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Abstract: We investigated a mathematical model composed of a spiking neural network (SNN)
interacting with astrocytes. We analysed how information content in the form of two-dimensional
images can be represented by an SNN in the form of a spatiotemporal spiking pattern. The SNN
includes excitatory and inhibitory neurons in some proportion, sustaining the excitation–inhibition
balance of autonomous firing. The astrocytes accompanying each excitatory synapse provide a
slow modulation of synaptic transmission strength. An information image was uploaded to the
network in the form of excitatory stimulation pulses distributed in time reproducing the shape of the
image. We found that astrocytic modulation prevented stimulation-induced SNN hyperexcitation
and non-periodic bursting activity. Such homeostatic astrocytic regulation of neuronal activity makes
it possible to restore the image supplied during stimulation and lost in the raster diagram of neuronal
activity due to non-periodic neuronal firing. At a biological point, our model shows that astrocytes
can act as an additional adaptive mechanism for regulating neural activity, which is crucial for sensory
cortical representations.

Keywords: spiking neural network; tripartite synapse; neuron; astrocyte

1. Introduction

Mathematical and computational models in the form of so-called spiking neural net-
works (SNNs) have attracted growing attention from researchers in recent years [1–3]. In
contrast to the classical formal neurons and artificial neuron networks (ANNs) widely
used in many areas of computer science and information processing technologies, SNNs
operate with a much more complex model of local neurons, synapses and network ar-
chitectures. As more accurate brain circuit models, SNNs are expected to be much more
powerful in solving non-trivial information processing tasks with associative or cognitive
contents. However, there are crucial difficulties in training and tuning such networks to
solve a specific task. It has become clear that these difficulties at the physical level are
concerned with the complexity of SNN neurons and synapses. In particular, a small change
in parameters (for example, when an input stimulus is given) can lead to the formation of
complex dynamic modes that will not allow synaptic weights to be properly adjusted dur-
ing training. The most common mode observed in biological neural networks is bursting [4].
Bursting underlies various processes associated with both information processing and neu-
ropathologies [5,6], including epilepsy [7], and is being studied using dissociated cultures
of brain neurons [4,8] and slice preparation. In particular, it has been shown that bursting
can occur spontaneously [8,9] or in response to sensory input in the thalamus [10–12].
Thalamic neurons are prone to vacillating between burst and tonic firing modes in a state-
dependent manner [13], which may serve as a dynamic gating mechanism for controlling
the flow of information to the cortex [14–19]. However, it is unclear how the transition
between burst and tonic firing modes is modulated in a dynamic sensory environment,
coordinated across the neuronal population, and how this thalamic state transition affects
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information transmission. Sensory systems rapidly adapt to changes in stimulation to
enhance information transmission in dynamic environments [20]. In the thalamocortical
pathway, adaptation modulates sensory-evoked activity in thalamic neurons, impacting
their downstream cortical targets. Thalamic adaptation desynchronizes firing activity, but
the interaction with synchronized bursting across thalamic inputs to the cortex is not yet
understood. This mechanism could robustly gate information flow based on bottom-up
and top-down influences [11]. Bursting control mechanisms are being experimentally stud-
ied [21], but the issue remains relevant to this day [22]. One of the mechanisms controlling
complex neuronal dynamics is short-term synaptic plasticity at timescales on the order
of milliseconds [23–25]. In order to understand the control mechanisms of the network
dynamics of entire brain structures, models have been proposed that imitate their activity
and functions [26–34].

Finding ways to control and manage these modes has become an important task. One
of the ways to control the dynamic modes, which also extends SNN’s standard capabilities,
is to use an additional cell layer, in particular, astrocytes [35–40].

Astrocytes have been confirmed to participate in the synaptic transmission of infor-
mation and regulate synaptic dynamics in neurobiological studies [41–44]. The inclusion
of astrocytes in the classical “presynapse-postsynapse” scheme has led to the concept of a
tripartite synapse, where astrocytes, through the calcium-dependent release of neuroactive
chemicals such as gliotransmitters, can affect both the pre- and postsynaptic compartments
of the synapse over a duration of seconds, which is relatively longer than the modulation
of synaptic transmission by short-term synaptic plasticity.

In brief, the biochemical dynamics are as follows: when spikes are generated on a
presynaptic neuron, neurotransmitters suh as glutamate are released from the presynaptic
terminal. Some of these neurotransmitters may diffuse outside the synaptic cleft and bind
to metabotropic glutamate receptors (mGluRs) on the astrocyte, which may be located close
to the presynaptic terminal. This, in turn, triggers a chain of biochemical reactions, leading
to the release of gliotransmitters (e.g., glutamate, adenosine triphosphate (ATP), D-serine,
and GABA) from the astrocyte into the synaptic cleft and extrasynaptic space, subsequently
modulating synaptic transmission (facilitation and depression) upon binding to pre- or
postsynaptic receptors [45–47]. Recent studies have also shown that astrocytes are involved
in the regulation of burst dynamics in cortical neurons in dissociated cultures [48]. More
recently, it has also been found that astrocytes modulate thalamic sensory processing [49,50].

Many mathematical models have been proposed to understand the functional role
of astrocytes in neuronal dynamics following experimental findings. One concept that
emerged is the “dressed neuron”, which describes how astrocyte-mediated changes in neu-
ral excitability can impact neuronal function [51,52]. Several models have been proposed
to explain the temporal dynamics of astrocytes, including the idea of astrocytes acting as
frequency-selective “gate keepers” [53] and as regulators of presynaptic functions [54]. Ex-
perimental evidence has shown that gliotransmitters released by astrocytes can effectively
modulate presynaptic facilitation and depression. Recently, the tripartite synapse model
has been used to demonstrate how astrocytes participate in the coordination of neuronal
network signaling, particularly in spike-timing-dependent plasticity (STDP) and learning,
which are mechanisms responsible for neural synchrony and plasticity [55–62]. It is worth
noting that the astrocytic modulation of neuronal activity has been modeled using biophys-
ically detailed models and mean-field models, which describe observed experimental facts
phenomenologically [63–70]. These models have revealed that functional gliotransmission
is a complex phenomenon that depends on the nature of structural and functional coupling
between astrocytic and synaptic elements. In the context of network dynamics, several
models of spiking neural networks (SNNs) accompanied by astrocytes have been proposed,
showing how astrocytes can enhance short-term memory performance by enabling the
storage and recognition of highly overlapping information patterns [35,38,71,72]. In recent
years, there have been experimental reports suggesting that astrocytes can influence the
emergence of up–down synchronization in neuronal networks, but the underlying mecha-
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nisms are still uncertain. To explore how astrocytes can control this phenomenon, neural
network models have been proposed, consisting of three populations of cells: excitatory
neurons, inhibitory neurons, and astrocytes, interconnected by synaptic and gliotransmis-
sion events. These models demonstrate that the presence of astrocytes can promote the
emergence of up–down regimes with realistic characteristics [73].

However, many aspects of information representation and processing in SNNs still
remain open. In particular, sensory input may disturb the excitation–inhibition balance,
causing spiking neural networks to oscillate between bursting and tonic firing modes, as
observed in experimental studies on the thalamus. Experimental evidence suggests that
astrocytes can act as an additional adaptive mechanism for regulating these bursting/tonic
regimes, which is crucial in the formation of sensory cortical representations.

In this paper, we investigated the dynamics of a spiking neural network with tripartite
synapses, modeled by a mean-field astrocyte model. We addressed the problem of sensory
encodings with respect to the regulation of bursting and tonic firing modes in response
to a sensory stimulus. We demonstrated that astrocytic modulation of neuronal activity
can prevent stimulation-induced hyperexcitation and non-periodic bursting activity in
SNNs. Such homeostatic regulation of neuronal activity enables the restoration of the image
supplied during stimulation, which may be lost on the raster diagram of neuron activity
due to non-periodic neuronal firing.

2. The Model

A spiking neural network consists of neurons modeled by a functional, biorelevant,
and computationally efficient model of neurons proposed by Izhikevich [74], which can be
described by the following equations:

dVi
dt

= 0.04V2
i + 5Vi + 140 − Ui + Iexti + Isyni + Istimi ,

dUi
dt

= a(bVi − Ui),

if Vi ≥ 30 mV, then
Vi = c,
Ui = Ui + d,

(1)

The parameters a, b, c, and d determine the type of neuron, Iexti is the externally applied
current, and the variables Vi and Ui describe the membrane potential and the process of
activation and deactivation of potassium and sodium membrane channels, respectively.
When the membrane potential Vi reaches 30 mV, the action potential is generated, and the
variables are updated.

The parameters of the neuron model were chosen in such a way that the neuron was in
an excitable mode, in which the generation of a spike impulse is initiated by some external
influence (for example, an external stimulus or noise) [75]. This mode corresponds to the
tonic spiking mode of the Izhikevich model [76]. We have fixed the parameters with the
following values: a = 0.02, b = 0.5, c = −40 mV, d = 100, and Iext = 40.

Isyni represents the sum of synaptic currents from all presynaptic neurons, M, with
which this neuron is connected. In the model, synaptic currents were described as follows:

Isyni =
M

∑
j=1

yj,iwj,i. (2)

In Equation (2), wj,i represents the weights of glutamatergic and GABAergic synapses
between neurons, while M describes the count of presynaptic neurons that have actual
connections with the i-th neuron. The weights of excitatory and inhibitory synapses are
denoted by positive and negative signs, respectively. The variables yj,i represent the output
signal (synaptic neurotransmitter) from the i-th neuron to the j-th neuron, which is involved
in the generation of Isyni .
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Initially, synaptic weights were randomly set for all connections within the range
of 20 to 60. When a presynaptic neuron generates a spike, it results in a change in the
concentration of the synaptic neurotransmitter yj,i, which in turn leads to a change in
the synaptic current on the postsynaptic neuron. The dynamics of yj,i can be described
as follows:

dyj,i

dt
= −

yj,i

τy
+ byθ(t − tsp). (3)

In Equation (3), tsp represents the time moments of consecutive presynaptic spikes, τy
represents the relaxation time constant, and by denotes the fraction of neurotransmitter re-
lease.

The generation of spikes in the neuron model leads to the release of a neurotransmitter.
In our model, we specifically focus on the interaction of neurons with astrocytes, but only for
glutamatergic synapses. This interaction has been extensively studied in previous modeling
and experimental works, as it is considered an important mechanism for the formation of
coherent neuronal excitation, as reported in [77,78]. In our network, GABAergic neurons
play a crucial role in maintaining a balance between excitation and inhibition, preventing
states of hyperexcitation.

To simplify the analysis, we adopt a phenomenological model to describe the dy-
namics of released glutamate. Using the mean-field approach, the mean extrasynaptic
concentration of glutamate for each excitatory synapse, denoted by X, can be calculated
using the following equation:

dXe

dt
= −Xe

τX
+ bXθ(t − tspe). (4)

The index e represents excitatory presynaptic neurons, and bX denotes the fraction
of glutamate release, while τX is the relaxation time constant. When a spike is generated
on the presynaptic neuron, a neurotransmitter is released, leading to an increase in the
extrasynaptic neurotransmitter concentration due to diffusion processes. However, this
concentration decreases over time with its characteristic time τX . It is important to note that
the mathematical descriptions of synaptic (Equation (3)) and extrasynaptic (Equation (4))
neurotransmitter dynamics are different, primarily due to the distinct time constants τy and
τX , respectively. The parameter values used in this model are τX = 100 ms and τy = 4 ms.

2.1. Astrocytic Dynamics

A portion of the extrasynaptic glutamate can bind to metabotropic glutamate recep-
tors located on astrocyte. Subsequently, through a cascade of molecular transformations
mediated by intracellular calcium elevation, the astrocyte releases gliotransmitters back
into the extracellular space. However, for the purpose of our mathematical model, we
have omitted a detailed description of these transformations and have only defined an
input–output functional relationship between the neurotransmitter and gliotransmitter
concentrations in the following form, as described in previous works [63,66,67]:

dYj

dt
= −αYYj +

βY
1 + exp(−Xe + Xthr)

, (5)

where e = 1, 2, 3, . . . is the index of the excitatory neuron, Y represents the gliotransmitter
concentration in the neighborhood of the corresponding excitatory synapse, and αY denotes
the clearance rate. The parameter values used in our model are αY = 120 ms, βY = 0.5,
Xthr = 3.5.

The second term in Equation (5) accounts for gliotransmitter production when the
mean field concentration of gliotransmitters exceeds a certain threshold, Xthr. Please refer
to Figure 1 for an illustration of the network construction and the neuron-to-astrocyte
crosstalk specifically for excitatory glutamatergic synapses.
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Figure 1. Scheme of the neuron–glial network and procedures for supplying an input stimulus to
the neural network: (a) The input image is N by K (300 × 300 in our case), where N is the number of
neurons and K is the duration of stimulus supply to the neural network; (b) The blue area from panel
(a) divided into columns of pixel values supplied every subsequent ms; (c) The blue area from panel
(b) shows blue dots representing neurons, and the color space around them represents pixel values
ranging from 0 for white to AS for black; (d) The diagram of a tripartite synapse.

2.2. Astrocytic Modulation of Neural Activity

Based on experimental evidence, it has been observed that astrocytes can impact the
probability of neurotransmitter release, resulting in either potentiation or depression of
synaptic transmission [79–81]. This, in turn, leads to the modulation of synaptic currents.
In our model, we specifically incorporate depression of synaptic transmission, which is
manifested as a decrease in the probability of neurotransmitter release, for glutamatergic
synapses. The mathematical representation of this depression is as follows:

Isyni =
M

∑
j=1

yj,iwj,i(1 −
γY

1 + exp(−Yj + Ythr)
). (6)

In our model, the synaptic current in the postsynaptic neuron, denoted as Isyni , is the
sum of all synaptic currents from presynaptic neurons. The weight of the glutamatergic
synapses between neurons is represented by wj,i, and the coefficient of astrocyte influence
on synaptic connection is denoted as γY. For illustrative purposes, we fix the threshold of
gliotransmitter concentration that triggers astrocyte influence on synaptic connection at
Ythr = 2.

In our current study, we have made the assumption that astrocytes modulate only the
excitatory neurons, while the inhibitory neurons function in the classical pre- to postsynap-
tic information transmission role.
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2.3. Stimulation Current

A set of input images of numbers from 0 to 9 was prepared using a freely distributed
raster graphics editor (GIMP [82]). The image itself was 300 by 300 pixels (denoted as
N × K from Figure 1a). The image was encoded from 0 to 1, Si, where zeros represented
pixels without color, and units were were represented by black. Hence, the equation for the
stimulation current, Istimi , can be written in the following form:

Istimi = Si × AS, (7)

where AS represents the amplitude of the stimulus.
Each column of the stimulation current matrix was applied to each neuron in the

network for 1 ms. The total duration of the image feed was determined by the number of
columns in the matrix, which corresponds to the width of the input image (300 ms).

2.4. Neural Network

The model consists of a single-layer spiking neural network comprising excitatory
and inhibitory neurons in a ratio of 4 to 1. This ratio is consistent with experimental studies
that have shown the ratio of excitatory to inhibitory neurons to fall within a relatively
narrow range of 3:1 to 9:1, with inhibitory neurons comprising 10–25% of the total neuronal
population [83–88]. Neurons are connected in an “all-to-all” manner, with a probability of
connection set at 5% for excitatory synapses and 20% for inhibitory synapses [89].

The number of neurons in the neural network was determined by one of the dimen-
sions (N = 300) of the image fed to the network (Figure 1a). Another dimension (K = 300) of
the supplied image determined the time of supplying the image pixel columns to the neural
network. The white color in Figure 1a–c indicates pixel values equal to 0. Figure 1b shows
a breakdown of the blue region of the input image (Figure 1a) in the space of neurons and
the time of the stimulus. Figure 1c shows a part of the neural network, which at a time
of 388 ms is supplied with a part of the stimulus marked by the blue area in Figure 1b.
Figure 1d shows a diagram of a tripartite glutamatergic synapse between neurons #102 and
#103 from Figure 1c. Spike generation on a presynaptic neuron results in the release of a
neurotransmitter (glutamate) into the synaptic cleft. Part of the released neurotransmitter
reaches the astrocyte and, by binding to metabotropic receptors [90], activates it, resulting
in the release of the gliotransmitter (glutamate). The gliotransmitter reaches the receptors
of the postsynaptic neuron and leads to a depression of synaptic transmission. Our model
is built using a mean-field approach for neurotransmitters and gliotransmitters, focusing
on the dynamics of synapses while taking into account these regulations.

2.5. Numerical Simulation Method

The Euler method with a step size of 0.01 ms was employed for numerical integra-
tion. For implementing numerical methods and data analysis, the Python programming
language [91] was used, along with the NumPy library for arrays, the Pandas library for
data processing and analysis, Brian2 [92] for model simulation, and the Matplotlib and
Seaborn [93] libraries for data visualization and analysis.

2.6. Image Similarity Metrics

To compare the original stimulus applied to the neural network with its representation
in the form of spike activity, we utilized several classical metrics [94] that are commonly
used due to their interpretability and universality, including the mean squared error
(MSE), root-mean-squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM). Below is a brief description of each metric.

The mean squared error (MSE [94–96]) is the most common and traditional measure
of similarity between two images. It calculates the squared error between estimated values
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(comparison image, ĝ(n, m)) and actual values (original image, g(n, m)) of pixels, according
to the following equation:

MSE =
1

MN

M

∑
n=0

N

∑
m=1

[ĝ(n, m)− g(n, m)]2 (8)

The resulting values are not standardized and can therefore be quite large. An MSE
value of zero indicates that the images are absolutely similar.

The root-mean-squared error (RMSE [94]) overcomes one of the disadvantages of
the MSE metric, which is the issue of obtaining large values. It is commonly used to
measure the difference between the predicted value and the actual value by estimating the
magnitude of the error, and can be described by the following equation:

RMSE(θ̂) =
√

MSE(θ̂), (9)

where θ̂ is estimated with respect to a given estimate parameter θ.
Since a noise signal, Iexti , is also fed to the neural network, we also used the PSNR

metric (peak signal-to-noise ratio) [94,97] to compare images. This metric allows us to
assess the relationship between the maximum possible signal power and the power of the
distorting noise that affects the reliability of its presentation. It can be calculated as follows:

PSNR = 10 log10(peakval2)/MSE (10)

PSNR is a variant of MSE and is used for pixel-by-pixel comparison. The higher the
PSNR value, the better the quality of the compared image will be.

Since the input stimulus, Istimi , is divided into parts and delivered in parts during the
calculation of the model for a given time, structural changes in the resulting pattern can
be observed when the stimulus is represented by neural network spike activity. To assess
its similarity with the original stimulus, we used the structural similarity index (SSIM)
method [94], which is calculated as follows:

SSIM(x, y) =
(2µxµy + c1)(2σx,y + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + c2)
, (11)

where µx is the average value for the first image, µy is the average value for the second
image, σx and σy are the standard deviations for the first and second image, respectively,
C1 and C2 are correction factors, and σx,y is the covariance, which is calculated as follows:

σx,y = µx,y − µxµy (12)

The SSIM is related to the quality and perception of the human visual system (HVS
color model). In this metric, instead of using traditional error summation methods, SSIM
models image distortion as a combination of three factors: correlation loss, brightness
distortion, and contrast distortion. The peculiarity is that it always lies in the range from
−1 to 1, and when its value is equal to 1, it means that we have two identical images. It
has also been shown [98] that, unlike SSIM, MSE and PSNR do a poor job of recognizing
structural content in images, since different types of degradation applied to the same image
can give the same MSE value. To calculate these metrics, the Sewar library [99] was used.

3. Results

We started simulations of Equations (1)–(8) from the autonomous dynamics of SNN
without the astrocyte action and external stimulation. Due to the presence of the in-
hibitory neurons, network firing was balanced, preventing hyperexcitation. The initial
high-frequency burst that occurs due to an arbitrary initial conditions is followed by rare
spiking dynamics, as illustrated in Figure 2. The SNN was untrained, and hence, its spikes
occur in an irregular manner due to an uncorrelated subthreshold noise drive.
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Figure 2. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of
the network, calculated in a time window 5 ms (lower left figure) and time series of concentra-
tions of gliotransmitters, Y, (upper right figure) and concentrations of neurotransmitters, X (lower
right figure).

Next, we stimulated the SNN by feeding the image as the number 0 (Figure 1a)
according to the Equation (7) for 300 ms. The space-time dynamics of the SNN is illustrated
in Figure 3. Note that the feedback from the astrocyte layer given by Equation (6) has not
been activated yet. Neurotransmitter and gliotransmitter concentrations simply followed
the average rate of spiking in the corresponding SNN’s sites. As the stimulation was
excitatory, the SNN responded by transitioning to its hyperexcitation mode, displaying
bursting dynamics after the stimulation. Bursts were characterized by quasi-synchronous
population discharges with a significantly high spiking rate. Note that, in this case, all
features of the spatiotemporal pattern (Figure 3) were diffused by the hyperexcitation
dynamics. Additionally, due to the stimulation current also containing zero values (areas of
the pattern without color), the beginning of stimulation did not coincide with the occurrence
of neuronal synchronization and the formation of a burst.

Figure 3. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated in a time window of 5 ms (lower left figure) and time series of concentrations
of gliotransmitters, Y, (upper right figure) and concentrations of neurotransmitters, X (lower right
figure). The red area in the Figure indicates the time duration of the input stimulus.
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Figure 4 depicts the results of astrocytic feedback leading to synaptic plasticity de-
pression. The dynamics of an individual synapse and a typical SNN neuron are shown in
Figure 5. The raster plot suggests the presence of an image-like pattern in the spike dynam-
ics. It is noteworthy that the quasi-synchronous bursts were eventually suppressed, and the
SNN exhibited rare bursts, indicating a return to “normal dynamics”. This was achieved
through astrocytic modulation of neurotransmitter release probability and corresponding
processes of inhibition and excitation. Specifically, the parameters of astrocyte-mediated
feedback were fine-tuned such that the high-frequency bursts, activated when the image
nucleus approached the entrance, induced astrocyte feedback, leading to the suppression of
excitatory synaptic transmission. Subsequently, after the core of the image passed through
the front door, the network quickly returned to a rare peak mode, displaying the shape of
the image on the raster diagram.

Figure 4. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated in a time window of 5 ms (lower left figure) and time series of concentrations
of gliotransmitters, Y, (upper right figure) and concentrations of neurotransmitters, X (lower right
figure). The red area in the Figure indicates the time duration of the input stimulus.
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Figure 5. Time series of membrane potential changes, V, for single neuron (left figure) and time
series of gliotransmitter concentrations, Y, (right figure), neurotransmitter concentrations, X, (right
figure), and synaptic current, Isin. The red area in the figure indicates the timing of the input stimulus.

Next, we analyzed how the strength of the astrocyte feedback, controlled by the
parameter γY (Figure 6), affected the quality of the SNN image representation. With the
parameter γY regulating the astrocytic depression of synaptic transmission, the image
of the number 0 begins to appear and to disappear as non-periodic burst activity, which
prevents the image from being represented on the SNN. Note that starting from a value of
the parameter, γY, equal to 0.8, the image begins to be distorted due to over-depression of
the synaptic transmission dynamics but remains visually recognizable.
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Figure 6. Part of the raster diagram of neural activity, demonstrating the representation of the
supplied pattern at different parameter values of γY .

Next, we made a qualitative comparison of the original simulation fed to the spiking
neural network in the form of the number 0 and the image restored by the spiking neural
network on a raster diagram of neural activity. An example of the comparison scheme is
shown in Figure 7.

Figure 7. Image comparison scheme. On the left, the original stimulus image that is fed to the spiking
neural network. The right picture shows a blurred scan of the image that is restored by spiking
neural network.

Figure 8 shows a comparison of a raster plot of a spiking neural network with a
reproduced image of the number 0 with the image fed to the neural network when changing
the astrocytic regulation of synaptic transmission (γY) using various metrics from the field
of computer vision and machine learning used for image comparison tasks: MSE, RMSE,
PSNR, and SSIM [94].

As the parameter γY (astrocytic synaptic depression) increases, the deformation of
the network activity pattern reproducing the stimulus input leads to poor performance of
image comparison metrics (MSE, RMSE, and PSNR) based on pixel-by-pixel calculation
of the MSE error, as shown in Figure 8. However, the image remains recognizable and
distinguishable in the pattern of network activity, as shown in Figure 6.

This can be explained by two reasons. Firstly, the image was fed to the spiking neural
network partially within 300 ms, meaning that only a part of the image was supplied
within 1 ms. Secondly, the image was restored in the spiking neural network operating in
its bursting mode, which resulted in changes in synaptic weights and shifts in the image.
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These metrics (MSE, RMSE, and PSNR) used for pixel-by-pixel comparison may not be
suitable for comparing images that are semantically close but differ in pixel-level details.
Therefore, we can conclude that these metrics may not be optimal for evaluating images
with subtle semantic differences.

Figure 8. The dependence of the image comparison metrics (MSE, RMSE, PSNR, and SSIM) for
comparing the applied stimulus and the reproduced pattern by the neural network on the parameter
value γY . MSE—mean square error. RMSE—root-mean-square error. PSNR—peak signal-to-noise
ratio. SSIM—structural similarity index method.

At the same time, the SSIM metric demonstrates an improvement in the similarity
between the original image of the input stimulus and the network activity pattern as the
parameter increases. This reflects the fact that the image was deformed relative to the pixel
space but remained structurally similar to the input stimulus.

Additional results obtained using other input images are illustrated in Appendix A
and in the Supplementary Materials.

Study of Neuron and Neural Network Parameters

Next, the parameters of the neurons (refractory period) and of the neural network
(ratio of excitatory/inhibitory neurons and connection probability between neurons) were
studied for the representation of the input image in the form of a pattern of neural activity,
without and with astrocyte modulation.

A change in the refractory period of a neuron does not lead to the disappearance of
burst activity and the manifestation of a pattern of neuronal activity reproducing the input
stimulus (left panel in the Figure 9). At the same time, the inclusion of astrocytic modulation
in such a network leads to the disappearance of burst activity and the manifestation of the
input stimulus in the form of a pattern of neural activity (panel on the right in the Figure 9).

Next, we investigated the effects of the ratio of excitatory and inhibitory neurons in
the network on the reproduction of the input stimulus in the form of a pattern of neural
activity in the presence and absence of astrocytic modulation.

As can be seen, the input stimulus almost does not appear as a neural network activity
pattern with an equal or larger number of inhibitory neurons (Figure 10a,b). However, such
a ratio of neurons is not experimentally observable [83–88], in contrast to the case shown in
Figure 10c. When the percentage of excitatory neurons is exceeded (Figure 10c), the neural
network demonstrates the appearance of burst dynamics in response to the input stimulus
(Figure reffig:schemea), and the manifestation of an activity pattern, as well as the removal
of burst dynamics, is possible only in the presence of astrocytic modulation (Figure 10c).

The last case pertains to the study of the influence of the probability of connection
between neurons on the representation of the input stimulus as a pattern of neural activity
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in the absence and presence of astrocytic modulation. As can be seen, only with a very
low probability of connection (1%) is it possible to represent the input stimulus without
the participation of astrocytes (Figure 11e). However, with an increase in the probability
of connection to 5% or more, hyperexcitation of the neural network occurs in response to
the input stimulus (Figure 11a,c), which requires astrocytic modulation to correct it and
represent the input stimulus as a pattern of neural activity (Figure 11b,d).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Raster diagram of neural activity when an input stimulus from Figure 1a is applied to the
neural network (red area) in the presence (right panel—(b,d,f,h)) and absence (left panel—(a,c,e,g))
of astrocytic modulation under different parameters of the neuron refractory period: 0.1 ms, 1 ms,
3 ms, and 5 ms.
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(a) (b)

(c) (d)

Figure 10. Raster diagram of neural activity when an input stimulus from Figure 1a is applied to the
neural network (red area) in the presence (d) and absence (a–c) of astrocytic modulation at different
ratios of excitatory and inhibitory neurons: 1:1, 1:4, and 4:1.

(a) (b)

(c) (d)

(e)

Figure 11. Raster diagram of neural activity when an input stimulus from Figure 1a is applied to
the neural network (red area) in the presence (b,d) and absence (a,c,e) of astrocytic modulation at
different connection probabilities between neurons: 1%, 5%, and 10%.
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4. Discussion

The growing interest in the possible role of astrocytes in the regulation of neural activity
and various processes in the brain has led to the emergence of a branch of computational
neuroscience called computational glioscience [100]. Similar to recent modeling papers
on neuron–astrocyte networks (see, in particular, [38,40]), our study also demonstrates
that astrocytes may play a crucial role not only in maintaining the spiking dynamics of
spiking neural networks but also in the implementation of an interface between information
patterns and their internal representation in neuronal circuits.

In our spiking neural network model, synaptic weights at the initial moment of time
were determined randomly and subsequently corrected by astrocytes. The observed non-
periodic synchronous activity upon presentation of the stimulus was verified for most
images, indicating the destruction of synchronization during astrocytic regulations.

On the one hand, our model is a drastic simplification of the cognitive processing that occur
in the real brain. However, on the other hand, it is expected to be highly predictive because it
incorporates facts observed at the molecular–cellular level in experiments [42,45,46,90].

We also note that the model considers a specific modulation of the spiking neural
network, in which neurons could become synchronized and exhibit non-periodic bursting
dynamics as a consequence of hyperexcitation. To suppress the hyperexcitability of neurons,
depression of synaptic transmission was introduced into the model using astrocytic regula-
tion of neuronal activity. In the proposed model, we focused on the consideration of one of
the basic functions of astrocytes observed in the glutamatergic synapse. Further complexity
of the model could be achieved by introducing astrocytic regulation in the GABAergic
synapse, as well as bidirectional astrocytic regulation, may yield possible ways to control
the quality of spiking image representation in SNN-based information processing.

To date, various neuromorphic devices based on memristors are being implemented,
which allow for the imitation of basic regulatory mechanisms, including those of astro-
cytes [101]. Understanding the control mechanisms of the complex dynamics of neural
networks at the level of synapse dynamics due to astrocytic modulation (which occurs over
longer timescales than short-term synaptic plasticity) will enable their incorporation into new
memristive devices and expand the possibilities and systems of neuromorphic computing.

5. Conclusions

We have investigated the performance of an SNN-plus-astrocyte computational model
in processing space-time external information patterns. By feeding images of numbers
from 0 to 9 as a spatiotemporal signal, we have shown that the spiking neural network
can generate non-periodic neuronal firing, which leads to the “loss” of the image on the
raster diagram of neural activity. Astrocytic regulation of neuronal activity by suppress-
ing synaptic transmission makes it possible to “restore” the image on a raster diagram
of neuronal activity. However, qualitative pixel-by-pixel measurements (using quality
indicators such as MSE, RMSE, and PSNR) of the original image supplied as a stimulus and
the image displayed on the raster diagram of neuronal activity with increasing astrocytic
depression of synaptic transmission show differences, although the SSIM structural similar-
ity metric shows an improvement in the representation of the input signal by the neural
network. Changes in the feedback of astrocytes led to blurring of the image core, which
occurred mainly due to SNN hyperexcitation upon stimulus delivery and strengthening of
excitatory synaptic connections. Moreover, the study of various parameters (such as the
neuron refractory period, ratio of excitatory and inhibitory neurons, connection probability
between neurons) of the neural network showed the significance of astrocytic modulation,
regardless of the architecture of the network. Astrocytes, operating at a much slower time
scale, provided an “inertial” buffer to prevent hyperexcitation of firing neurons. Our work
demonstrates that astrocytes can serve as an adaptive mechanism for regulating neuronal
activity between bursting and tonic modes in response to sensory input. This is crucial in
the formation of sensory cortical representations.
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Appendix A. Cases with Other Numbers

Figure A1. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated on a time window of 5 ms (lower left figure) and time series of concentrations
of gliotransmitters, Y (upper right figure) and concentrations of neurotransmitters, X (lower right
figure). The red area in the Figure indicates the time duration of the input stimulus.

https://www.mdpi.com/article/10.3390/e25050745/s1
https://www.mdpi.com/article/10.3390/e25050745/s1
https://github.com/sstasenko/burstingSNN
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Figure A2. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated on a time window of 5 ms (lower left figure) and time series of concentrations
of gliotransmitters, Y (upper right figure), and concentrations of neurotransmitters, X, (lower right
figure). The red area in the Figure indicates the time duration of the input stimulus.
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Figure A3. Part of the raster diagram of neural activity demonstrating the representation of the
supplied pattern at different parameter values γY .

Figure A4. The dependence of the image comparison metrics (MSE, RMSE, PSNR, and SSIM) for
comparing the applied stimulus and the reproduced pattern by the neural network on the parameter
value γY . MSE—mean square error. RMSE—root-mean-square error. PSNR—peak signal-to-noise
ratio. SSIM—structural similarity index method.
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Figure A5. Time series of neural activity (upper left figure in the form of a raster diagram), the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated on a time window of 5 ms (lower left figure) and time series of concentrations
gliotransmitters, Y (upper right figure), and concentration neurotransmitters, X (lower right figure).
The red area in the Figure indicates the time duration of the input stimulus.

Figure A6. Time series of neural activity (upper left figure in the form of a raster diagram); the
corresponding rate of activity of the neural network is the sum of the spikes of the neurons of the
network, calculated on a time window of 5 ms (lower left figure) and time series of concentrations
of gliotransmitters, Y (upper right figure), and concentrations of neurotransmitters, X (lower right
figure). The red area in the Figure indicates the time duration of the input stimulus.
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Figure A7. Part of the raster diagram of neural activity demonstrating the representation of the
supplied pattern at different parameter values γY .
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Figure A8. The dependence of the image comparison metrics (MSE, RMSE, PSNR, and SSIM) for
comparing the applied stimulus and the reproduced pattern by the neural network on the parameter
value γY . MSE—mean square error. RMSE—root-mean-square error. PSNR—peak signal-to-noise
ratio. SSIM—structural similarity index method.
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