the model more realistic. Finally, numerical simulations are conducted to test
the effects of the mapping rate and dynamic parameters on risk diffusion under different
strategies, and the following major findings are obtained:

(1) The increase in the upper layer mapping rate and adding and removing nodes will
inhibit the diffusion of risks.

(2) The increase in the lower layer mapping rate and adding and rewiring hyperedges
will promote the risk diffusion.

(3) To restrain risk, it is more effective to remove aging nodes than key nodes.

The interlayer mapping affects the probability of being infected by risk. If the mapping
exists, enterprises have social accounts and will make incorrect judgments when receiving
uncertain information, increasing the probability of being infected. Without mapping, there
is no impact. Based on the major findings above, enterprises with social accounts should
focus on the authoritative information release of official media. The government should
adjust the market structure in a timely manner, control key enterprises, and eliminate
outdated enterprises. Regarding the advantages of the model, first, the partially mapping
double-layer hypernetwork can better express the phenomenon that only some enterprises
have social accounts, and only some social accounts follow official media in reality. Second,
the contribution of two node removal strategies to risk suppression is compared, and a
better risk suppression effect is obtained. Finally, this paper helps decision makers to better
use internet information to establish cooperative relations and provides a theoretical basis
for the government to administrate large-scale market risks. The disadvantage is that
the paper only considers a single risk, while the actual risk is diverse. Furthermore, the
cooperation between enterprises is also divided into intimacy and estrangement, and a
type of hyperedge will overlook important information such as the degree of cooperation
between different enterprises. Therefore, more efforts on building a propagation model
and introducing a weighting matrix are expected in future works. The above provides
inspiration for the study of supply chain risk diffusion behavior, supplier selection, contract
design, and risk assessment.
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