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Abstract: A protective scheme of quantum dense coding and quantum teleportation of the X-type
initial state is proposed in amplitude damping noisy channel with memory using weak measurement
and measurement reversal. Compared with the noisy channel without memory, the memory factor
improves both the capacity of quantum dense coding and the fidelity of the quantum teleportation to a
certain extent for the given damping coefficient. Although the memory factor can inhibit decoherence
in some degree, it cannot eliminate it completely. In order to further overcome the influence of the
damping coefficient, the weak measurement protective scheme is proposed, which found that the
capacity and the fidelity can be efficiently improved by adjusting weak measurement parameter.
Another practical conclusion is that, among the three initial states, the weak measurement protective
scheme has the best protective effect on the Bell-state in terms of the capacity and the fidelity. For the
channel with no memory and full memory, the channel capacity of quantum dense coding reaches
two and the fidelity of quantum teleportation reaches one for the bit system; the Bell system can
recover the initial state completely with a certain probability. It can be seen that the entanglement of
the system can be well protected by the weak measurement scheme, which provides a good support
for the realization of quantum communication.

Keywords: quantum dense coding; quantum teleportation; capacity; fidelity; weak measurement
and measurement reversal

1. Introduction

Quantum information (QI) science is an emerging field of science and technology
formed by the integration of physical science and information science and other disciplines.
QI science is a new way of computing, encoding and transmitting information through
various coherent properties of quantum system, such as quantum parallelism [1], quantum
entanglement [2,3] and quantum noncloning [4]. The research field of QI mainly includes
quantum communication [5–7], quantum computing [8,9] and quantum precision mea-
surement [10]. The two aspects of quantum communication, which are quantum dense
coding and quantum teleportation, are especially discussed here. Quantum entanglement
is the core factor of quantum communication, but the system inevitably interacts with its
surrounding noisy channel, resulting in the attenuation of quantum entanglement and
even the entanglement sudden death (ESD) [11–14]. Any physical process can be regarded
as a quantum noisy channel, which reflects the evolution of the system from the initial
state to the final state. So it is an important task for quantum communication to protect
entanglement from the influence of the noisy channel.

The physical mechanism of using the weak measurement (WM) protective scheme
is that the WM operation causes the system to collapse to the ground state with a certain
probability which will not be affected through the amplitude damping (AD) noisy channel,
and then the system is restored to the initial state with a certain probability through the
quantum measurement reversal (QMR) operation. Although this approach is associated
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with a lower probability of success, it is very powerful for increasing the entanglement
of the system. Since Aharonov et al. [15,16] made the pioneering work, the protective
scheme combining weak measurement and measurement reversal (WMR) has been studied
extensively in theory and in experiment. For example, the WMR protective scheme have
been used to protect the entanglement of one-qubit [17–19], two-qubit [20–23], a hybrid
qubit-qutrit [24] and two-qutrit system [25] in quantum noisy channel. The results of the
above literature works have proved that the decoherence can be effectively suppressed
and the entanglement can be effectively protected by the WMR protective scheme. Even
for some states, the entanglement can be completely recovered with a low probability of
success. In addition to protecting the entanglement of different quantum systems in noisy
channel, quantum dense coding and quantum teleportation are also studied. For example,
Tian et al. [26] proposed a protocol of quantum dense coding protection of two qubits
based on the WMR protective scheme. The results show that the capacity of quantum
dense coding under the WMR protective scheme is always greater than that without
the WMR protective scheme. When the protocol is applied, for the AD noisy channels
with different damping coefficients, the result reflects that quantum entanglement can
be protected and quantum dense coding becomes successful. Li et al. [27] improved the
quantum teleportation in the AD noisy channel by the WMR protective scheme, the results
indicate that the combination of WM and QMR could drastically enhance the fidelity in
AD noisy channel. In addition, Li et al. [28] further explored the fidelity of the system
in the Pauli channel, but did not adopt the WMR protective scheme to explore whether
the fidelity of the system could be improved. It is worth pointing out that the initial state
involved in the refs. [26–28] is one of the Bell states.

Through the application of the WMR protective scheme in the above aspects, we can
find its broad prospect, and also provide people with a new way to solve the problem
that could not be solved by the classical method before. The early researches focus on the
assumption that the channel acts as a memoryless configuration, which acts identically
and independently on the qubits. However, there are actually two kinds of quantum
channels, with memory and without memory. In many realistic scenarios, the Kraus
operators of the noisy channel map cannot be expressed in a tenor product form, which
means that the noisy channel has memory or is correlated among consecutive uses, so
memory or correlated noisy channels appear to be more reasonable and significant in
QI theory. Meanwhile, the application of WMR protective scheme in various quantum
noisy channels with memory has not been studied. So, we have attempted to study the
evolution of the entanglement in four noisy channels with memory and the protection of
the entanglement by the WMR protective scheme [29], in which the memory effects are
characterized by a memory parameter, which ranges from 0 to 1. The evolution of the
entanglement under the correlated channel is investigated with and without the assistance
of WMR protective scheme. We derive the exact expressions of the entanglement and
find that the WMR protective scheme indeed helps to protect the entanglement from
different correlated decoherence channels for two initial Bell-like states. What is more
significant is that the WMR protective scheme and improving memory parameters can not
only effectively circumvent ESD but also amplify the initial entanglement, which is rather
significant in QI science.

Based on the results obtained by other researchers and ourselves, in this paper, we
want to expand further and continue to use WMR protective scheme to improve the capacity
of quantum dense coding and the fidelity of the quantum teleportation with the X-type
initial state which suffers from the AD noisy channels with memory as shown in Figure 1.
The memory parameter can improve the capacity and the fidelity to a certain degree.
Moreover, after introducing the WMR protective scheme, choosing the appropriate WM
strength can further improve the capacity and the fidelity, which works best for the Bell
state. For the channel with no memory and full memory, the channel capacity of quantum
dense coding reaches 2 and the fidelity of quantum teleportation reaches 1. Our results
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extend the ability of WM as a technique in various QI processes which are affected by
correlated noise.

Figure 1. (a) The schematic diagram of quantum dense coding; (b) The diagram of quantum telepor-
tation. The virtual box represents the weak measurement and measurement reversal operation.

The rest of this paper is structured as follows. The evolution of the system in the AD
correlated noisy channel without and with WMR operation are introduced in Section 2.
In Section 3 is devoted to quantum dense coding and quantum teleportation under the AD
noisy channel with memory. In Section 4, the effect of WM strength on the capacity and the
fidelity after the introduction of WMR protective scheme. The conclusion is presented in
Section 5.

2. The Evolution of the System
2.1. The Evolution of the System in the AD Noisy Channel with Memory

We assume that the initially entangled state is defined as

ρ0 =
1
4
(I ⊗ I +

3

∑
i=0

ciσ
A
i ⊗ σB

i ), (1)

where I is the unit operator of two-qubit, σA
i and σB

i are the Pauli operators for two-qubit
of the Alice and Bob. ci (0 6 ci 6 1) is the real number that makes the matrix ρ0 normalized
and positive. In order to study the capacity of quantum dense coding and the fidelity
of quantum teleportation, we will consider three cases from the initial state. That is the
general state (|c1| = 0.6, |c2| = 0.7, |c3| = 0.4), the Werner state (|c1| = |c2| = |c3| = 0.8),
and the Bell state (|c1| = |c2| = |c3| = 1).

In Figure 1 (the solid path labeled 1©), the evolution mechanism of the initial entangled
state under the AD noisy channel with memory can be expressed as

ρAB = ε(ρ0) = (1− η)
1

∑
i,j=0

Eijρ0E+
ij + η

1

∑
k=0

Akρ0 A+
k , (2)

where η (0 6 η 6 1) denotes memory effect, Eij = Ei ⊗ Ej is the tensor product of the
memoryless operator in the AD noisy channel, with

E0 =

(
1 0
0
√

1− r

)
, E1 =

(
0
√

r
0 0

)
, (3)
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where r ∈ [0, 1] represents the strength of the decoherence. Ak is the correlated noise,
with the following form

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
1− r

, A1 =


0 0 0

√
r

0 0 0 0
0 0 0 0
0 0 0 0

. (4)

Substituting Equations (3) and (4) into Equation (2), and the specific form of the
evolution process of the entangled system is expressed as

ρAB =
1
4


a 0 0 b
0 c d 0
0 d∗ e 0
b∗ 0 0 f

, (5)

with

a = (1− η)[(1 + c3)(1 + r2) + 2(1− c3)r] + η(1 + c3)(1 + r),

b = b∗ = (c1 − c2)[(1− η)(1− r) + η
√

1− r],

c = e = (1− η)[(1− c3)(1− r) + (1 + c3)r(1− r)] + η(1− c3),

d = d∗ = (c1 + c2)[(1− η)(1− r) + η],

f = (1 + c3)[(1− η)(1− r)2 + η(1− r)]. (6)

2.2. The Evolution of the System after WM and QMR Operation

WM is a kind of local collapse measurement based on von Neumann measurement
and positive operator value measurement (POVM). WM satisfies two key requirements,
that is, controllability of the measurement intensity and no loss of coherence when the
system is slightly disturbed, which is common in any measurement. We know that the WM
is limited by the information extracted from the quantum system, which can effectively
prevent the quantum state of the measurement system from randomly collapsing into its
eigenstate. With WM, we get only partial information about the system, but can keep
the system active (i.e., not completely broken). Therefore, the system information can be
recovered by some operations of the QMR. In the actual implementation process, the WM
is implemented by the detector indirectly monitoring a qubit. If the detector responds, we
know that the qubit goes from |1〉 state to |0〉 state; discard this measurement. If the detector
does not respond, that means the quantum state has only partially collapsed, and we will
leave it to evolve. This unresponsive WM is different from AD measurement, in a sense, it
is equivalent to adding an ideal detector to observe changes in the environment.

So, we perform the WMR protective scheme to suppress the entanglement decay.
For the qubit case, the WM can be written as a non-unitary quantum operation

MWM =

(
1 0
0
√

1− p

)
, (7)

where p ∈ [0, 1] is the WM strength for the qubit. The QMR for the qubit is also a non-
unitary quantum operation that can be written as

MQMR =

( √
1− q 0
0 1

)
, (8)

where q ∈ [0, 1] is the strength of QMR.
If the system passes through the AD noisy channel with memory directly, the entan-

glement will decay rapidly. In order to overcome this phenomenon, the WM operation is
carried out before the system passes through the AD noisy channel as shown in Figure 1
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(the dashed path labeled 2©). Then, the QMR operation is implemented, and the final
evolution result of the system is

ρWMR = (MQMR ⊗MQMR)ε[(MWM ⊗MWM)ρ0(MWM ⊗MWM)+](MQMR ⊗MQMR)
+, (9)

By combining Equations (1) and (7)–(9), the density matrix of the system can be
obtained as

ρWMR =
1
P


a
′

0 0 b
′

0 c
′

d
′

0
0 d∗

′
e
′

0
b∗
′

0 0 f
′

, (10)

with

a
′
=

1
4
{(1− η)[(1 + c3) + (1 + c3)r2(1− p)2 + 2(1− c3)r(1− p)] + η[(1 + c3) + (1 + c3)r(1− p)2]}(1− q)2,

b
′
= b∗

′
=

c1 − c2

4
[(1− η)(1− r)(1− p) + η

√
1− r(1− p)](1− q),

c
′
= e

′
=

1
4
{(1− η)[(1− c3)(1− r)(1− p) + (1 + c3)r(1− r)(1− p)2] + η(1− c3)(1− p)}(1− q),

d
′
= d∗

′
=

c1 + c2

4
[(1− η)(1− r)(1− p) + η(1− p)](1− q),

f
′
=

1 + c3

4
[(1− η)(1− r)2 + η(1− r)](1− p)2,

P = a
′
+ c

′
+ e

′
+ f

′
. (11)

3. Quantum Dense Coding and Quantum Teleportation under the AD Noisy Channel
with Memory
3.1. Quantum Dense Coding

Quantum dense coding is one of the most important quantum secure communication
processes. Take the bit system as an example. At the beginning, Alice and Bob share a pair
of entangled photons. Alice encodes 2-bits of classical information on its photon and sends
the photon to Bob, who then performs Bell-state measurement on the two photons in his
hand and decodes the 2-bits of information sent by Alice. This process not only transmits
classical information but also increases the source coding capacity exponentially through
quantum dense coding. The idea of quantum dense coding was proposed in 1992 and first
realized in optical systems in 1996 [30]. An important measure of quantum dense coding
is the channel capacity, the capacity of quantum dense coding can be measured by the
Holevo quantity

χ = S(ρ∗)− S(ρ), (12)

here ρ represents the density matrix of the two-qubit A and B, ρ∗ denotes the density matrix
of the system after quantum dense coding. χ stands for the capacity of quantum dense
coding and S is the von Neumann entropy, which can be expressed as

S(ρ) = −∑
i

λilog2λi, (13)

where λi are the eigenvalues of the density matrix ρ.
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If the basis vector of the orthogonal unitary transformation is {|0〉,|1〉}, the dense
coding process of two qubits is expressed as

U00|x〉 = |x〉,
U10|x〉 = eiπx|x〉,
U01|x〉 = |x + 1(mod2)〉,
U11|x〉 = eiπx|x + 1(mod2)〉. (14)

In combination with Equation (14), after dense coding, the density matrix ρ∗ of the
system is [31,32]

ρ∗ =
1
4

3

∑
0
(Ui ⊗ I)ρ0(U+

i ⊗ I), (15)

supposing 0→ 00; 1→ 01; 2→ 10; 3→ 11.
As shown in Figure 1a (the solid path labeled 1©), the capacity χ

ψ
1 of quantum dense

coding for the density matrix ρAB in Equation (5) is

χ
ψ
1 = S(ρ∗AB)− S(ρAB)

= −(a + e)log2(
a + e

2
)− (c + f )log2(

c + f
2

) +
4

∑
i=1

λilog2λi, (16)

where

λ1,2 =
1
2
(c + e±

√
c2 + 4d2 + e2 − 2ce),

λ3,4 =
1
2
(a + f ±

√
a2 + 4b2 + f 2 − 2a f ). (17)

The capacity χ
ψ
1 of quantum dense coding as the function of the damping coefficient

r and the memory parameter η for different initial states, such as Bell state, Werner state,
and General state, are plotted in Figure 2a. It can be seen from Figure 2a that, for the
three different initial states, the capacity χ

ψ
1 decreases first and then increases as damping

coefficient r increases, but if the channel takes the same parameter, the capacity χ
ψ
1 of Bell

state is the strongest.

Figure 2. (a) The capacity χ
ψ
1 of quantum dense coding and (b) the fidelity Fψ

av of quantum teleporta-
tion for three initial states as the functions of the damping coefficient r and the memory parameter η.
The upper layer (green) represents the Bell state, the middle layer (gray) represents the Werner state,
and the lower layer (red) represents the General state.

In order to show the change of the capacity χ
ψ
1 more intuitively, the capacity χ

ψ
1

with damping coefficient r in three initial states with different memory coefficients η
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is shown in Figure 3. From Figure 3a, χ
Bψ
1 firstly decreases and then increases with

the increase of r, eventually which maintains a constant value χ
Bψ
1 = 1 at r = 1 when

0 ≤ η < 1. For η = 1, that is fully memory amplitude damping channel, χ
Bψ
1 decreases with

r increasing until χ
Bψ
1 = 1. In addition, χ

Bψ
1 increases with η for a fixed r. In Figure 3b,c,

the capacity χ
W(G)ψ
1 of Werner and General states is obviously weaker than that of Bell state.

In Figure 3b, the capacity χ
Wψ
1 decreases with the increase in memory coefficient η with

r ≥ 0.9. In Figure 3c, the capacity χ
Gψ
1 decreases with the increase in memory coefficient η

with r ≥ 0.6.

Figure 3. The capacity χ
ψ
1 of quantum dense coding for three initial states as the function of the

damping coefficient r with different memory parameters η. (a) Bell state, (b) Werner state, (c) General
state.

Since χ
ψ
1 ≤ 1 means that quantum dense coding is unsuccessful, it can be seen

that the capacity χ
ψ
1 of Bell state is the strongest under the same channel combined with

Figures 2 and 3. Although the capacity χ
ψ
1 increases with the increase of memory coeffi-

cient η, the capacity χ
ψ
1 decreases gradually due to the existence of damping coefficient r.

Therefore, it is necessary to take further corresponding protective schemes.

3.2. Quantum Teleportation

Quantum teleportation is an important communication method for conveying quan-
tum states. It can transmit unknown quantum states to any distance by means of quantum
entanglement. Quantum teleportation does not transmit any matter or energy (classical
information) but rather the quantum information carried by quantum states. To realize
quantum teleportation, the receiver and the sender are first required to have a pair of
shared entangled particles. The sender will distinguish the particle of the quantum state
to be transmitted (generally not associated with entangled particles) from the entangled
particle in its own hand. In this way, the entangled particles on the receiver will sud-
denly collapse into another state (which state depends on the measurements of the sender).
The sender transmits the measurement result to the receiver through the classical channel,
and the receiver can recover the original information by performing corresponding unitary
transformation on the entangled particle pair it owns.

If the initially entangled state between Alice and Bob is ρ0 in Equation (1) and the
quantum state that Alice wants to transmit to Bob is

|ψin〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉. (18)

Then, after the AD noisy channel with memory and the procedure of quantum teleportation
shown in Figure 1b (the solid path labeled 1©), Bob finally gets the output state ρout, which
is expressed as

ρout =

(
ρ11 ρ12
ρ21 ρ22

)
, (19)
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where

ρ11 = cos2 θ

2
(a + f ) + sin2 θ

2
(c + e),

ρ12 = sin
θ

2
cos

θ

2
e−iφ(b + b∗) + sin

θ

2
cos

θ

2
eiφ(d + d∗),

ρ21 = sin
θ

2
cos

θ

2
eiφ(b + b∗) + sin

θ

2
cos

θ

2
e−iφ(d + d∗),

ρ22 = sin2 θ

2
(a + f ) + cos2 θ

2
(c + e). (20)

The fidelity is used to measure quantum teleportation, and the fidelity is propor-
tional to quantum entanglement. The greater the entanglement, the greater the fidelity.
The fidelity is

Fψ = 〈ψin|ρout|ψin〉. (21)

By substituting Equations (18)–(20) into Equation (21), the fidelity is expressed as

Fψ(θ, φ) = a + f +
1
2

sin2θ[c + e + b + b∗ − (a + f ) + cos2φ(d + d∗)]. (22)

Here, the fidelity Fψ(θ, φ) depends on the polar θ and the phase parameters φ. The trans-
mitted state is unknown, so the fidelity can be averaged as

Fψ
av =

1
4π

∫ π

0
dθ
∫ 2π

0
dφFψ(θ, φ) sin θ. (23)

Taking Equation (22) into Equation (23), one can obtain the average fidelity Fψ
av

Fψ
av =

1
3
[2(a + f ) + c + e + b + b∗]. (24)

The fidelity Fψ
av of quantum teleportation as the function of the damping coefficient r

and the memory parameter η for three initial states is plotted in Figure 2b. It can be seen
from Figure 2b that, for the three different initial states, the fidelity Fψ

av decreases with the
increase of damping coefficient r in addition to η = 0, but if the channel takes the same
parameter, the fidelity Fψ

av of Bell state is the optimum.
In order to show the change of the fidelity Fψ

av more intuitively, the fidelity Fψ
av with

damping coefficient r in three initial states with different memory coefficients η is shown in
Figure 4. As can be seen from Figure 4a, when the initial state is Bell state, the fidelity FBψ

av
increases with the enhancement of memory coefficient η. When the initial state is Werner
state in Figure 4b, the fidelity FWψ

av decreases with η increasing that r is close to 1. For the
General state in Figure 4c, when r is small, FGψ

av increases with η increasing, while r is large,
FGψ

av decreases with η increasing.

Figure 4. The fidelity Fψ
av of quantum teleportation for three initial states as the function of the

damping coefficient r with different memory parameters η. (a) Bell state, (b) Werner state, (c) General
state.
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It can be seen from the results that the memory factor does improve the fidelity of the
system if appropriate damping coefficient is selected. However, the decoherence cannot be
completely eliminated, so further protective scheme is also needed.

4. Quantum Dense Coding and Quantum Teleportation with WMR Protective Scheme
under the AD Noisy Channel with Memory

From the above results for the capacity of quantum dense coding and the fidelity of
quantum teleportation with the evolution of damping coefficient and memory coefficient,
the effect for the initial Bell state is the best. Moreover, the existence of memory factors
can effectively inhibit the decoherence of the system. In fact, both quantum dense coding
and quantum teleportation are applications of quantum entanglement in QI processing,
and when we consider memory factor in the AD noisy channel, it has two effects on the
entanglement: one is to suppress the entanglement degradation, the other is to recover the
entanglement after a short death. This result is similar to the entanglement dynamics in non-
Markov environments, where memory effects also lead to the recovery of the entanglement.
Although the memory coefficient can improve the capacity of quantum dense coding and
the fidelity of quantum teleportation, the influence brought by AD noisy channel with
memory still cannot be eliminated. In order to overcome the negative effect of damping
coefficient, we use WMR protective scheme in Equations (7)–(10) to improve the capacity
and the fidelity.

4.1. Quantum Dense Coding with WMR

Combining Equations (1), (2), (7) and (15), we can get the capacity χ
ψ
2 with the WMR

protective scheme passing the AD noisy channel with memory in Figure 1a (the dashed
path labeled 2©). In Figure 5a, considering that the capacity χ

ψ
2 of quantum dense coding

for three initial states is the functions of the WM strength p and the memory parameter
η with r = 0.5. Among the three initial states, the Bell state has the best capacity, which
increases with the increase of p and η.

Figure 5. (a) The capacity χ
ψ
2 of quantum dense coding and (b) the fidelity Foptψ

av of quantum
teleportation for three initial states as the functions of WM strength p and the memory parameter η

with r = 0.5. The upper layer (green) represents the Bell state, the middle layer (gray) represents the
Werner state, and the lower layer (red) represents the General state.

In Figure 6, the relationship between the capacity χ
ψ
2 and WM strength p under

different memory coefficients η is given. As can be seen from Figure 6, the capacity χ
ψ
2

increases with the enhancement of WM strength p for three initial states. When the initial
state is Bell state, the capacity χ

Bψ
2 increases with the enhancement of memory coefficient η,

even the channel capacity reaches 2 under both full memory and no memory. When the
initial state is Werner state, the capacity χ

Wψ
2 decreases with η increasing that p is greater

than 0.9. For the General state, when p is less than 0.7, χ
Gψ
2 increases with η increasing,

while p takes a large value, χ
Gψ
2 decreases with η increasing. Although χ

W(G)ψ
2 decreases
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with the increase of η when p is very high, the capacity χ
W(G)ψ
2 with WMR protection is

higher than that without protection.

Figure 6. The capacity χ
ψ
2 of quantum dense coding for three initial states as the function of WM

strength p with r = 0.5 with different memory parameters η. (a) Bell state, (b) Werner state, (c)
General state.

4.2. Quantum Teleportation with WMR

Combining Equations (1), (2), (7) and (21), we can get the fidelity Foptψ
av with the WMR

protective scheme as in Figure 1b (the dashed path labeled 2©). In Figure 5b, for the three
initial states, the Bell state has the maximum fidelity, which increases with the increase of p
and η. As can be seen from Figure 7, the fidelity Foptψ

av increase with the enhancement of
WM strength p for three initial states. When the initial state is Bell state, FoptBψ

av increases
with the enhancement of η, even the fidelity reaches 1 under both full memory and no
memory. When the initial state is Werner state, FoptWψ

av decreases with η increasing that p is
greater than 0.84. For the General state, when p is greater than 0.66, FoptGψ

av decreases with
η increasing. Although the fidelity FoptW(G)ψ

av decreases with the increase of η when p is
very high, FoptW(G)ψ

av with WMR protection is higher than that without protection.

Figure 7. The fidelity Foptψ
av of quantum teleportation for three initial states as the function of WM

strength p with r = 0.5 with different memory parameters η. (a) Bell state, (b) Werner state, (c) General
state.

It’s important to point out that for the Bell state, the maximal capacity χ
Bψ
2 is always

equal to 2 and the maximal fidelity FoptBψ
av is always equal to 1 when η = 0, 1 no matter

what r is. However, for the intermediate case 0 < η < 1, χ
Bψ
2 is less than 2 and FoptBψ

av is
less than 1. Since there is only one dissipative channel in the decoherence process for both
memoryless and fully memory AD noisy channels, it ensures that the original state can be
restored by QMR. For the general AD noisy channel with memory, there are two dissipative
channels in the decoherence process, in which QMR cannot be accurately distinguished so
that χ

Bψ
2 cannot reach 2 and FoptBψ

av also cannot reach 1.

5. Conclusions

In this paper, we study a method to improve the capacity of quantum dense coding
and the fidelity of quantum teleportation in AD noisy channel with memory for X-type
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initial state. Where different initial states are considered such as Bell state, Werner state
and General state. The results show that the memory coefficient is useful for improving
both the capacity and the fidelity to a certain extent. However, the decoherence cannot
be completely eliminated, so further protective scheme is also needed. Subsequently, we
introduce the WMR protective scheme to further improve the capacity and the fidelity.
Among the three initial states, the WMR protective scheme has the best protective effect
on the Bell state, no matter the capacity or the fidelity. In addition, we can improve the
capacity and the fidelity by adjusting damping coefficient, the memory parameter, and the
WM strength. By applying the combination of the WM and QMR, the decoherence can be
efficiently suppressed. The capacity of quantum dense coding and the fidelity of quantum
teleportation, that is the quantum entanglement, can be efficiently improved for the AD
noisy channel with memory. Especially for the Bell state, the value of the capacity and the
fidelity reaches the limit under both full memory and no memory by the WMR protective
scheme. That is, in the bit system, the channel capacity of quantum dense coding reaches 2,
and the fidelity of quantum teleportation reaches 1.

Compared with the two-dimensional entanglement of the bit systems, the high-
dimensional entanglement has the advantages of high channel capacity and strong re-
sistance to eavesdropping, and has been widely concerned by the academic community in
recent years. Ref. [33] improved the channel capacity record of quantum dense coding to
2.09, exceeding the theoretical limit 2 that two-dimensional entanglement can achieve, fully
demonstrating the advantages of high-dimensional entanglement in quantum communica-
tion, and laying an important foundation for the in-depth study of the high-dimensional
entanglement in the field of QI. Based on the success of the WMR protective scheme in
improving the fidelity and capacity of the two-dimensional bit system, it is believed that
our research will also improve the quantum entanglement of the high-dimensional system.
It also lays an important foundation for the realization of quantum teleportation. After all,
quantum teleportation experiment is the core functional unit of long-distance quantum
communication and distributed quantum computing, as well as the prerequisite research
for the feasibility of a global quantum communication network.

In addition to the study of high-dimensional systems, the evolution of the channel with
memory is also explored in fields including the scheduling of quantum teleportation [34],
the learning of quantum memory [35], the storage of Gaussian multi-antenna system [36],
the influence of data freshness [37] and so on. It can be seen that the current research on
the channel with memory has certain significance and potential application prospects.
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