
Citation: Kramer, G. Information

Rates for Channels with Fading, Side

Information and Adaptive

Codewords. Entropy 2023, 25, 728.

https://doi.org/10.3390/e25050728

Academic Editors: Luca Barletta and

Alex Dytso

Received: 3 March 2023

Revised: 26 March 2023

Accepted: 22 April 2023

Published: 27 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Information Rates for Channels with Fading, Side Information
and Adaptive Codewords
Gerhard Kramer

School of Computation, Information and Technology, Technical University of Munich (TUM),
80333 Munich, Germany; gerhard.kramer@tum.de

Abstract: Generalized mutual information (GMI) is used to compute achievable rates for fading
channels with various types of channel state information at the transmitter (CSIT) and receiver
(CSIR). The GMI is based on variations of auxiliary channel models with additive white Gaussian
noise (AWGN) and circularly-symmetric complex Gaussian inputs. One variation uses reverse
channel models with minimum mean square error (MMSE) estimates that give the largest rates but
are challenging to optimize. A second variation uses forward channel models with linear MMSE
estimates that are easier to optimize. Both model classes are applied to channels where the receiver is
unaware of the CSIT and for which adaptive codewords achieve capacity. The forward model inputs
are chosen as linear functions of the adaptive codeword’s entries to simplify the analysis. For scalar
channels, the maximum GMI is then achieved by a conventional codebook, where the amplitude and
phase of each channel symbol are modified based on the CSIT. The GMI increases by partitioning
the channel output alphabet and using a different auxiliary model for each partition subset. The
partitioning also helps to determine the capacity scaling at high and low signal-to-noise ratios. A
class of power control policies is described for partial CSIR, including a MMSE policy for full CSIT.
Several examples of fading channels with AWGN illustrate the theory, focusing on on-off fading and
Rayleigh fading. The capacity results generalize to block fading channels with in-block feedback,
including capacity expressions in terms of mutual and directed information.

Keywords: capacity; channel state information; directed information; fading; feedback; generalized
mutual information; side information

1. Introduction

The capacity of fading channels is a topic of interest in wireless communications [1–4].
Fading refers to model variations over time, frequency, and space. A common approach to
track fading is to insert pilot symbols into transmit symbol strings, have receivers estimate
fading parameters via the pilot symbols, and have the receivers share their estimated
channel state information (CSI) with the transmitters. The CSI available at the receiver
(CSIR) and transmitter (CSIT) may be different and imperfect.

Information-theoretic studies on fading channels distinguish between average (er-
godic) and outage capacity, causal and non-causal CSI, symbol and rate-limited CSI, and
different qualities of CSIR and CSIT that are coarsely categorized as no, perfect, or par-
tial. We refer to [5] for a review of the literature up to 2008. We here focus exclusively
on average capacity and causal CSIT as introduced in [6]. Codes for such CSIT, or more
generally for noisy feedback [7], are based on Shannon strategies, also called codetrees ([8],
Chapter 9.4), or adaptive codewords ([9], Section 4.1). (The term “adaptive codeword” was
suggested to the author by J. L. Massey.) Adaptive codewords are usually implemented
by a conventional codebook and by modifying the codeword symbols as a function of the
CSIT. This approach is optimal for some channels [10] and will be our main interest.
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1.1. Block Fading

A model that accounts for the different time scales of data transmission (e.g., nanosec-
onds) and channel variations (e.g., milliseconds) is block fading [11,12]. Such fading has
the channel parameters constant within blocks of L symbols and varying across blocks. A
basic setup is as follows.

• The fading is described by a state process SH1, SH2, . . . independent of the transmitter
messages and channel noise. The subscript “H” emphasizes that the states SHi may be
hidden from the transceivers.

• Each receiver sees a state process SR1, SR2, . . . where SRi is a noisy function of SHi for
all i.

• Each transmitter sees a state process ST1, ST2, . . . where STi is a noisy function of SHi
for all i.

The state processes may be modeled as memoryless [11,12] or governed by a Markov
chain [13–21]. The memoryless models are particular cases of Shannon’s model [6]. For
scalar channels, SHi is usually a complex number Hi. Similarly, for vector or multi-input,
multi-output (MIMO) channels with M- and N-dimensional inputs and outputs, respec-
tively, SHi is a N ×M matrix Hi.

Consider, for example, a point-to-point channel with block-fading and complex-
alphabet inputs Xi` and outputs

Yi` = HiXi` + Zi` (1)

where the index i, i = 1, . . . , n, enumerates the blocks and the index `, ` = 1, . . . , L, enumer-
ates the symbols of each block. The additive white Gaussian noise (AWGN) Z11, Z12, . . . is
a sequence of independent and identically distributed (i.i.d.) random variables that have a
common circularly-symmetric complex Gaussian (CSCG) distribution.

1.2. CSI and In-Block Feedback

The motivation for modeling CSI as independent of the messages is simplicity. If
one uses only pilot symbols to estimate the Hi in (1), for example, then the independence
is valid, and the capacity analysis may be tractable. However, to improve performance,
one can implement data and parameter estimation jointly, and one can actively adjust the
transmit symbols Xi` using past received symbols Yik, k = 1, . . . , `− 1, if in-block feedback
is available. (Across-block feedback does not increase capacity if the state processes are
memoryless; see ([22], Remark 16).) An information theory for such feedback was devel-
oped in [22], where a challenge is that code design is based on adaptive codewords that are
more sophisticated than conventional codewords.

For example, suppose the CSIR is SRi = Hi. Then, one might expect that CSCG
signaling is optimal, and the capacity is an average of log(1 + SNR) terms, where SNR
is a signal-to-noise ratio. However, this simplification is based on constraints, e.g., that
the CSIT is a function of the CSIR and that the Xi` cannot influence the CSIT. The former
constraint can be realistic, e.g., if the receiver quantizes a pilot-based estimate of Hi and
sends the quantization bits to the transmitter via a low-latency and reliable feedback link.
On the other hand, the latter constraint is unrealistic in general.

1.3. Auxiliary Models

This paper’s primary motivation is to further develop information theory for adaptive
codewords. To gain insight, it is helpful to have achievable rates with log(1 + SNR) terms.
A common approach to obtain such expressions is to lower bound the channel mutual
information I(X; Y) as follows.

Suppose X is continuous and consider two conditional densities: the density p(x|y)
and an auxiliary density q(x|y). We will refer to such densities as reverse models; similarly,
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p(y|x) and q(y|x) are called forward models. One may write the differential entropy of X
given Y as

h(X|Y) = E[− log p(X|Y)] = E[− log q(X|Y)]︸ ︷︷ ︸
average cross-entropy

− E
[

log
p(X|Y)
q(X|Y)

]
︸ ︷︷ ︸

average divergence ≥ 0

(2)

where the first expectation in (2) is an average cross-entropy, and the second is an average
informational divergence, which is non-negative. Several criteria affect the choice of q(x|y):
the cross-entropy should be simple enough to admit theoretical or numerical analysis,
e.g., by Monte Carlo simulation; the cross-entropy should be close to h(X|Y); and the
cross-entropy should suggest suitable transmitter and receiver structures.

We illustrate how reverse and forward auxiliary models have been applied to bound
mutual information. Assume that E[X] = E[Y] = 0 for simplicity.

Reverse Model: Consider the reverse density that models X, Y as jointly CSCG:

q(x|y) = 1
πσ2

L
exp

(
−|x− x̂L|2

/
σ2

L

)
(3)

where X̂L =
(
E
[
X Y*]/E

[
|Y|2

])
Y and

σ2
L = E

[∣∣X− X̂L
∣∣2] = E

[
|X|2

]
−
|E
[
XY*]|2

E[|Y|2] (4)

is the mean square error (MSE) of the estimate X̂L. In fact, X̂L is the linear estimate with
the minimum MSE (MMSE), and σ2

L is the linear MMSE (LMMSE) which is independent of
Y = y; see Section 2.5. The bound in (2) gives

h(X|Y) ≤ log
(

πe σ2
L

)
. (5)

Thus, if X is CSCG, then we have the desired form

I(X; Y) = h(X)− h(X|Y) ≥ log

(
1 +
|h|2E

[
|X|2

]
σ2

)
(6)

where the parameters h and σ2 are

h =
E
[
YX*]

E[|X|2] , σ2 = E
[
|Y− hX|2

]
. (7)

The bound (6) is apparently due to Pinsker [23–25] and is widely used in the literature;
see e.g., [18,26–38]. The bound is usually related to channels p(y|x) with additive noise
but (2)–(6) show that it applies generally. The extension to vector channels is given in
Section 2.7 below.

Forward Model: A more flexible approach is to choose the reverse density as

q(x|y) = p(x)q(y|x)s

q(y)
(8)

where q(y|x) is a forward auxiliary model (not necessarily a density), s ≥ 0 is a parameter
to be optimized, and

q(y) =
∫
C

p(x) q(y|x)s dx. (9)
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Inserting (8) into (2) we compute

I(X; Y) ≥ max
s≥0

E
[

log
q(Y|X)s

q(Y)

]
. (10)

The right-hand side (RHS) of (10) is called a generalized mutual information
(GMI) [39,40] and has been applied to problems in information theory [41], wireless com-
munications [42–51], and fiber-optic communications [52–61]. For example, the bounds (6)
and (10) are the same if s = 1 and

q(y|x) = exp
(
−|y− hx|2

/
σ2
)

(11)

where h and σ2 are given by (7). Note that (11) is not a density unless σ2 = 1/π but q(x|y)
is a density. (We require q(x|y) to be a density to apply the divergence bound in (2).)

We compare the two approaches. The bound (5) is simple to apply and works well
since the choices (7) give the maximal GMI for CSCG X; see Proposition 1 below. However,
there are limitations: one must use continuous X, the auxiliary model q(y|x) is fixed as
(11), and the bound does not show how to design the receiver. Instead, the GMI applies
to continuous/discrete/mixed X and has an operational interpretation: the receiver uses
q(y|x) rather than p(y|x) to decode. The framework of such mismatched receivers appeared
in ([62], Exercise 5.22); see also [63].

1.4. Refined Auxiliary Models

The two approaches above can be refined in several ways, and we review selected
variations in the literature.

Reverse Models: The model q(x|y) can be different for each Y = y, e.g., on may choose X as
Gaussian with mean E[X|Y = y] and variance

Var[X|Y = y] = E
[
|X|2

∣∣Y = y
]
−
∣∣E[X|Y = y]

∣∣2 (12)

and where

q(x|y) = 1
πVar[X|Y = y]

exp

(
−|x− E[X|Y = y]|2

Var[X|Y = y]

)
. (13)

Inserting (13) in (2) we have the bound

h(X|Y) ≤ E[log(πe Var[X|Y])] (14)

which improves (5) in general, since Var[X|Y = y] is the MMSE of X given the event
Y = y. In other words, we have Var[X|Y = y] ≤ σ2

L for all Y = y and the following bound
improves (6) for CSCG X:

I(X; Y) ≥ E

[
log

E
[
|X|2

]
Var[X|Y]

]
. (15)

In fact, the bound (15) was derived in ([50], Section III.B) by optimizing the GMI in (10)
over all forward models of the form

q(y|x) = exp
(
−
∣∣g̃y − f̃y x

∣∣2) (16)

where f̃y, g̃y depend on y; see also [47–49]. We provide a simple proof. By inserting (16)
into (8) and (9), absorbing the s parameter in f̃y and g̃y, and completing squares, one can
equivalently optimize over all reverse densities of the form



Entropy 2023, 25, 728 5 of 86

q(x|y) = exp
(
−
∣∣gy − fy x

∣∣2 + hy

)
(17)

where | fy|2 = πehy so that q(x|y) is a density. We next bound the cross-entropy as

E[− log q(X|Y = y)] = E
[∣∣gy/ fy − X

∣∣2]| fy|2 − hy

≥ Var[X|Y = y]πehy − hy (18)

with equality if gy/ fy = E[X|Y = y]; see Section 2.5. The RHS of (18) is minimized by
Var[X|Y = y]πehy = 1, so the best choice for fy, gy, hy gives the bound (14).

Remark 1. The model (16) uses generalized nearest-neighbor decoding, improving the rules pro-
posed in [42–44]. The authors of [50] pointed out that (6) and (15) use the LMMSE and MMSE,
respectively; see ([50], Equation (87)).

Remark 2. A corresponding forward model can be based on (8) and (13), namely

q(y|x)s =
q(x|y)
p(x)

⇒ q(y) = 1. (19)

Remark 3. The RHS of (15) has a more complicated form than the RHS of (6) due to the outer
expectation and conditional variance, and this makes optimizing X challenging when there is CSIR
and CSIT. Also, if p(y|x) is known, then it seems sensible to numerically compute p(y) and I(X; Y)
directly, e.g., via Monte Carlo or numerical integration.

Remark 4. Decoding rules for discrete X can be based on decision theory as well as estimation
theory; see ([64], Equation (11)).

Forward Models: Refinements of (11) appear in the optical fiber literature where the non-
linear Schrödinger equation describes wave propagation [52]. Such channels exhibit com-
plicated interactions of attenuation, dispersion, nonlinearity, and noise, and the channel
density is too challenging to compute. One thus resorts to capacity lower bounds based on
GMI and Monte Carlo simulation. The simplest models are memoryless, and they work
well if chosen carefully. For example, the paper [52] used auxiliary models of the form

q(y|x) = exp
(
−|y− hx|2

/
σ2
|x|

)
(20)

where h accounts for attenuation and self-phase modulation, and where the noise variance
σ2
|x| depends on |x|. Also, X was chosen to have concentric rings rather than a CSCG

density. Subsequent papers applied progressively more sophisticated models with memory
to better approximate the actual channel; see [53–59]. However, the rate gains over the
model (20) are minor (≈12%) for 1000 km links, and the newer models do not suggest
practical receiver structures.

A related application is short-reach fiber-optic systems that use direct detection (DD)
receivers [65] with photodiodes. The paper [60] showed that sampling faster than the
symbol rate increases the DD capacity. However, spectrally efficient filtering gives the
channel a long memory, motivating auxiliary models q(y|x) with reduced memory to
simplify GMI computations [61,66]. More generally, one may use channel-shortening
filters [67–69] to increase the GMI.

Remark 5. The ultimate GMI is I(X; Y), and one can compute this quantity numerically for the
channels considered in this paper. We are motivated to focus on forward auxiliary models q(y|x)
to understand how to improve information rates for more complex channels. For instance, simple
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q(y|x) let one understand properties of optimal codes, see Lemma 3, and they suggest explicit power
control policies, see Theorem 2.

Remark 6. The paper [37] (see also ([2], Equation (3.3.45)) and ([70], Equation (6))) derives two
capacity lower bounds for massive MIMO channels. These bounds are designed for problems where
the fading parameters have small variance so that, in effect, σ2 in (7) is small. We will instead
encounter cases where σ2 grows in proportion to E

[
|X|2

]
and the RHS of (6) quickly saturates as

E
[
|X|2

]
grows; see Remark 20.

1.5. Organization

This paper is organized as follows. Section 2 defines notation and reviews basic results.
Section 3 develops two results for the GMI of scalar auxiliary models with AWGN:

• Proposition 1 in Section 3.1 states a known result, namely that the RHS of (6) is the
maximum GMI for the AWGN auxiliary model (11) and a CSCG X.

• Lemma 1 in Section 3.2 generalizes Proposition 1 by partitioning the channel output
alphabet into K subsets, K ≥ 1. We use K = 2 to establish capacity properties at high
and low SNR.

Sections 4 and 5 apply the GMI to channels with CSIT and CSIR.

• Section 4.3 treats adaptive codewords and develops structural properties of their
optimal distribution.

• Lemma 2 in Section 4.4 generalizes Proposition 1 to MIMO channels and adaptive
codewords. The receiver models each transmit symbol as a weighted sum of the
entries of the corresponding adaptive symbol.

• Lemma 3 in Section 4.5 states that the maximum GMI for scalar channels, an AWGN
auxiliary model, adaptive codewords with jointly CSCG entries, and K = 1 is achieved
by using a conventional codebook where each symbol is modified based on the CSIT.

• Lemma 4 in Section 4.6 extends Lemma 3 to MIMO channels, including diagonal or
parallel channels.

• Theorem 1 in Section 5.1 generalizes Lemma 3 to include CSIR; we use this result
several times in Section 6.

• Lemma 5 in Section 5.3 generalizes Lemmas 1 and 2 by partitioning the channel
output alphabet.

Sections 6–8 apply the GMI to fading channels with AWGN and illustrate the theory for
on-off and Rayleigh fading.

• Lemma 6 in Section 6 gives a general capacity upper bound.
• Section 6.5 introduces a class of power control policies for full CSIT. Theorem 2

develops the optimal policy with an MMSE form.
• Theorem 3 in Section 6.6 provides a quadratic waterfilling expression for the GMI with

partial CSIR.

Section 9 develops theory for block fading channels with in-block feedback (or in-block
CSIT) that is a function of the CSIR and past channel inputs and outputs.

• Theorem 4 in Section 9.2 generalizes Lemma 4 to MIMO block fading channels;
• Section 9.3 develops capacity expressions in terms of directed information;
• Section 9.4 specializes the capacity to fading channels with AWGN and delayed CSIR;
• Proposition 3 generalizes Proposition 2 to channels with special CSIR and CSIT.

Section 10 concludes the paper. Finally, Appendices A–G provide results on special func-
tions, GMI calculations, and proofs.

2. Preliminaries
2.1. Basic Notation

Let 1(·) be the indicator function that takes on the value 1 if its argument is true and 0
otherwise. Let δ(.) be the Dirac generalized function with

∫
X δ(x) f (x)dx = f (0) · 1(0 ∈ X ).
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For x ∈ R, define (x)+ = max(0, x). The complex-conjugate, absolute value, and phase of
x ∈ C are written as x*, |x|, and arg(x), respectively. We write j =

√
−1 and ε̄ = 1− ε.

Sets are written with calligraphic font, e.g., S = {1, . . . , n} and the cardinality of S is
|S|. The complement of S in T is S c where T is understood from the context.

2.2. Vectors and Matrices

Column vectors are written as x = [x1, . . . , xM]T where M is the dimension, and T
denotes transposition. The complex-conjugate transpose (or Hermitian) of x is written as
x†. The Euclidean norm of x is ‖x‖. Matrices are written with bold letters such as A. The
letter I denotes the identity matrix. The determinant and trace of a square matrix A are
written as det A and tr A, respectively.

A singular value decomposition (SVD) is A = UΣV† where U and V are unitary
matrices and Σ is a rectangular diagonal matrix with the singular values of A on the
diagonal. The square matrix A is positive semi-definite if x†Ax ≥ 0 for all x. The notation
A � B means that B − A is positive semi-definite. Similarly, A is positive definite if
x†Ax > 0 for all x, and we write A ≺ B if B−A is positive definite.

2.3. Random Variables

Random variables are written with uppercase letters, such as X, and their realizations
with lowercase letters, such as x. We write the distribution of discrete X with alphabet
X = {0, . . . , n − 1} as PX = [PX(0), . . . , PX(n − 1)]. The density of a real- or complex-
valued X is written as pX. Mixed discrete-continuous distributions are written using
mixtures of densities and Dirac-δ functions.

Conditional distributions and densities are written as PX|Y and pX|Y, respectively. We
usually drop subscripts if the argument is a lowercase version of the random variable, e.g.,
we write p(y|x) for pY|X(y|x). One exception is that we consistently write the distribu-
tions PSR(.) and PST (.) of the CSIR and CSIT with the subscript to avoid confusion with
power notation.

2.4. Second-Order Statistics

The expectation and variance of the complex-valued random variable X are E[X]
and Var[X] = E

[
|X− E[X]|2

]
, respectively. The correlation coefficient of X1 and X2 is

ρ = E
[
U1U*

2
]

where

Ui = (Xi − E[Xi])/
√

Var[Xi]

for i = 1, 2. We say that X1 and X2 are fully correlated if ρ = ejφ for some real φ. Conditional
expectation and variance are written as E[X|A = a] and

Var[X|A = a] = E
[
(X− E[X])(X− E[X])*|A = a

]
.

The expressions E[X|A], Var[X|A] are random variables that take on the values E[X|A = a],
Var[X|A = a] if A = a.

The expectation and covariance matrix of the random column vector X = [X1, . . . , XM]T

are E[X] and QX = E
[
(X− E[X])(X− E[X])†], respectively. We write QX,Y for the covari-

ance matrix of the stacked vector [XTYT ]T . We write QX|Y=y for the covariance matrix of X
conditioned on the event Y = y. QX|Y is a random matrix that takes on the matrix value
QX|Y=y when Y = y.

We often consider CSCG random variables and vectors. A CSCG X has density

p(x) =
exp

(
−x† Q−1

X x
)

πM det QX

and we write X ∼ CN (0, QX).
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2.5. MMSE and LMMSE Estimation

Assume that E[X] = E[Y] = 0. The MMSE estimate of X given the event Y = y is the
vector X̂(y) that minimizes

E
[∥∥∥X− X̂(y)

∥∥∥2
∣∣∣∣Y = y

]
.

Direct analysis gives ([71], Chapter 4)

X̂(y) = E
[

X|Y = y
]

(21)

E
[∥∥X− X̂

∥∥2
]
= E

[
‖X‖2

]
− E

[∥∥X̂
∥∥2
]

(22)

QX−X̂ = QX −QX̂ (23)

E
[(

X− X̂
)

Y†
]
= 0 (24)

where the last identity is called the orthogonality principle.
The LMMSE estimate of X given Y with invertible QY is the vector X̂L = C Y where C

is chosen to minimize E
[
‖X− X̂L‖2]. We compute

X̂L = E
[

X Y†
]
Q−1

Y Y (25)

and we also have the properties (22)–(24) with X̂ replaced by X̂L. Moreover, if X and Y
are jointly CSCG, then the MMSE and LMMSE estimators coincide, and the orthogonality
principle (24) implies that the error X− X̂ is independent of Y, i.e., we have

E
[ (

X− X̂
)(

X− X̂
)†
∣∣∣Y = y

]
= E

[
X X†

∣∣∣Y = y
]
− E

[
X Y†

]
Q−1

Y y y†Q−1
Y E

[
X Y†

]†

= QX −QX̂ . (26)

2.6. Entropy, Divergence, and Information

Entropies of random vectors with densities p are written as

h(X) = E[− log p(X)], h(X|Y) = E[− log p(X|Y)]

where we use logarithms to the base e for analysis. The informational divergence of the
densities p and q is

D(p‖q) = E
[

log
p(X)

q(X)

]
and D(p‖q) ≥ 0 with equality if and only if p = q almost everywhere. The mutual
information of X and Y is

I(X; Y) = D(p(X, Y) ‖ p(X) p(Y)) = E
[

log
p(Y|X)

p(Y)

]
.

The average mutual information of X and Y conditioned on Z is I(X; Y|Z). We write strings
as XL = (X1, X2, . . . , XL) and use the directed information notation (see [9,72])

I(XL → YL|Z) =
L

∑
`=1

I(X`; Y`|Y`−1, Z) (27)

I(XL → YL‖ZL|W) =
L

∑
`=1

I(X`; Y`|Y`−1, Z`, W) (28)

where Y0 = 0.
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2.7. Entropy and Information Bounds

The expression (2) applies to random vectors. Choosing q(x|y) as the conditional
density where the X, Y are modeled as jointly CSCG we obtain a generalization of (5):

h(X|Y) ≤ log
det
(
πe QX,Y

)
det
(
πe QY

) = log det
(

πe
{

QX − E
[

X Y†
]
Q−1

Y E
[
Y X†

]})
. (29)

The vector generalization of (6) for CSCG X is

I(X; Y) = h(X)− h(X|Y)

≥ log det
((

QX − E
[

X Y†
]
Q−1

Y E
[
Y X†

])−1
QX

)
(a)
= log det

(
I + Q−1

Z HQ−1
X H†

)
(30)

where (cf. (7))

H = E
[
Y X†

]
Q−1

X̄ , QZ = QY −HQXH† (31)

and step (a) in (30) follows by the Woodbury identity

(A + BCD)−1 = A−1 −A−1B
(

C−1 + DA−1B
)−1

DA−1 (32)

and the Sylvester identity

det(I + AB) = det(I + BA). (33)

We also have vector generalizations of (14) and (15):

h(X|Y) ≤ E
[
log det

(
πe QX|Y

)]
(34)

I(X; Y) ≥ E

[
log

det QX

det QX|Y

]
for CSCG X. (35)

2.8. Capacity and Wideband Rates

Consider the complex-alphabet AWGN channel with output Y = X + Z and noise
Z ∼ CN (0, 1). The capacity with the block power constraint 1

n ∑n
i=1 |Xi|2 ≤ P is

C(P) = max
E[|X|2]≤P

I(X; Y) = log(1 + P). (36)

The low SNR regime (small P) is known as the wideband regime [73]. For well-
behaved channels such as AWGN channels, the minimum Eb/N0 and the slope S of the
capacity vs. Eb/N0 in bits/(3 dB) at the minimum Eb/N0 are (see ([73], Equation (35))
and ([73], Theorem 9))

Eb
N0

∣∣∣∣
min

=
log 2
C′(0)

, S =
2[C′(0)]2

−C′′(0)
(37)

where C′(P) and C′′(P) are the first and second derivatives of C(P) (measured in nats) with
respect to P, respectively. For example, the wideband derivatives for (36) are C′(0) = 1 and
C′′(0) = −1 so that the wideband values (37) are

Eb
N0

∣∣∣∣
min

= log 2, S = 2. (38)
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The minimal Eb/N0 is usually stated in decibels, for example 10 log10(log 2) = −1.59 dB.
An extension of the theory to general channels is described in ([74], Section III).

Remark 7. A useful method is flash signaling, where one sends with zero energy most of the time.
In particular, we will consider the CSCG flash density

p(x) = (1− p) δ(x) + p
e−|x|

2/(P/p)

π(P/p)
(39)

where 0 < p ≤ 1 so that the average power is E
[
|X|2

]
= P. Note that flash signaling is defined

in ([73], Definition 2) as a family of distributions satisfying a particular property as P→ 0. We use
the terminology informally.

2.9. Uniformly-Spaced Quantizer

Consider a uniformly-spaced scalar quantizer qu(.) with B bits, domain [0, ∞), and
reconstruction points

s ∈ {∆/2, 3∆/2, . . . , ∆/2 + (2B − 1)∆}

where ∆ > 0. The quantization intervals are

I(s) =


[
s− ∆

2 , s + ∆
2

)
, s 6= smax[

s− ∆
2 , ∞

)
, s = smax

where smax = ∆/2 + (2B − 1)∆. We will consider B = 0, 1, ∞. For B = ∞ we choose
qu(x) = x.

Suppose one applies the quantizer to the non-negative random variable G with density
p(g) to obtain ST = qu(G). Let PST and PST |G be the probability mass functions of ST
without and with conditioning on G, respectively. We have

PST |G(s|g) = 1(g ∈ I(s)), PST (s) =
∫

g∈I(s)
p(g) dg (40)

and using Bayes’ rule, we obtain

p(g|s) =
{

p(g)/PST (s), g ∈ I(s)
0, else.

(41)

3. Generalized Mutual Information

We re-derive the GMI in the usual way, where one starts with the forward model
q(y|x) rather than the reverse density q(x|y) in (8). Consider the joint density p(x, y) and
define q(y) as in (9) for s ≥ 0. Note that neither q(y|x) nor q(y) must be densities. The GMI
is defined in [39] to be maxs≥0 Is(X; Y) where (see the RHS of (10))

Is(X; Y) = E
[

log
q(Y|X)s

q(Y)

]
(42)

and where the expectation is with respect to p(x, y). The GMI is a lower bound on the
mutual information since

Is(X; Y) = I(X; Y)− D
(

pX,Y‖pY qX|Y

)
. (43)

Moreover, by using Gallager’s derivation of error exponents, but without modifying his “s”
variable, the GMI Is(X; Y) is achievable with a mismatched decoder that uses q(y|x) for its
decoding metric [39].
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3.1. AWGN Forward Model with CSCG Inputs

A natural metric is based on the AWGN auxiliary channel Ya = hX + Z where h is
a channel parameter and Z ∼ CN (0, σ2) is independent of X, i.e., we have the auxiliary
model (here a density)

q(y|x) = 1
πσ2 exp

(
−|y− hx|2/σ2

)
(44)

where h and σ2 are to be optimized. A natural input is X ∼ CN (0, P) so that (9) is

q(y) =
πσ2/s
(πσ2)s ·

exp
(

−|y|2
σ2/s+|h|2P

)
π(σ2/s + |h|2P)

. (45)

We have the following result, see [43] that considers channels of the form (1) and ([47],
Proposition 1) that considers general p(y|x).

Proposition 1. The maximum GMI (42) for the channel p(y|x), a CSCG input X with variance
P > 0, and the auxiliary model (44) with σ2 > 0 is

I1(X; Y) = log
(

1 +
|h̃|2P

σ̃2

)
(46)

where s = 1 and (cf. (7))

h̃ = E
[
YX*

]/
P (47)

σ̃2 = E
[
|Y− h̃ X|2

]
= E

[
|Y|2

]
− |h̃|2P. (48)

The expectations are with respect to the actual density p(x, y).

Proof. The GMI (42) for the model (44) is

Is(X; Y) = log
(

1 +
|h|2P
σ2/s

)
+

E
[
|Y|2

]
σ2/s + |h|2P

−
E
[
|Y− hX|2

]
σ2/s

. (49)

Since (49) depends only on the ratio σ2/s one may as well set s = 1. Thus, choosing h = h̃
and σ2 = σ̃2 gives (46).

Next, consider Ya = h̃X + Z̃ where Z̃ ∼ CN (0, σ̃2) is independent of X. We have

E
[∣∣Ya

∣∣2] = E
[
|Y|2

]
(50)

E
[∣∣Ya − h̃X

∣∣2] = E
[∣∣Y− h̃X

∣∣2]. (51)

In other words, the second-order statistics for the two channels with outputs Y (the actual
channel output) and Ya are the same. But the GMI (46) is the mutual information I(X; Ya).
Using (43) and (49), for any s, h and σ2 we have

I(X; Ya) = log
(

1 +
|h̃|2P

σ̃2

)
≥ Is(X; Ya) = Is(X; Y) (52)

and equality holds if h = h̃ and σ2/s = σ̃2.

Remark 8. The rate (46) is the same as the RHS of (6).

Remark 9. Proposition 1 generalizes to vector models and adaptive input symbols; see Section 4.4.
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Remark 10. The estimate h̃ is the MMSE estimate of h:

h̃ = arg min
h

E
[
|Y− hX|2

]
(53)

and σ̃2 is the variance of the error. To see this, expand

E
[
|Y− hX|2

]
= E

[
|(Y− h̃X) + (h̃− h)X|2

]
= σ̃2 + |h̃− h|2P (54)

where the final step follows by the definition of h̃ in (47).

Remark 11. Suppose that h is an estimate other than (53). Then if E
[
|Y|2

]
> E

[
|Y− h X|2

]
we

may choose

σ2/s = |h|2P ·
E
[
|Y− h X|2

]
E[|Y|2]− E

[
|Y− h X|2

] (55)

and the GMI (49) simplifies to

Is(X; Y) = log

 E
[
|Y|2

]
E
[
|Y− h X|2

]
. (56)

Remark 12. The LM rate (for “lower bound to the mismatch capacity”) improves the GMI for some
q(y|x) [40,75]. The LM rate replaces q(y|x) with q(y|x)et(x)/s for some function t(.) and permits
optimizing s and t(.); see ([41], Section 2.3.2). For example, if p(y|x) has the form q(y|x)set(x)

then the LM rate can be larger than the GMI; see [76,77].

3.2. CSIR and K-Partitions

We consider two generalizations of Proposition 1. The first is for channels with a state
SR known at the receiver but not at the transmitter. The second expands the class of CSCG
auxiliary models. The motivation is to obtain more precise models under partial CSIR,
especially to better deal with channels at high SNR and with high rates. We here consider
discrete SR and later extend to continuous SR.

CSIR: Consider the average GMI

I1(X; Y|SR) = ∑
sR

PSR(sR) I1(X; Y|SR = sR) (57)

where I1(X; Y|SR = sR) is the usual GMI where all densities are conditioned on SR = sR.
The parameters (47) and (48) for the event SR = sR are now

h̃(sR) =
E
[

YX*
∣∣SR = sR

]
E[ |X|2|SR = sR]

(58)

σ̃2(sR) = E
[
|Y− h̃(sR) X|2

∣∣∣SR = sR

]
. (59)

The GMI (57) is thus

I1(X; Y|SR) = ∑
sR

PSR(sR) log
(

1 +
|h̃(sR)|2P

σ̃(sR)2

)
. (60)

K-Partitions: Let {Yk : k = 1, . . . , K} be a K-partition of Y and define the auxiliary model

q(y|x) = 1
πσ2

k
e−|y−hkx|2/σ2

k , y ∈ Yk. (61)
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Observe that q(y|x) is not necessarily a density. We choose X ∼ CN (0, P) so that (9)
becomes (cf. (45))

q(y) =
πσ2

k /s
(πσ2

k )
s ·

exp
(

−|y|2
σ2

k /s+|hk |2P

)
π(σ2

k /s + |hk|2P)
, y ∈ Yk. (62)

Define the events Ek = {Y ∈ Yk} for k = 1, . . . , K. We have

Is(X; Y) =
K

∑
k=1

Pr[Ek] · E
[

log
q(Y|X)s

q(Y)

∣∣∣∣Ek

]
(63)

and inserting (61) and (62) we have the following lemma.

Lemma 1. The GMI (42) for the channel p(y|x), s = 1, a CSCG input X with variance P, and
the auxiliary model (61) is (see (49))

I1(X; Y) =
K

∑
k=1

Pr[Ek]

[
log

(
1 +
|hk|2P

σ2
k

)
+

E
[
|Y|2|Ek

]
σ2

k + |hk|2P
−

E
[
|Y− hkX|2|Ek

]
σ2

k

]
. (64)

Remark 13. K-partitioning formally includes (57) as a special case by including SR as part
of the receiver’s “overall” channel output Ỹ = [Y, SR]. For example, one can partition Ỹ as
{ỸsR : sR ∈ SR} where ỸsR = Y × {sR}.

Remark 14. The models (16) and (61) suggest building receivers based on adaptive Gaussian
statistics. However, we are motivated to introduce (61) to prove capacity scaling results. For this
purpose, we will use K = 2 with the partition

E1 = {|Y|2 < tR}, E2 = {|Y|2 ≥ tR} (65)

and h1 = 0, σ2
1 = 1. The GMI (64) thus has only the k = 2 term and it remains to choose h2, σ2

2 ,
and tR.

Remark 15. One can generalize Lemma 1 and partition X ×Y rather than Y only. However, the
q(y) in (62) might not have a CSCG form.

Remark 16. Define Pk = E
[
|X|2|Ek

]
and choose the LMMSE auxiliary models with

hk = E
[

YX*
∣∣∣Ek

]/
Pk (66)

σ2
k = E

[
|Y− hk X|2

∣∣∣Ek

]
= E

[
|Y|2

∣∣∣Ek

]
− |hk|2Pk (67)

for k = 1, . . . , K. The expression (64) is then

I1(X; Y) =
K

∑
k=1

Pr[Ek]

[
log
(

1 +
|hk|2P

E[|Y|2|Ek]− |hk|2Pk

)
− |hk|2(P− Pk)

E[|Y|2|Ek] + |hk|2(P− Pk)

]
. (68)

Remark 17. The LMMSE-based GMI (68) reduces to the GMI of Proposition 1 by choosing the
trivial partition with K = 1 and Y1 = Y . However, the GMI (68) may not be optimal for K ≥ 2.
What can be said is that the phase of hk in (64) should be the same as the phase of E

[
YX*|Ek

]
for all k.

We thus have K two-dimensional optimization problems, one for each pair (|hk|, σ2
k ), k = 1, . . . , K.

Remark 18. Suppose we choose a different auxiliary model for each Y = y, i.e., consider K → ∞.
The reverse density GMI uses the auxiliary model (19) which gives the RHS of (15):



Entropy 2023, 25, 728 14 of 86

I1(X; Y) =
∫
C

p(y) log
P

Var[X|Y = y]
dy. (69)

Instead, the suboptimal (68) is the complicated expression

I1(X; Y) =
∫
C

p(y)

[
log

(
1 +
|E[X|Y = y]|2(P/Py)

Var[X|Y = y]

)

−
|E[X|Y = y]|2(P/Py − 1)

Var[X|Y = y] + |E[X|Y = y]|2(P/Py)

]
dy. (70)

where Py = E
[
|X|2|Y = y

]
. We show how to compute these GMIs in Appendix C.

3.3. Example: On-Off Fading

Consider the channel Y = HX + Z where H, X, Z are mutually independent,
PH(0) = PH(

√
2) = 1/2, and Z ∼ CN (0, 1). The channel exhibits particularly simple

fading, giving basic insight into more realistic fading models. We consider two basic
scenarios: full CSIR and no CSIR.

Full CSIR: Suppose SR = H and

q(y|x, h) = p(y|x, h) =
1

πσ2 e−|y−hx|2/σ2
(71)

which corresponds to having (58) and (59) as

h̃(0) = 0, h̃
(√

2
)
=
√

2, σ̃2(0) = σ2
(√

2
)
= 1. (72)

The GMI (60) with X ∼ CN (0, P) thus gives the capacity

C(P) =
1
2

log(1 + 2P). (73)

The wideband values (37) are

Eb
N0

∣∣∣∣
min

= log 2, S = 1. (74)

Compared with (38), the minimal Eb/N0 is the same as without fading, namely −1.59 dB.
However, fading reduces the capacity slope S; see the dashed curve in Figure 1.

No CSIR: Suppose SR = 0 and X ∼ CN (0, P) and consider the densities

p(y|x) = e−|y|
2

2π
+

e−|y−
√

2x|2

2π
(75)

p(y) =
e−|y|

2

2π
+

e−|y|
2/(1+2P)

2π(1 + 2P)
. (76)

The mutual information can be computed by numerical integration or by Monte Carlo
integration:

I(X; Y) ≈ 1
N

N

∑
i=1

log
pY|X(yi|xi)

pY(yi)
(77)

where the RHS of (77) converges to I(X; Y) for long strings xN , yN sampled from p(x, y).
The results for X ∼ CN (0, P) are shown in Figure 1 as the curve labeled “I(X; Y) Gauss”.
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Next, Proposition 1 gives h = 1/
√

2, σ2 = 1 + P/2, and

I1(X; Y) = log
(

1 +
P

2 + P

)
. (78)

The wideband values (37) are

Eb
N0

∣∣∣∣
min

= log 4, S = 2/3 (79)

so the minimal Eb/N0 is 1.42 dB and the capacity slope S has decreased further. Moreover,
the rate saturates at large SNR at 1 bit per channel use.
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Figure 1. Rates for on-off fading with SR = 0. The curve “Full CSIR” refers to SR = H and is a
capacity upper bound. Flash signaling uses p = 0.05; the GMI for the K = 2 partition uses the
threshold tR = P0.4 + 3.

The “I(X; Y) Gauss” curve in Figure 1 suggests that the no-CSIR capacity approaches
the full-CSIR capacity for large SNR. To prove this, consider the K = 2 partition specified
in Remark 14 with h1 = 0, h2 =

√
2, and σ2

2 = 1. Since we are not using LMMSE auxiliary
models, we must compute the GMI using the general expression (64), which is

I1(X; Y) = Pr[E2]

[
log(1 + 2P) +

E
[
|Y|2|E2

]
1 + 2P

− E
[∣∣∣Y−√2X

∣∣∣2|E2

]]
. (80)

In Appendix B.1, we show that choosing tR = PλR + b where 0 < λR < 1 and b is a real
constant makes all terms behave as desired as P increases:

Pr[E2]→ 1/2,
E
[
|Y|2|E2

]
1 + 2P

→ 1, E
[ ∣∣∣Y−√2X

∣∣∣2∣∣∣∣E2

]
→ 1. (81)

The GMI (80) of Lemma 1 thus gives the maximal value (73) for large P:

lim
P→∞

[
1
2

log(1 + 2P)− I1(X; Y)
]
= 0. (82)
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Figure 1 shows the behavior of I1(X; Y) for K = 2, λR = 0.4, and b = 3. Effectively, at large
SNR, the receiver can estimate H accurately, and one approaches the full-CSIR capacity.

Remark 19. For on-off fading, one may compute I(X; Y) directly and use the densities (75) and
(76) to decode. Nevertheless, the partitioning of Lemma 1 helps prove the capacity scaling (82).

Consider next the reverse density GMI (69) and the forward model GMI (70). Appendix C.1
shows how to compute E[X|Y = y], E

[
|X|2

∣∣Y = y
]
, and Var[X|Y = y], and Figure 1 plots

the GMIs as the curves labeled “rGMI” and “GMI, K = ∞”, respectively. The rGMI curve
gives the best possible rates for AWGN auxiliary models, as shown in Section 1.4. The
results also show that the large-K GMI (70) is worse than the K = 1 GMI at low SNR but
better than the K = 2 GMI of Remark 14.

Finally, the curve labeled “I(X; Y) Gauss” in Figure 1 suggests that the minimal Eb/N0
is 1.42 dB even for the capacity-achieving distribution. However, we know from ([73],
Theorem 1) that flash signaling (39) can approach the minimal Eb/N0 of −1.59 dB. For
example, the flash rates I(X; Y) with p = 0.05 are plotted in Figure 1. Unfortunately, the
wideband slope is S = 0 ([73], Theorem 17), and one requires very large flash powers (very
small p) to approach −1.59 dB.

Remark 20. As stated in Remark 6, the paper [37] (see also [2,70]) derives two capacity lower
bounds. These bounds are the same for our problem, and they are derived using the following steps
(see ([37], Lemmas 3 and 4)):

I(X; Y) = I(X, SH ; Y)− I(SH ; Y|X)

≥ I(X; Y|SH)− I(SH ; Y|X). (83)

Now consider Y = HX + Z where H, X, Z are mutually independent, SH = H, Var[Z] = 1, and
X ∼ CN (0, P). We have

I(X; Y|H) ≥ E
[
log(1 + |H|2P)

]
(84)

I(H; Y|X) = h(Y|X)− h(Z)

≤ log(πe(1 + Var[H]P))− h(Z) (85)

where (84) and (85) follow by (5), in the latter case with the roles of X and Y reversed. The bound (85)
works well if Var[H] is small, as for massive MIMO with “channel hardening”. However, for our
on-off fading model, the bound (83) is

I(X; Y) ≥ E
[
log
(

1 + |H|2P
)]
− log(1 + Var[H]P)

=
1
2

log(1 + 2P)− log(1 + P/2) (86)

which is worse than the K = 1 and K = ∞ GMIs and is not shown in Figure 1.

4. Channels with CSIT

This section studies Shannon’s channel with side information, or state, known causally
at the transmitter [5,6]. We begin by treating general channels and then focus mainly on
complex-alphabet channels. The capacity expression has a random variable A that is either
a list (for discrete-alphabet states) or a function (for continuous-alphabet states). We refer
to A as an adaptive symbol of an adaptive codeword.

4.1. Model

The problem is specified by the functional dependence graph (FDG) in Figure 2. The
model has a message M, a CSIT string Sn

T , and a noise string Zn. The variables M, Sn
T ,

Zn are mutually statistically independent, and Sn
T and Zn are strings of i.i.d. random
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variables with the same distributions as ST and Z, respectively. Sn
T is available causally at

the transmitter, i.e., the channel input Xi, i = 1, . . . , n, is a function of M and the sub-string
Si

T . The receiver sees the channel outputs

Yi = f (Xi, STi, Zi) (87)

for some function f (.) and i = 1, 2, . . . , n.

A2

X2

ST1 ST2

M

Z1 Y1 Z2 Y2

A1

X1

Figure 2. FDG for n = 2 uses of a channel with CSIT. Open nodes represent statistically independent
random variables, and filled nodes represent random variables that are functions of their parent
variables. Dashed lines represent the CSIT influence on Xn.

Each Ai represents a list of possible choices of Xi at time i. More precisely, suppose
that ST has alphabet ST = {0, 1, . . . , ν− 1} and define the adaptive symbol

A =
(
X(0), . . . , X(ν− 1)

)
whose entries have alphabet X . Here ST = sT means that X(sT) is transmitted, i.e., we
have X = X(ST). If ST has a continuous alphabet, we make A a function rather than a list,
and we may again write X = X(ST). Some authors therefore write A as X(.). (Shannon
in [6] denoted our A and X as the respective X and x.)

Remark 21. The conventional choice for A if X = C is

A =

(√
P(0) ejφ(0), . . . ,

√
P(ν− 1) ejφ(ν−1)

)
·U (88)

where U has E
[
|U|2

]
= 1, P(sT) = E

[
|X(sT)|2

]
, and φ(sT) is a phase shift. The interpretation is

that U represents the symbol of a conventional codebook without CSIT, and these symbols are scaled
and rotated. In other words, one separates the message-carrying U from an adaptation due to ST via

X =
√

P(ST) ejφ(ST) U. (89)

Remark 22. One may define the channel by the functional relation (87), by p(y|a), or by p(y|x, sT);
see Shannon’s emphasis in ([6], Theorem); see ([22], Remark 3). We generally prefer to use p(y|a)
since we interpret A as a channel input.

Remark 23. One can add feedback and let Xi be a function of (M, Si
T , Yi−1), but feedback does not

increase the capacity if the state and noise processes are memoryless ([22], Section V).

Remark 24. The model (87) permits block fading and MIMO transmission by choosing Xi and Yi
as vectors [11,78].
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4.2. Capacity

The capacity of the model under study is (see [6])

C = max
A

I(A; Y) (90)

where A− [ST , X]−Y forms a Markov chain. One may limit attention to A with cardinality
|A| satisfying (see ([22], Equation (56)), [79], ([80], Theorem 1))

|A| ≤ min(|Y|, 1 + |ST |(|X | − 1)). (91)

As usual, for the cost function c(x, y) and the average block cost constraint

1
n

n

∑
i=1

E[c(Xi, Yi)] ≤ P (92)

the unconstrained maximization in (90) becomes a constrained maximization over the A
for which E[c(X, Y)] ≤ P. Also, a simple upper bound on the capacity is

C(P) ≤ max
A: E[c(X,Y)]≤P

I(A; Y, ST)

(a)
= max

X(ST): E[c(X(ST),Y)]≤P
I(X; Y|ST) (93)

where step (a) follows by the independence of A and ST . This bound is tight if the receiver
knows ST .

Remark 25. The chain rule for mutual information gives

I(A; Y) = I(X(0) . . . X(ν− 1); Y) (94)

=
ν−1

∑
sT=0

I(X(sT); Y|X(0), . . . , X(sT − 1)). (95)

The RHS of (94) suggests treating the channel as a multi-input, single-output (MISO) channel, and
the expression (95) suggests using multi-level coding with multi-stage decoding [81]. For example,
one may use polar coded modulation [82–84] with Honda-Yamamoto shaping [85,86].

Remark 26. For X = C and the conventional adaptive symbol (88), we compute I(A; Y) = I(U; Y)
and

C(P) = max
P(ST),φ(ST): E[c(X(ST),Y)]≤P

I(U; Y). (96)

4.3. Structure of the Optimal Input Distribution

Let A be the alphabet of A and let X = C, i.e., we have A = Cν for discrete ST .
Consider the expansions

p(y|a) = ∑
sT

PST (sT) p(y|x(sT), sT) (97)

p(y) =
∫
A

p(a) p(y|a) da

= ∑
sT

PST (sT)
∫
C

p(x(sT)) p(y|x(sT), sT) dx(sT). (98)



Entropy 2023, 25, 728 19 of 86

Observe that p(y), and hence h(Y), depends only on the marginals p(x(sT)) of A; see ([80],
Section III). So define the set of densities having the same marginals as A:

P(A) = {p(ã) : p(x̃(sT)) = p(x(sT)) for all sT ∈ ST}.

This set is convex, since for any p(1)(a), p(2)(a) ∈ P(A) and 0 ≤ λ ≤ 1 we have

λp(1)(a) + (1− λ)p(2)(a) ∈ P(A). (99)

Moreover, for fixed p(y), the expression I(A; Y) is a convex function of p(a|y), and
p(a|y) = p(a)p(y|a)/p(y) is a linear function of p(a). Maximizing I(A; Y) over P(A)
is thus the same as minimizing the concave function h(Y|A) over the convex set P(A). An
optimal p(a) is thus an extreme of P(A). Some properties of such extremes are developed
in [87,88].

For example, consider |ST | = 2 and X = ST = {0, 1}, for which (91) states that
at most |A| = 3 adaptive symbols need have positive probability (and at most |A| = 2
adaptive symbols if |Y| = 2). Suppose the marginals have PX(0)(0) = 1/2, PX(1)(0) = 3/4
and consider the matrix notation

PA =

[
PA(0, 0) PA(0, 1)
PA(1, 0) PA(1, 1)

]
where we write PA(x1, x2) for PA([x1, x2]). The optimal PA must then be one of the two
extremes

PA =

[
1/2 0
1/4 1/4

]
, PA =

[
1/4 1/4
1/2 0

]
. (100)

For the first PA, the codebook has the property that if X(0) = 0 then X(1) = 0 while if
X(0) = 1 then X(1) is uniformly distributed over X = {0, 1}.

Next, consider |ST | = 2 and marginals PX(0), PX(1) that are uniform over
X = {0, 1, . . . , |X | − 1}. This case was treated in detail in ([80], Section VI.A), see also [89],
and we provide a different perspective. A classic theorem of Birkhoff [90] ensures that the
extremes of P(A) are the |X |! distributions PA for which the |X | × |X |matrix

PA =

 PA(0, 0) . . . PA(0, |X | − 1)
...

. . .
...

PA(|X | − 1, 0) . . . PA(|X | − 1, |X | − 1)

.

is a permutation matrix multiplied by 1/|X |. For example, for |X | = 2 we have the two
extremes

PA = 1
2

[
1 0
0 1

]
, PA = 1

2

[
0 1
1 0

]
. (101)

The permutation property means that X(sT) is a function of X(0), i.e., the encoding sim-
plifies to a conventional codebook as in Remark 21 with uniformly-distributed U and a
permutation πsT (.) indexed by sT such that X(ST) = πST (U). For example, for the first PA
in (101) we may choose X(ST) = U, which is independent of ST . On the other hand, for the
second PA in (101) we may choose X(ST) = U ⊕ ST where ⊕ denotes addition modulo-2.

For |ST | > 2, the geometry of P(A) is more complicated; see ([80], Section VI.B). For
example, consider X = {0, 1} and suppose the marginals PX(sT)

, sT ∈ ST , are all uniform.
Then the extremes include PA related to linear codes and their cosets, e.g., two extremes for
|ST | = 3 are related to the repetition code and single parity check code:



Entropy 2023, 25, 728 20 of 86

PA(a) = 1/2, a ∈ {[0, 0, 0], [1, 1, 1]}
PA(a) = 1/4, a ∈ {[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]}.

This observation motivates concatenated coding, where the message is first encoded by an
outer encoder followed by an inner code that is the coset of a linear code. The transmitter
then sends the entries at position ST of the inner codewords, which are vectors of dimension
|ST |. We do not know if there are channels for which such codes are helpful.

4.4. Generalized Mutual Information

Consider the vector channel p(y|x) with input set X = CM and output set Y = CN .
The GMI for adaptive symbols is maxs≥0 Is(A; Y) where

Is(A; Y) = E
[

log
q(Y|A)s

q(Y)

]
(102)

and the expectation is with respect to p(a, y). Suppose the auxiliary model is q(y|a)
and define

q(y) =
∫
A

p(a)q(y|a)s da. (103)

The GMI again provides a lower bound on the mutual information since (cf. (43))

Is(A; Y) = I(A; Y)− D
(

pA,Y
∥∥pY qA|Y

)
(104)

where q(a|y) = p(a)q(y|a)s/q(y) is a reverse channel density.
We next study reverse and forward models as in Sections 1.3 and 1.4. Suppose the

entries X(sT) of A are jointly CSCG.

Reverse Model: We write A when we consider A to be a column vector that stacks the X(sT).
Consider the following reverse density motivated by (13):

q(a|y) =
exp

(
−(a− E

[
A|Y = y

]
)†Q−1

A|Y=y(a− E
[

A|Y = y
]
)

)
πνM det QA|Y=y

. (105)

A corresponding forward model is q
(
y|a
)
= q

(
a|y
)
/p(a) and the GMI with s = 1 becomes

(cf. (35))

I1(A; Y) = E

[
log

det QA

det QA|Y

]
. (106)

To simplify, one may focus on adaptive symbols as in (89):

X = Q1/2
X(ST)

·U (107)

where U ∼ CN (0, I) and the QX(sT)
are covariance matrices. We thus have I(A; Y) = I(U; Y)

(cf. (96)) and using (105) but with A replaced with U we obtain

I1(A; Y) = E
[
− log det QU|Y

]
. (108)

Forward Model: Perhaps the simplest forward model is q(y|a) = p(y|x(sT)) for some fixed
value sT ∈ ST . One may interpret this model as having the receiver assume that ST = sT .
A natural generalization of this idea is as follows: define the auxiliary vector

X̄ = ∑
sT

W(sT) X(sT) (109)
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where the W(sT) are M×M complex matrices, i.e., X̄ is a linear function of the entries
of A = [X(sT) : sT ∈ ST ]. For example, the matrices might be chosen based on PST (.).
However, observe that X̄ is independent of ST . Now define the auxiliary model

q(y|a) = q(y|x̄)

where we abuse notation by using the same q(.). The expression (103) becomes

q(y) =
∫
A

p(a) q(y|a)s da =
∫
C

p(x̄) q(y|x̄)s dx̄. (110)

Remark 27. We often consider ST to be a discrete set, but for CSCG channels we also consider
ST = C so that the sum over ST in (109) is replaced by an integral over C.

We now specialize further by choosing the auxiliary channel Ya = H X̄ + Z where H
is an N ×M complex matrix, Z is an N-dimensional CSCG vector that is independent of
X̄ and has invertible covariance matrix QZ, and H and QZ are to be optimized. Further
choose A = [X(sT) : sT ∈ ST ] whose entries are jointly CSCG with correlation matrices

R(sT1, sT2) = E
[

X(sT1)X(sT2)
†
]
.

Since X̄ in (109) is independent of ST , we have

q(y|a) =
exp

(
−
(

y−H x̄
)†

Q−1
Z

(
y−H x̄

))
πN det QZ

. (111)

Moreover, X̄ is CSCG so (110) is

q(y) =
πN det

(
QZ/s

)(
πN det QZ

)s ·
exp

(
−y†

(
QZ/s + HQX̄H†

)−1
y
)

πN det
(

QZ/s + HQX̄H†
)

where

QX̄ = ∑
sT1,sT2

W(sT1)R(sT1, sT2)W(sT2)
†.

We have the following generalization of Proposition 1.

Lemma 2. The maximum GMI (102) for the channel p(y|a), an adaptive vector A = [X(sT) :
sT ∈ ST ] that has jointly CSCG entries, an X̄ as in (109) with QX̄ � 0, and the auxiliary model
(111) with QZ � 0 is

I1(A; Y) = log det
(

I + Q−1
Z̃ H̃QX̄H̃†

)
(112)

where (cf. (31))

H̃ = E
[
Y X̄†

]
Q−1

X̄ (113)

QZ̃ = QY − H̃QX̄H̃†. (114)

The expectation is with respect to the actual channel with joint distribution/density p(a, y).

Proof. See Appendix D.
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Remark 28. Since X̄ is a function of A, the rate (112) can alternatively be derived by using
I(A; Y) ≥ I(X̄; Y) and applying the bound (30) with X replaced with X̄.

Remark 29. The estimate H̃ is the MMSE estimate of H:

H̃ = arg min
H

E
[
‖Y−HX̄‖2

]
(115)

and QZ̃ is the resulting covariance matrix of the error. To see this, expand (cf. (54))

E
[
‖Y−HX̄‖2

]
= E

[
‖(Y− H̃X̄) + (H̃−H)X̄‖2

]
= E

[
‖Y− H̃X̄‖2

]
+ tr

(
(H̃−H)QX̄(H̃−H)†

)
(116)

where the final step follows by the definition of H̃ in (113).

Remark 30. Suppose that H is an estimate other than (115). Generalizing (55), if QY � QZ̄ we
may choose

QZ
/

s =
(

HQX̄H†
)1/2(

QY −QZ̄

)−1/2
QZ̄

(
QY −QZ̄

)−1/2(
HQX̄H†

)1/2
(117)

where

QZ̄ = E
[
(Y−HX̄)(Y−HX̄)

†
]
. (118)

Appendix D shows that (102) then simplifies to (cf. (56))

Is(A; Y) = log det
(

Q−1
Z̄ QY

)
. (119)

Remark 31. The GMI (112) does not depend on the scaling of X̄ since this is absorbed in H̃. For
example, one can choose the weighting matrices in (109) so that E

[
‖X̄‖2] = P.

4.5. Optimal Codebooks for CSCG Forward Models

The following Lemma maximizes the GMI for scalar channels and A with CSCG
entries without requiring A to have the form (89). Nevertheless, this form is optimal,
and we refer to ([10], page 2013) and Section 6.4 for similar results. In the following, let
U(sT) ∼ CN (0, 1) for all sT .

Lemma 3. The maximum GMI (102) for the channel p(y|a), an adaptive symbol A with jointly
CSCG entries, the forward model (111), and with fixed P(sT) = E

[
|X(sT)|2

]
is

I1(A; Y) = log
(

1 +
P̃

E[|Y|2]− P̃

)
(120)

where, writing X(sT) =
√

P(sT)U(sT) for all sT , we have

P̃ = E
[ ∣∣∣E[YU(ST)

*
∣∣∣ST

]∣∣∣ ]2
. (121)

This GMI is achieved by choosing fully-correlated symbols:

X(sT) =
√

P(sT) ejφ(sT) U (122)
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and X̄ = c U for some non-zero constant c and a common U ∼ CN (0, 1), and where

φ(sT) = − arg
(

E
[

Y U(sT)
*
∣∣∣ST = sT

])
. (123)

Proof. See Appendix E.

Remark 32. The expression (121) is based on (A58) in Appendix E and can alternatively be written
as P̃ =

∣∣h̃∣∣2P̄ where

h̃ = E
[
YX̄*

]/
P̄.

Remark 33. The power levels P(sT) may be optimized, usually under a constraint such as
E[P(ST)] ≤ P.

Remark 34. By the Cauchy-Schwarz inequality, we have

E
[ ∣∣∣E[YU(ST)

*
∣∣∣ST

]∣∣∣ ]2
≤ E

[
|Y|2

]
.

Furthermore, equality holds if and only if
∣∣YU(sT)

*
∣∣ is a constant for each sT , but this case is not

interesting.

4.6. Forward Model GMI for MIMO Channels

The following lemma generalizes Lemma 3 to MIMO channels without claiming a
closed-form expression for the optimal GMI. Let U(sT) ∼ CN (0, I) for all sT .

Lemma 4. A GMI (102) for the channel p(y|a), an adaptive vector A with jointly CSCG entries,
the auxiliary model (111), and with fixed QX(sT)

is given by (112) that we write as

I1(A; Y) = log

(
det QY

det
(
QY − D̃ D̃†

)). (124)

where for M×M unitary VR(sT) we have

D̃ = E
[
UT(ST)Σ(ST)VR(ST)

†
]

(125)

and UT(sT) and Σ(sT) are N× N unitary and N×M rectangular diagonal matrices, respectively,
of the SVD

E
[

Y U(sT)
†
∣∣∣ST = sT

]
= UT(sT)Σ(sT)VT(sT)

† (126)

for all sT , and the VT(sT) are M×M unitary matrices. The GMI (124) is achieved by choosing
the symbols (cf. (122) and (A87) below):

X(sT) = Q1/2
X(sT)

VT(sT)U (127)

and X̄ = C U for some invertible M×M matrix C and a common M-dimensional vector U ∼
CN (0, I). One may maximize (124) over the unitary VR(sT).

Proof. See Appendix G.

Using Lemma 4, the theory for MISO channels with N = 1 is similar to the scalar case
of Lemma 3; see Remark 35 below. However, optimizing the GMI is more difficult for N > 1
because one must optimize over the unitary matrices VR(sT) in (125); see Remark 36 below.
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Remark 35. Consider N = 1 in which case one may set UT(sT) = 1 and (126) is a 1×M vector
where Σ(sT) has as the only non-zero singular value

σ(sT) =
∥∥∥E
[

Y U(sT)
†
∣∣∣ST = sT

]∥∥∥ =

(
M

∑
m=1

∣∣∣E[Y Um(sT)
*
∣∣∣ST = sT

]∣∣∣2)1/2

. (128)

The absolute value of the scalar (125) is maximized by choosing VR(sT) = I for all sT to obtain
(cf. (121))

D̃ D̃† = E[σ(ST)]
2. (129)

Remark 36. Consider M = 1 in which case one may set VT(sT) = 1 and (126) is a N × 1 vector
where Σ(sT) has as the only non-zero singular value

σ(sT) =
∥∥∥E
[

Y U(sT)
†
∣∣∣ST = sT

]∥∥∥ =

(
N

∑
n=1

∣∣∣E[Yn U(sT)
*
∣∣∣ST = sT

]∣∣∣2)1/2

. (130)

We should now find the VR(sT) = ejφR(sT) that minimize the determinant in the denominator of
(124) where (see (125))

D̃ = E
[
uT(ST) σ(ST) e−jφR(ST)

]
(131)

and where each uT(sT) is one of the columns of the N × N unitary matrix UT(sT).

Remark 37. Consider M = N and the product channel

p(y|a) =
M

∏
m=1

p
(
ym
∣∣ [xm(sT) : sT ∈ ST ]

)
(132)

where xm(sT) is the m’th entry of x(sT). We choose QX(sT)
as diagonal with diagonal entries√

Pm(sT), m = 1, . . . , M. Also choosing VR(sT) = I makes the matrix D̃ D̃† diagonal with the
diagonal entries (cf. (121) where M = N = 1)(

∑
sT

PST (sT)
∣∣∣E[YmUm(sT)

*
∣∣∣ST = sT

]∣∣∣)2

(133)

for m = 1, . . . , M. The GMI (124) is thus (cf. (120))

I1(A; Y) =
M

∑
m=1

log

(
E
[
|Ym|2

]
E[|Ym|2]− E

[∣∣E[YmUm(ST)*|ST ]
∣∣]2
)

. (134)

Remark 38. For general p(y|a), one might wish to choose diagonal QX(sT)
and a product model

q(y|a) =
M

∏
m=1

qm(ym|x̄m)

where the qm(.) are scalar AWGN channels

qm(y|x) =
1

πσ2
m

exp
(
−|y− hm x|2/σ2

m

)
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with possibly different hm and σ2
m for each m. Consider also

X̄m = ∑
sT

wm(sT)Xm(sT)

for some complex weights wm(sT), i.e., X̄m is a weighted sum of entries from the list [Xm(sT) :
sT ∈ ST ]. The maximum GMI is now the same as (134) but without requiring the actual channel
to have the form (132).

Remark 39. If the actual channel is Y = H X + Z then

E
[
Y U(sT)

†|ST = sT

]
= E

[
H X(sT)U(sT)

†|ST = sT

]
= E[H|ST = sT ]Q1/2

X(sT)
(135)

where the final step follows because U(ST)− ST −H forms a Markov chain. The expression (135)
is useful because it separates the effects of the channel and the transmitter.

Remark 40. Combining Remarks 37 and 39, suppose the actual channel is Y = H X + Z with
M = N and where H is diagonal with diagonal entries Hm, m = 1, . . . , M. The GMI (124) is then
(cf. (134))

I1(A; Y) =
M

∑
m=1

log

 E
[
|Ym|2

]
E[|Ym|2]− E

[∣∣∣E[Hm
√

Pm(ST)
∣∣∣ST

]∣∣∣]2

 (136)

where E
[
|Ym|2

]
= 1 + E

[
|Hm|2Pm(ST)

]
.

5. Channels with CSIR and CSIT

Shannon’s model includes CSIR [11]. The FDG is shown in Figure 3 where there is a
hidden state SH , the CSIR SR and CSIT ST are functions of SH , and the receiver sees the
channel outputs

[Yi, SRi] = [ f (Xi, SHi, Zi), SRi] (137)

for some function f (.) and i = 1, 2, . . . , n. (By defining SH = [SH1, ZH ] and calling SH1
the hidden channel state we can include the case where SR and ST are noisy functions of
SH1.) As before, M, Sn

H , Zn are mutually statistically independent, and Sn
H and Zn are i.i.d.

strings of random variables with the same distributions as ST and Z, respectively. Observe
that we have changed the notation by writing Y for only part of the channel output. The
new Y (without the SR) is usually called the “channel output”.

Z2

A1

X1

A2

X2

M

Y1 Y2

ST2ST1

SR2SR1SH1 SH2Z1

Figure 3. FDG for n = 2 channel uses with different CSIT and CSIR. The hidden channel state SHi

permits dependent SRi and STi.
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5.1. Capacity and GMI

We begin with scalar channels for which (90) is

C = max
A

I(A; Y, SR) = max
A

I(A; Y|SR) (138)

where A and SR are independent.

Reverse Model: The expression (108) with the adaptive symbol (88) is

I1(A; Y, SR) = E[− log Var[U|Y, SR]]. (139)

Forward Model: Consider the expansion

I1(A; Y|SR) =
∫
SR

p(sR) I1(A; Y|SR = sR) dsR (140)

where I1(A; Y|SR = sR) is the GMI (102) with all densities conditioned on SR = sR. We
choose the forward model

q(y|a, sR) =
1

πσ(sR)2 exp
(
−|y− h(sR) x̄(sR)|2

σ(sR)2

)
. (141)

where similar to (109) we define

X̄(sR) = ∑
sT

w(sT , sR) X(sT) (142)

for complex weights w(sT , sR), i.e., X̄(sR) is a weighted sum of entries from the list
A = [X(sT) : sT ∈ ST ]. We have the following straightforward generalization of Lemma 3.

Theorem 1. The maximum GMI (140) for the channel p(y|a, sR), an adaptive symbol A with
jointly CSCG entries, the model (141), and with fixed P(sT) = E

[
|X(sT)|2

]
is

I1(A; Y|SR) = E
[

log
(

1 +
P̃(SR)

E[|Y|2|SR]− P̃(SR)

)]
(143)

where for all sR ∈ SR we have

P̃(sR) = E
[ ∣∣∣E[YU(ST)

*
∣∣∣ST , SR = sR

]∣∣∣ ]2
. (144)

Remark 41. To establish Theorem 1, the receiver may choose X̄ =
√

P U to be independent of sR.
Alternatively, the receiver may choose X̄(sR) =

√
E[|X|2|SR = sR]U. Both choices give the same

GMI since the expectation in (144) does not depend on the scaling of X̄; see Remark 31.

Remark 42. The partition idea of Lemmas 1 and 5 carries over to Theorem 1. We may generalize
(143) as

I1(A; Y|SR) =
∫
SR

p(sR)
K

∑
k=1

Pr[Ek|SR = sR][
log

(
1 +
|hk(sR)|2P

σ2
k (sR)

)
+

E
[
|Y|2

∣∣Ek, SR = sR
]

σ2
k (sR) + |hk(sR)|2P

−
E
[
|Y− hk(sR)

√
P U|2

∣∣∣Ek, SR = sR

]
σ2

k (sR)

 dsR (145)
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where the X(sT), sT ∈ ST , are given by (122) and the hk(sR) and σ2
k (sR), k = 1, . . . , K, sR ∈ SR,

can be optimized.

Remark 43. One is usually interested in the optimal power control policy P(sT) under the con-
straint E[P(ST)] ≤ P. Taking the derivative of (143) with respect to

√
P(sT) and setting to zero

we obtain

E

[
E
[
|Y|2|SR

]
P̃(SR)

′ − P̃(SR)E
[
|Y|2|SR

]′
E[|Y|2|SR]

[
E[|Y|2|SR]− P̃(SR)

] ]
= 2λ

√
P(sT)PST (sT) (146)

where P̃(SR)
′ and E

[
|Y|2|SR

]′ are derivatives with respect to
√

P(sT). We use (146) below to
derive power control policies.

Remark 44. A related model is a compound channel where p(y|a, sR) is indexed by the parameter
sR ([91], Chapter 4). The problem is to find the maximum worst-case reliable rate if the transmitter
does not know sR. Alternatively, the transmitter must send its message to all |SR| receivers
indexed by sR ∈ SR. A compound channel may thus be interpreted as a broadcast channel with a
common message.

5.2. CSIT@ R

An interesting specialization of Shannon’s model is when the receiver knows ST and
can determine X(ST). We refer to this scenario as CSIT@R. The model was considered
in ([10], Section II) when ST is a function of SR. More generally, suppose ST is a function of
[Y, SR]. The capacity (138) then simplifies to (see ([10], Proposition 1))

C
(a)
= max

A
I(A; Y, ST |SR)

(b)
= max

A
I(X; Y|SR, ST)

(c)
= ∑

sT

PST (sT)

[
max
X(sT)

I(X(sT); Y|SR, ST = sT)

]
(147)

where step (a) follows because ST is a function of [Y, SR]; step (b) follows because A and
(SR, ST) are independent, X is a function of [A, ST ], and A− [ST , X]−Y forms a Markov
chain; and step (c) follows because one may optimize X(sT) separately for each sT ∈ ST .

As discussed in [10], a practical motivation for this model is when the CSIT is based on
error-free feedback from the receiver to the transmitter. In this case, where ST is a function
of SR, the expression (144) becomes

P̃(sR) =
∣∣∣E[YU(sT)

*
∣∣∣SR = sR

]∣∣∣2. (148)

Remark 45. The insight that one can replace adaptive symbols A with channel inputs X when X
is a function of A and past Y appeared for two-way channels in ([9], Section 4.2.3) and networks
in ([22], Section V.A), ([72], Section IV.F).

5.3. MIMO Channels and K-Partitions

We consider generalizations to MIMO channels and K-partitions as in Section 3.2.

MIMO Channels: Consider the average GMI

I1(A; Y|SR) =
∫
SR

p(sR)I1(A; Y|SR = sR) dsR (149)
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and choose the parameters (113) and (114) for the event SR = sR. We have

H̃(sR) = E
[

Y X̄†
∣∣∣SR = sR

]
E
[

X̄ X̄†
∣∣∣SR = sR

]−1
(150)

QZ̃(sR) = E
[

Y Y†
∣∣∣SR = sR

]
− H̃(sR)E

[
X̄ X̄†

∣∣∣SR = sR

]
H̃(sR)

† (151)

and the GMI (149) is (cf. (60) and (112))

I1(A; Y|SR) = E
[
log det

(
I + QZ̃(SR)

−1 H̃(SR)QX̄H̃(SR)
†
)]

. (152)

K-Partitions: Let {Y k : k = 1, . . . , K} be a K-partition of Y and define the events Ek = {Y ∈
Y k} for k = 1, . . . , K. As in Remark 13, K-partitioning formally includes (149) as a special
case by including SR as part of the receiver’s “overall” channel output Ỹ = [Y, SR]. The
following lemma generalizes Lemma 1.

Lemma 5. A GMI with s = 1 for the channel p(y|a) is

I1(A; Y) =
K

∑
k=1

Pr[Ek]
{

log det
(

I + Q−1
Zk

HkQX̄H†
k

)
+ E

[
Y†
(

QZk + HkQX̄H†
k

)−1
Y
∣∣∣∣Ek

]
−E
[
(Y−Hk X̄)

†Q−1
Zk

(Y−Hk X̄)
∣∣∣Ek

]}
(153)

where the Hk and QZk , k = 1, . . . , K, can be optimized.

Remark 46. For scalars the GMI (153) is

I1(A; Y) =
K

∑
k=1

Pr[Ek]

[
log

(
1 +
|hk|2P̄

σ2
k

)
+

E
[
|Y|2|Ek

]
σ2

k + |hk|2P̄
−

E
[
|Y− hkX̄|2|Ek

]
σ2

k

]
(154)

which is the same as (64) except that X̄, P̄ replace X, P. If we follow (66) and (67) then (154)
becomes (68) but with

hk = E
[

YX̄*
∣∣∣Ek

]
/Pk, Pk = E

[
|X̄|2

∣∣∣Ek

]
.

Remark 47. Consider Remark 14 and choose K = 2, h1 = 0, σ2
1 = 1. The GMI (154) then has

only the k = 2 term, and it again remains to select h2, σ2
2 , and tR.

Remark 48. If we define

Q(k)
X̄ = E

[
X̄ X̄†

∣∣∣Ek

]
, Q(k)

Y = E
[

Y Y†
∣∣∣Ek

]
(155)

and choose the LMMSE auxiliary models with

Hk = E
[

Y X̄†
∣∣∣Ek

](
Q(k)

X̄

)−1
(156)

QZk = Q(k)
Y −HkQ(k)

X̄ H†
k (157)
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for k = 1, . . . , K then the expression (153) is (cf. (68))

I1(A; Y) =
K

∑
k=1

Pr[Ek]
[
log det

(
I + Q−1

Zk
HkQX̄H†

k

)
−tr
((

Q(k)
Y + HkD(k)

X̄ H†
k

)−1
HkD(k)

X̄ H†
k

)]
(158)

where D(k)
X̄ = QX̄ −Q(k)

X̄ .

Remark 49. We may proceed as in Remark 18 and consider large K. These steps are given in
Appendix F.

6. Fading Channels with AWGN

This section treats scalar, complex-alphabet, AWGN channels with CSIR for which the
channel output is

[Y, SR] = [HX + Z, SR] (159)

where H, A, Z are mutually independent, E
[
|H|2

]
= 1, and Z ∼ CN (0, 1). The capacity

under the power constraint E
[
|X|2

]
≤ P is (cf. (138))

C(P) = max
A: E[|X|2]≤P

I(A; Y|SR). (160)

However, the optimization in (160) is often intractable, and we desire expressions with
log(1 + SNR) terms to gain insight. We develop three such expressions: an upper bound
and two lower bounds. It will be convenient to write G = |H|2.

Capacity Upper Bound: We state this bound as a lemma since we use it to prove Proposition 2
below.

Lemma 6. The capacity (160) is upper bounded as

C(P) ≤ max E[log(1 + GP(ST))] (161)

where the maximization is over P(ST) with E[P(ST)] = P.

Proof. Consider the steps

I(A; Y|SR) ≤ I(A; Y, ST , H|SR)

(a)
= I(A; Y|SR, ST , H)

=h(Y|SR, ST , H)− h(Z)
(b)
≤ E[log Var[Y|SR, ST , H]] (162)

where step (a) is because A and [SR, ST , H] are independent, and step (b) follows by the
entropy bound

h(Y|B = b) ≤ log(πe Var[Y|B = b]) (163)

which we applied with B = [SR, ST , H]. Finally, we compute Var[Y|SR, ST , H] = 1 +
GP(ST).
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Reverse Model GMI: Consider the adaptive symbol (88) and the GMI (139). We expand the
variances in (139) as

Var[U|Y = y, SR = sR] = E
[
|U|2

∣∣Y = y, SR = sR

]
−
∣∣E[U∣∣Y = y, SR = sR

]∣∣2.

Appendix C shows that one may write

E
[
U
∣∣Y = y, SR = sR

]
=
∫
C×ST

p(h, sT |y, sR)
h
√

P(sT)ejφ(sT)y
1 + |h|2P(sT)

dsT dh (164)

and

E
[
|U|2

∣∣Y = y, SR = sR

]
=
∫
C×ST

p(h, sT |y, sR)(
1

1 + |h|2P(sT)
+
|h|2P(sT)|y|2

(1 + |h|2P(sT))
2

)
dsT dh. (165)

We use the expressions (164) and (165) to compute achievable rates by numerical integration.
For example, suppose that ST = 0 and SR = H, i.e., we have full CSIR and no CSIT. The
averaging density is then

p(h, sT |y, sR) = δ(h− sR) δ(sT)

and the variance simplifies to the capacity-achieving form

Var[U|Y = y, SR = h] =
1

1 + |h|2P
.

Forward Model GMI: A forward model GMI is given by Theorem 1 where

P̃(sR) = E
[ ∣∣∣∣E[H

√
P(ST)

∣∣∣∣ST , SR = sR

]∣∣∣∣ ]2
(166)

E
[
|Y|2

∣∣SR = sR

]
= 1 + E

[
GP(ST)

∣∣SR = sR
]

(167)

so that (143) becomes

I1(A; Y|SR) = E

[
log

(
1 +

P̃(SR)

1 + E
[
GP(ST)

∣∣SR
]
− P̃(SR)

)]
. (168)

Remark 50. Jensen’s inequality implies that the denominator in (168) is greater than or equal to

1 + Var
[√

GP(ST)

∣∣∣∣SR

]
. (169)

Equality requires that for all SR = sR we have

P̃(sR) = E
[√

GP(ST)

∣∣∣∣SR = sR

]2
(170)

which is valid if H is a function of [SR, ST ], for example. However, if there is channel uncertainty
after conditioning on [SR, ST ] then P̃(sR) is usually smaller than the RHS of (170).

Remark 51. Consider SR = H or SR = H
√

P(ST). For both cases, H is a function of [SR, ST ]
and the denominator in (168) is the variance (169). In fact, for SR = H

√
P(ST), the expression

(169) takes on the minimal value 1. This CSIR is thus the best possible; see Proposition 2.
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Remark 52. For MIMO channels we replace (159) with

[Y, SR] = [HX + Z, SR] (171)

where H, A, Z are mutually independent and Z ∼ CN (0, I). One usually considers the constraint
E
[
‖X‖2] ≤ P.

Remark 53. The model (171) includes block fading. For example, choosing M = N and H = H I
gives scalar block fading. Moreover, the capacity per symbol without in-block feedback is the same as
for the M = N = 1 case except that P is replaced with P/M; see [11] and Section 9.

6.1. CSIR and CSIT Models

We study two classes of CSIR, as shown in Table 1. The first class has full (or “perfect”)
CSIR, by which we mean either SR = H or SR = H

√
P(ST). The motivation for studying

the latter case is that it models block fading channels with long blocks where the receiver
estimates H

√
P(ST) using pilot symbols, and the number of pilot symbols is much smaller

than the block length [10]. Moreover, one achieves the upper bound (161), see Proposition 2
below.

We coarsely categorize the CSIT as follows:

• Full CSIT: ST = H;
• CSIT@R: ST = qu(G) where qu(.) is the quantizer of Section 2.9 with B = 0, 1, ∞;
• Partial CSIT: ST is not known exactly at the receiver.

The capacity of the CSIT@R models is given by log(1 + SNR) expressions [10,92]; see
also [93]. The partial CSIT model is interesting because achieving capacity generally
requires adaptive codewords and closed-form capacity expressions are unavailable. The
GMI lower bound of Theorem 1 and Remark 42 and the capacity upper bound of Lemma 6
serve as benchmarks.

Table 1. Models Studied in Section 6 (General Fading), Section 7 (On–Off Fading) and Section 8
(Rayleigh Fading).

CSIR
Full Partial/No

CSIT
Full Section 6.3 Section 6.5
@R Section 6.3 Section 6.6
Partial/No Section 6.4 Section 6.2

The partial CSIR models have SR being a lossy function of H. For example, a common
model is based on LMMSE channel estimation with

H =
√

ε̄ SR +
√

ε ZR (172)

where 0 ≤ ε ≤ 1 and SR, ZR are uncorrelated. The CSIT is categorized as above, except that
we consider ST = fT(SR) for some function fT(.) rather than ST = qu(G).

To illustrate the theory, we study two types of fading: one with discrete H and one
with continuous H, namely

• Section 7: on-off fading with PH(0) = PH(
√

2) = 1/2;
• Section 8: Rayleigh fading with H ∼ CN (0, 1).

For on-off fading we have p(g) = 1
2 δ(g) + 1

2 δ(g − 2) and for Rayleigh fading we have
p(g) = e−g · 1(g ≥ 0).

Remark 54. For channels with partial CSIR, we will study the GMI for partitions with K = 1 and
K = 2. The full CSIT model has received relatively little attention in the literature, perhaps because
CSIR is usually more accurate than CSIT ([5], Section 4.2.3).
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6.2. No CSIR, No CSIT

Without CSIR or CSIT, the channel is a classic memoryless channel [94] for which the
capacity (160) becomes the usual expression with SR = 0 and A = X. For CSCG X and
U = X/E

[
|X|2

]
, the reverse and forward model GMIs (139) and (168) are the respective

I1(X; Y) = E[− log Var[U|Y]] (173)

I1(X; Y) = log
(

1 +
P |E[H]|2

1 + P Var[H]

)
. (174)

For example, the forward model GMI is zero if E[H] = 0.

6.3. Full CSIR, CSIT@ R

Consider the full CSIR models with SR = H and CSIT@R. The capacity is given by
log(1 + SNR) expressions that we review.

First, the capacity with B = 0 (no CSIT) is

C(P) = E[log(1 + G P)] =
∫ ∞

0
p(g) log(1 + gP) dg. (175)

The wideband derivatives are (see (37))

C′(0) = E[G] = 1, C′′(0) = −E
[

G2
]

(176)

so that the wideband values (37) are (see ([73], Theorem 13))

Eb
N0

∣∣∣∣
min

= log 2, S =
2

E[G2]
. (177)

The minimal Eb/N0 is the same as without fading, namely −1.59 dB. However, Jensen’s
inequality gives E

[
G2] ≥ E[G]2 = 1 with equality if and only if G = 1. Thus, fading

reduces the capacity slope S.
More generally, the capacity with full CSIR and ST = qu(G) is (see [10])

C(P) = max
P(ST): E[P(ST)]≤P

E[log(1 + G P(ST))]

= max
P(ST): E[P(ST)]≤P

∫ ∞

0
p(g, sT) log(1 + gP(sT)) dg dsT . (178)

To optimize the power levels P(sT), consider the Lagrangian

E[log(1 + GP(ST))] + λ(P− E[P(ST)]) (179)

where λ ≥ 0 is a Lagrange multiplier. Taking the derivative with respect to P(sT), we have

λ = E
[

G
1 + GP(sT)

∣∣∣∣ST = sT

]
=
∫ ∞

0
p(g|sT)

g
1 + gP(sT)

dg (180)

as long as P(sT)≥0. If this equation cannot be satisfied, choose P(sT) = 0. Finally, set λ so
that E[P(ST)] = P.

For example, consider B = ∞ and ST = G. We then have p(g|sT) = δ(g− sT) and
therefore

P(g) =
(

1
λ
− 1

g

)+

(181)
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where λ is chosen so that E[P(G)] = P. The capacity (178) is then (see ([95], Equation (7)))

C(P) =
∫ ∞

λ
p(g) log(g/λ) dg. (182)

Consider now the quantizer qu(.) of Section 2.9 with B = 1. We have two equations
for λ, namely

λ =
∫ ∆

0

p(g)
PST (∆/2)

· g
1 + gP(∆/2)

dg (183)

λ =
∫ ∞

∆

p(g)
PST (3∆/2)

· g
1 + gP(3∆/2)

dg. (184)

Observe the following for (183) and (184):

• both P(∆/2) and P(3∆/2) decrease as λ increases;
• the maximal λ permitted by (183) is E[G|G ≤ ∆] which is obtained with P(∆/2) = 0;
• the maximal λ permitted by (184) is E[G|G ≥ ∆] which is obtained with P(3∆/2) = 0.

Thus, if E[G|G ≥ ∆] > E[G|G ≤ ∆], then at P below some threshold, we have P(∆/2) = 0
and P(3∆/2) = P/PST (3∆/2). The capacity in nats per symbol at low power and for fixed
∆ is thus

C(P) =
∫ ∞

∆
p(g) log(1 + gP(3∆/2))dg

≈ P E[G|G ≥ ∆]− P2

2PST (3∆/2)
E
[

G2|G ≥ ∆
]

(185)

where we used

log(1 + x) ≈ x− x2

2

for small x. The wideband values (37) are

Eb
N0

∣∣∣∣
min

=
log 2

E[G|G ≥ ∆]
(186)

S =
2PST (3∆/2)E[G|G ≥ ∆]2

E[G2|G ≥ ∆]
. (187)

One can thus make the minimum Eb/N0 approach −∞ if one can make E[G|G ≥ ∆] as
large as desired by increasing ∆.

Remark 55. Consider the MIMO model (171) with SR = H. Suppose the CSIT is ST = fT(SR)
for some function fT(·). The capacity (178) generalizes to

C(P) = max
X(ST): E[‖X(ST)‖2]≤P

I(X; HX + Z|H, ST)

= max
Q(ST): E[tr(Q(ST))]≤P

E
[
log det

(
I + HQ(ST)H†

)]
. (188)

6.4. Full CSIR, Partial CSIT

Consider first the full CSIR SR = H
√

P(ST) and then the less informative SR = H.

SR = H
√

P(ST): We have the following capacity result that implies this CSIR is the best
possible since one can achieve the same rate as if the receiver sees both H and ST ; see the
first step of (162). We could thus have classified this model as CSIT@R.
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Proposition 2 (see ([10], Proposition 3)). The capacity of the channel (159) with SR = H
√

P(ST)
and general ST is

C(P) = max
P(ST): E[P(ST)]≤P

∫
C

p(sR) log
(

1 + |sR|2
)

dsR

= max
P(ST): E[P(ST)]≤P

E[log(1 + GP(ST))]. (189)

Proof. Achievability follows by Theorem 1 with Remark 51. The converse is given by
Lemma 6.

Remark 56. Proposition 2 gives an upper bound and (thus) a target rate when the receiver has
partial CSIR. For example, we will use the K-partition idea of Lemma 1 (see also Remark 46) to
approach the upper bound for large SNR.

Remark 57. Proposition 2 partially generalizes to block-fading channels; see Proposition 3 in
Section 9.5.

SR = H: The capacity is (138) with

I(A; Y|H) = E
[

log
p(Y|A, H)

p(Y|H)

]
(190)

where E
[
|X|2

]
≤ P and where

p(y|a, h) =
∫
C

p(sT |h)
e−|y−h x(sT)|2

π
dsT (191)

and

p(y|h) =
∫
C

p(sT |h)
(∫
A

p(a)p(y|a, h, sT) da
)

dsT

=
∫
C

p(sT |h)
(∫

C
p(x(sT))

e−|y−h x(sT)|2

π
dx(sT)

)
dsT . (192)

For example, if each entry X(sT) of A is CSCG with variance P(sT) then

p(y|h) =
∫
C

p(sT |h)
exp

(
− |y|2

1+gP(sT)

)
π(1 + gP(sT))

dsT . (193)

In general, one can compute I(A; Y|H) numerically by using (190)–(192), but the calcula-
tions are hampered if the integrals in (191) and (192) do not simplify.

For the reverse model GMI (139), the averaging density in (164) and (165) is here

p(h, sT |y, sR) = δ(h− sR)
p(sT |h) p(y|h, sT)

p(y|h) . (194)

We use numerical integration to compute the GMI.
To obtain more insight, we state the forward model rates of Theorem 1 and Remark 51

as a Corollary.

Corollary 1. An achievable rate for the fading channels (159) with SR = H and partial CSIT is
the forward model GMI

I1(A; Y|H) = E[log(1 + SNR(H))] (195)
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where

SNR(h) =
|h|2P̃T(h)

1 + |h|2Var
[√

P(ST)
∣∣∣H = h

] (196)

and

P̃T(h) = E
[√

P(ST)

∣∣∣∣H = h
]2

. (197)

Remark 58. Jensen’s inequality gives

P̃T(h) ≤ E[P(ST)|H = h] (198)

by the concavity of the square root. Equality holds if and only if P(ST) is a constant given H = h.

Remark 59. Choosing P(sT) = P for all sT in Corollary 1 gives P̃T(h) = P for all h and the rate
(195) is the capacity (175) without CSIT.

Remark 60. For large P, the SNR(h) in (196) saturates unless P(sT)/P→ 1 for all sT , i.e., the
high-SNR capacity is the same as the capacity without CSIT. The CSIT thus must become more
accurate as P increases to improve the rate.

Remark 61. To optimize the power levels, consider (146) and

P̃(h)′ = 2|h|2
√

P̃T(h) p(sT |h) (199)

E
[
|Y|2|H = h

]′
= 2|h|2

√
P(sT) p(sT |h). (200)

However, the resulting equations give little insight due to the expectation over H in (146). An
exception is the on-off fading case where the expectation has only one term; see (254) and (255).

6.5. Partial CSIR, Full CSIT

Suppose SR is a (perhaps noisy) function of H; see (172). The capacity is given by (160)
for which we need to compute p(y|a, sR) and p(y|sR). The GMI with a K-partition of the
output space Y × SR can be helpful for these problems. We assume that the CSIR is either
SR = 0 or SR = 1(G ≥ t) for some transmitter threshold t; see [95].

Suppose that ST = H. We then have

p(y|a, sR) =
∫
C

p(h|sR)
exp

(
−|y− h x(h)|2

)
π

dh

p(y|sR) =
∫
C2

p(h|sR) p(x(h))
exp

(
−|y− h x(h)|2

)
π

dx(h) dh.

Now select the X(h) to be jointly CSCG with variances E
[
|X(h)|2

]
= P(h) and correlation

coefficients

ρ(h, h′) =
E
[
X(h)X(h′)*]√

P(h)P(h′)

and where E[P(H)] ≤ P. We then have

p(y|sR) =
∫
C

p(h)
e−|y|

2/(|h|2P(h)+1)

2π(|h|2P(h) + 1)
dh.
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As in (98), p(y|sR) and therefore h(Y|SR) depend only on the marginals p(x(h)) of A and
not on the ρ(h, h′). We thus have the problem of finding the ρ(h, h′) that minimize

h(Y|SR, A) =
∫
A

p(a) h(Y|SR, A = a) da.

However, we study the conventional A in (88) for simplicity.
For the reverse model GMI (139), the averaging density in (164) and (165) is (cf. (194))

p(h, sT |y, sR) = δ(sT − h)
p(h|sR) p(y|h, sR)

p(y|sR)
. (201)

We again use numerical integration to compute the GMI.
For the forward model GMI, consider the same model and CSCG X as in Theorem 1.

Since H is a function of ST , we use (169) in Remark 50 to write

I1(A; Y|SR) = E

log

1 +
P̃(SR)

1 + Var
[√

GP(H)
∣∣∣SR

]
 (202)

where (see (170))

P̃(sR) = E
[√

GP(H)

∣∣∣∣SR = sR

]2
(203)

E
[
|Y|2|SR = sR

]
= 1 + E[GP(H)|SR = sR]. (204)

The transmitter compensates for the phase of H, and it remains to adjust the transmit power
levels P(h). We study five power control policies and two types of CSIR; see Table 2.

Table 2. Power Control Policies and Minimal SNRs.

CSIR
None: SR = 0 SR = 1(G ≥ t)

Policy

TCP Equation (221) Equation (226)
TMF Equation (222) Equation (227)
TCI Equation (223) Equation (228)
GMI-Optimal See Theorem 2
TMMSE See Remark 64

Heuristic Policies: The first three policies are reasonable heuristics and have the form

P(h) =
{

P̂ ga, g ≥ t
0, else

(205)

for some choice of real a and where

P̂ =
P∫ ∞

t p(g) ga dg
. (206)

In particular, choosing a = 0,+1,−1, we obtain policies that we call truncated constant
power (TCP), truncated matched filtering (TMF), and truncated channel inversion (TCI),
respectively; see ([5], page 487), [95]. For such policies, we compute

P̃(sR) = P̂
(∫ ∞

t
p(g|sR)

√
g1+a dg

)2
(207)

E[GP(H)|SR = sR] = P̂
∫ ∞

t
p(g|sR) g1+a dg. (208)
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These policies all have the form P(h) = P · f (h) for some function f (.) that is independent
of P. The minimum SNR in (37) with C(P) replaced with the GMI is thus

Eb
N0

∣∣∣∣
min

=

(∫ ∞
t p(g) ga dg

)
log 2

E
[(∫ ∞

t p(g|SR)
√

g1+a dg
)2
] . (209)

For instance, consider the threshold t = 0 (no truncation). The TCP (a = 0) and TMF
(a = 1) policies have P̂ = P while TCI (a = −1) has P = P̂/E

[
G−1]. For TCP, TMF, and

TCI, we compute the respective

Eb
N0

∣∣∣∣
min

=
log 2

E
[

E
[√

G
∣∣∣SR

]2
] (210)

Eb
N0

∣∣∣∣
min

=
log 2

E
[
E[G|SR]

2
] (211)

Eb
N0

∣∣∣∣
min

= E
[

G−1
]

log 2. (212)

Applying Jensen’s inequality to the square root, square, and inverse functions in (210)–(212),
we find that for t = 0:

• the minimum Eb/N0 of TCP and TCI is larger (worse) than −1.59 dB unless there is
no fading;

• the minimum Eb/N0 of TMF is smaller (better) than−1.59 dB unless E[G|SR] = E[G] = 1.

However, we emphasize that these claims apply to the GMI and not necessarily the mutual
information; see Section 8.4.

GMI-Optimal Policy: The fourth policy is optimal for the GMI (202) and has the form of an
MMSE precoder. This policy motivates a truncated MMSE (TMMSE) policy that generalizes
and improves TMF and TCI.

Taking the derivative of the Lagrangian

I1(A; Y|SR) + λ(P− E[P(H)]) (213)

with respect to P(h) we have the following result.

Theorem 2. The optimal power control policy for the GMI I1(A; Y|SR) for the fading channels
(159) with ST = H is √

P(h) =
α(h)|h|

λ + β(h)|h|2 (214)

where λ > 0 is chosen so that E[P(H)] = P and

α(h) =
∫
C

p(sR|h)

√
P̃(sR)

E[|Y|2|SR = sR]− P̃(sR)
dsR (215)

β(h) =
∫
C

p(sR|h)
P̃(sR)[

E[|Y|2|SR = sR]− P̃(sR)
]
E[|Y|2|SR = sR]

dsR. (216)

Proof. Apply (146) with (203) and (204) to obtain

P̃(sR)
′ = 2|h|

√
P̃(sR) p(h|sR) (217)

E
[
|Y|2|SR = sR

]′
= 2|h|2

√
P(h) p(h|sR). (218)

Inserting into (146) and rearranging terms we obtain (214) with (215) and (216).
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Remark 62. The expressions (215) and (216) are self-referencing, as P̃(sR) itself depends on α(h)
and β(h). However, one simplification occurs if SR is a function of H: α(h) and β(h) are functions
of sR only since the p(sR|h) in (215) and (216) is a Dirac generalized function.

Remark 63. Consider the expression (214). We effectively have a matched filter for small |h|; for
large |h|, we effectively have a channel inversion. Recall that LMMSE filtering has similar behavior
for low and high SNR, respectively.

Remark 64. A heuristic based on the optimal policy is a TMMSE policy where the transmitter sets
P(h) = 0 if G < t, and otherwise uses (214) but where α(h), β(h) are independent of h. There are
thus four parameters to optimize: λ, α, β, and t. This TMMSE policy will outperform TMF and
TCI in general, as these are special cases where β = 0 and λ = 0, respectively.

SR = 0: For this CSIR, the GMI (202) simplifies to I1(A; Y) and the heuristic policy (TCP,
TMF, TCI) rates are

I1(A; Y) = log

1 +
P̂ E
[√

G1+a · 1(G ≥ t)
]2

1 + P̂ Var
[√

G1+a · 1(G ≥ t)
]
. (219)

Moreover, the expression (209) gives

Eb
N0

∣∣∣∣
min

=
E[Ga · 1(G ≥ t)]

E
[√

G1+a · 1(G ≥ t)
]2 log 2. (220)

For TCP, TMF, and TCI, we compute the respective

Eb
N0

∣∣∣∣
min

=
log 2

Pr[G ≥ t]E
[√

G
∣∣∣G ≥ t

]2 (221)

Eb
N0

∣∣∣∣
min

=
log 2∫ ∞

t p(g) g dg
(222)

Eb
N0

∣∣∣∣
min

=
E
[

G−1
∣∣G ≥ t

]
Pr[G ≥ t]

log 2. (223)

Again applying Jensen’s inequality to the various functions in (221)–(223), we find that:

• the minimum Eb/N0 of TMF is smaller (better) than that of TCP and TCI unless there
is no fading, or if the minimal Eb/N0 is −∞;

• the best threshold for TMF is t = 0 and the minimal Eb/N0 is −1.59 dB.

For the optimal policy, the parameters α(h) and β(h) in (215) and (216) are constants inde-
pendent of h, see Remark 62, and the TMMSE policy with t = 0 is the GMI-optimal policy.

Remark 65. The TCI channel densities are

p(y|a) = Pr[G < t]
e−|y|

2

π
+ Pr[G ≥ t]

e−
∣∣∣y−√P̂ u

∣∣∣2
π

p(y) = Pr[G < t]
e−|y|

2

π
+ Pr[G ≥ t]

e−|y|
2/(1+P̂)

π(1 + P̂)
.

Remark 66. At high SNR, one might expect that the receiver can estimate P(ST) precisely even if
SR = 0. We show that this is indeed the case for on-off fading by using the K = 2 partition (154) of
Remark 46. Moreover, the results prove that at high SNR one can approach I(A; Y); see Section 7.3.
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Remark 67. For Rayleigh fading, the GMI with K = 2 in (154) is helpful for both high and low
SNR. For instance, for SR = 0 and TCI, the K = 2 GMI approaches the mutual information for
SR = 1(G ≥ t) as the SNR increases; see Remark 74 in Section 8.4. We further show that for
SR = 0, the TCI policy can achieve a minimal Eb/N0 of −∞ dB, see (301) in Section 8.4.

SR = 1(G ≥ t): The heuristic policy rates are now (cf. (219) and note the Pr[G ≥ t] term
and conditioning)

I1(A; Y|SR) = Pr[G ≥ t] log

1 +
P̂ E
[√

G1+a
∣∣∣G ≥ t

]2

1 + P̂ Var
[√

G1+a
∣∣∣G ≥ t

]
. (224)

Moreover, the expression (209) is

Eb
N0

∣∣∣∣
min

=
E[Ga|G ≥ t]

E
[√

G1+a
∣∣∣G ≥ t

]2 log 2. (225)

For TCP, TMF, and TCI we compute the respective

Eb
N0

∣∣∣∣
min

=
log 2

E
[√

G
∣∣∣G ≥ t

]2 (226)

Eb
N0

∣∣∣∣
min

=
log 2

E[G|G ≥ t]
(227)

Eb
N0

∣∣∣∣
min

= E
[

G−1
∣∣∣G ≥ t

]
log 2. (228)

Again applying Jensen’s inequality to the various functions in (226)–(228), we find that:

• the minimum Eb/N0 of all policies can be better than −1.59 dB by choosing t > 0;
• the minimum Eb/N0 of TMF is smaller (better) than that of TCP and TCI unless there

is no fading or the minimal Eb/N0 is −∞.

For the optimal policy, Remark 62 points out that α(h) and β(h) depend on sR only.
We compute

√
P(h) =


α0 |h|

λ + β0|h|2
, g < t

α1 |h|
λ + β1|h|2

, g ≥ t
(229)

where for sR ∈ {0, 1} we have

αsR =

√
P̃(sR)

E[|Y|2|SR = sR]− P̃(sR)

βsR =

√
P̃(sR)[

E[|Y|2|SR = sR]− P̃(sR)
]
E[|Y|2|SR = sR]

.

Remark 68. The GMI (224) for TCI (a = −1) is the mutual information I(A; Y|SR). To see this,
observe that the model q(y|a, sR) has

q(y|a, 0) =
e−|y|

2

π
, q(y|a, 1) =

e−
∣∣∣y−√P̂ u

∣∣∣2
π

and thus we have q(y|a, sR) = p(y|a, sR) for all y, a, sR.
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6.6. Partial CSIR, CSIT@ R

Suppose next that SR is a noisy function of H (see for instance (172)) and ST = fT(SR).
The capacity is given by (147) and we compute

I(X; Y|SR) = E
[

log
p(Y|X, SR)

p(Y|SR)

]
(230)

where writing sT = fT(sR) we have

p(y|sR, x) =
∫
C

p(h|sR)
e−|y−h x(sT)|2

π
dh (231)

p(y|sR) =
∫
C2

p(h|sR) p(x(sT))
e−|y−h x(sT)|2

π
dx(sT) dh. (232)

For example, if X(sT) is CSCG with variance P(sT) then

p(y|sR) =
∫
C

p(h|sR)
exp

(
− |y|2

1+|h|2P(sT)

)
π(1 + |h|2P(sT))

dh. (233)

One can compute I(X; Y|SR) numerically using (231) and (232). However, optimizing over
X(sT) is usually difficult.

For the reverse model GMI (139), the averaging density in (164) and (165) is now
(cf. (194) and (201))

p(h, sT |y, sR) = δ(sT − fT(sR))
p(h|sR) p(y|h, sR)

p(y|sR)
. (234)

We use numerical integration to compute the rates.
The forward model GMI again gives more insight. Define the channel gain and

variance as the respective

g̃(sR) = |E[H|SR = sR]|2 (235)

σ̃2(sR) = Var[H|SR = sR]. (236)

Theorem 3. An achievable rate for AWGN fading channels (159) with power constraint E
[
|X|2

]
≤ P

and with partial CSIR SR and ST = fT(SR) is

I1(X; Y|SR) = E
[

log
(

1 +
g̃(SR)P(ST)

1 + σ̃2(SR)P(ST)

)]
(237)

where E[P(ST)] = P. The optimal power levels P(sT) are obtained by solving

λ =
∫
R

p(sR|sT)
g̃(sR)

[1 + (g̃(sR) + σ̃2(sR))P(sT)][1 + σ̃2(sR)P(sT)]
dsR. (238)

In particular, if ST determines SR (CSIR@T) then we have the quadratic waterfilling expression

f
(

P(sT), g̃(sR), σ̃2(sR)
)
=

(
1
λ
− 1

g̃(sR)

)+

(239)

where

f
(

Q, g, σ2
)
=

(
1 + 2

σ2

g

)
Q +

(
1 +

σ2

g

)
σ2Q2 (240)

and where λ is chosen so that E[P(HR)] = P.
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Proof. Apply Theorem 1 with

P̃(sR) = g̃(sR)P(sT) (241)

E
[
|Y|2|SR = sR

]
= 1 +

(
g̃(sR) + σ̃2(sR)

)
P(sT) (242)

to obtain (237). To optimize the power levels P(sT) with (146), consider the derivatives

P̃(sR)
′ = 2g̃(sR)

√
P(sT)1(sT = fT(sR)) (243)

E
[
|Y|2|SR = sR

]′
= 2

(
g̃(sR) + σ̃2(sR)

)√
P(sT)1(sT = fT(sR)). (244)

The expression (146) thus becomes (238). If ST determines SR then the expression simpli-
fies to

λ =
g̃(sR)

[1 + (g̃(sR) + σ̃2(sR))P(sT)][1 + σ̃2(sR)P(sT)]

from which we obtain (239).

Remark 69. The optimal power control policy with CSIT@R and CSIR@T can be written explicitly
by solving the quadratic in (239). The result is

P(sT) =
g̃ + 2σ̃2

2σ̃2(g̃ + σ̃2)

√1 + 4σ̃2
(

1
λ
− 1

g̃

)+ g̃ (g̃ + σ̃2)

(g̃ + 2σ̃2)2 − 1

 (245)

where we have discarded the dependence on sR for convenience. The alternative form (239) relates
to the usual waterfilling where the left-hand side of (239) is P(sT). Observe that σ̃2 = 0 gives
conventional waterfilling.

Remark 70. As in Section 3.3, we show that at high SNR the K = 2 GMI of Remark 42 approaches
the upper bound of Proposition 2 in some cases; see Section 7.4. The channel parameters depend on
sR, and we choose h1(sR) = 0 and σ2

1 (sR) = σ2
2 (sR) = 1 for all sR.

7. On-Off Fading

Consider again on-off fading with PG(0) = PG(2) = 1/2. We study the scenarios
listed in Table 1. The case of no CIR and no CSIT was studied in Section 3.3.

7.1. Full CSIR, CSIT@ R

Consider SR = H. The capacity with B = 0 (no CSIT) is given by (175) (cf. (73)):

C(P) =
1
2

log(1 + 2P) (246)

and the wideband values are given by (177) (cf. (74)); the minimal Eb/N0 is log 2 and the
slope is S = 1.

The capacity with B = ∞ (or ST = G) increases to

C(P) =
1
2

log(1 + 4P) (247)

where P(0) = 0 and P(2) = 2P. This capacity is also achieved with B = 1 since there are
only two values for G. We compute C′(0) = 2 and C′′(0) = −8, and therefore

Eb
N0

∣∣∣∣
min

=
log 2

2
, S = 1. (248)
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The power gain due to CSIT compared to no fading is thus 3.01 dB, but the capacity slope
is the same. The rate curves are compared in Figure 4.
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Figure 4. Rates for on-off fading with full CSIR and partial CSIT with noise parameter ε = 0.1. The
curve “Best CSIR” shows the capacity with SR = H

√
P(ST). The curves for I(A; Y|H), the reverse

model GMI (rGMI), and the forward model GMI (GMI, K = 1) are for SR = H with CSCG inputs
X(sT). The I(A; Y|H) and rGMI curves are indistinguishable in the inset.

7.2. Full CSIR, Partial CSIT

Consider next noisy CSIT with 0 ≤ ε ≤ 1
2 and

Pr[ST = G] = ε̄, Pr[ST 6= G] = ε.

SR = H
√

P(ST): The capacity of Proposition 2 is

C(P) = max
P(0)+P(2)=2P

ε

2
log(1 + 2P(0)) +

ε̄

2
log(1 + 2P(2)). (249)

Optimizing the power levels, we have

P(0) =
(

2ε P− ε̄− ε

2

)+

, P(2) = 2P− P(0). (250)

Figure 4 shows C(P) for ε = 0.1 as the curve labeled “Best CSIR”. For P ≥ (ε̄− ε)/(4ε),
we compute

C(P) =
1
2

log(1 + 2P) +
1
2
[1− H2(ε)] log 2 (251)

where H2(ε) = −ε log2 ε− ε̄ log2 ε̄ is the binary entropy function. For example, if ε = 0.1
then for P ≥ 2 one gains ∆C = [1− H2(0.1)]/2 ≈ 0.27 bits over the capacity without
CSIT. This translates to an SNR gain of 2∆C · 10 log10(2) ≈ 1.60 dB. On the other hand, for
P ≤ (ε̄− ε)/(4ε) we have P(0) = 0, P(2) = 2P, and the capacity is

C(P) =
ε̄

2
log(1 + 4P). (252)

We have C′(0) = 2 ε̄ and lose a fraction of ε̄ of the power as compared to having full CSIT
(ε = 0). For example, if ε = 0.1, the minimal Eb/N0 is approximately −4.14 dB.
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SR = H: To compute I(A; Y|H) in (190), we write (191) and (193) for CSCG X(sT) as

pY|A,H(y|a, 0) = pY|H(y|0) =
e−|y|

2

π

pY|A,H
(
y|a,
√

2
)
= ε

e−|y−
√

2x(0)|2

π
+ ε̄

e−
∣∣∣y−√2x

(√
2
)∣∣∣2

π

pY|H
(
y|
√

2
)
= ε

exp
(
− |y|2

1+2P(0)

)
π(1 + 2P(0))

+ ε̄
exp

(
− |y|2

1+2P(2)

)
π(1 + 2P(2))

.

Figure 4 shows the rates as the curve labeled “I(A; Y|H)”. This curve was computed by
Monte Carlo integration with P(0) = 0.1 · P and P(2) = 1.9 · P, which is near-optimal for
the range of SNRs depicted.

The reverse model GMI (139) requires Var[U|Y, H]. We show how to compute this
variance in Appendix C.2 by applying (164) and (165). Figure 4 shows the GMIs as the curve
labeled “rGMI”, where we used the same power levels as for the I(A; Y|H) curve. The two
curves are indistinguishable for small P, but the “rGMI” rates are poor at large P. This
example shows that the forward model GMI with optimized powers can be substantially
better than the reverse model GMI with a reasonable but suboptimal power policy.

The forward model GMI (195) is

I1(A; Y|H) =
1
2

log
(

1 + SNR
(√

2
))

(253)

where SNR
(√

2
)

is given by (196) with

P̃T

(√
2
)
=

(
ε
√

P(0) + ε̄
√

P(2)
)2

Var
[√

P(ST)

∣∣∣∣H = h
]
= 1 + 2 ε ε̄

(√
P(2)−

√
P(0)

)2
.

Applying Remark 61, the optimal power control policy is

√
P(sT) =

pH|ST

(√
2
∣∣sT

)
γ + β pH|ST

(√
2
∣∣sT

) =


ε

γ + β ε
, sT = 0

ε̄

γ + β ε̄
, sT = 2

(254)

where

β =
2
√

P̃T

(√
2
)

E
[
|Y|2|H =

√
2
] (255)

and γ ≥ 0 is chosen so that P(0) + P(2) = 2P. Figure 4 shows the resulting GMI as the
curve labeled “GMI, K = 1”. At low SNR, we achieve the rate P̃T

(√
2
)

and the optimal
power control has β→ 0 so that

P(0) =
2Pε2

ε2 + ε̄2 , P(2) =
2Pε̄2

ε2 + ε̄2 (256)

and therefore

P̃T(
√

2) = 2
(

ε2 + ε̄2
)

P. (257)
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We have C′(0) = 2
(
ε2 + ε̄2) and lose a fraction of (ε2 + ε̄2) of the power as compared to

having full CSIT (ε = 0). For example, if ε = 0.1, the minimal Eb/N0 is approximately
−3.74 dB.

We remark that the I(A; Y|H) and reverse model GMI curves lie above the forward
model curve if we choose the same power policy as for the forward channel.

7.3. Partial CSIR, Full CSIT

This section studies ST = H. The capacity with partial CSIR is given by (138) for
which we need to compute p(y|a, sR) and p(y|sR). We consider two cases.

SR = 1(G ≥ t): Here we recover the case with full CSIR by choosing t to satisfy 0 < t ≤ 2.

SR = 0: The best power policy clearly has P(0) = 0 and P(
√

2 ) = 2P. The mutual
information is thus I(A; Y) = I

(
X
(√

2
)
; Y
)

and the channel densities are (cf. (75) and (76))

p(y|a) = e−|y|
2

2π
+

e−|y−2
√

Pu(
√

2 )|2

2π

p(y) =
e−|y|

2

2π
+

e−|y|
2/(1+4P)

2π(1 + 4P)
.

The rates I(A; Y) are shown in Figure 5. Observe that the low-SNR rates are larger than
without fading; this is a consequence of the slightly bursty nature of transmission.

The reverse model GMI (139) requires Var[U|Y]. We compute this variance in
Appendix C.3 by using (164) and (165) with (201) and φ(sT) = 0. Figure 5 shows the
GMIs as the curve labeled “rGMI”.

Next, the TCP, TMF, TCI, and TMMSE policies are the same for 0 < t ≤ 2, since they
use P(0) = 0 and P

(√
2
)
= 2P. The resulting rate is given by (202)–(204) with P̃(0) = 0,

P̃(1) = P, and Var
[√

GP(ST)
∣∣∣SR = 1

]
= P and

I1(A; Y) = log
(

1 +
P

1 + P

)
. (258)

The rates are plotted in Figure 5 as the curve labeled “GMI, K = 1”. This example again
shows that choosing K = 1 is a poor choice at high SNR.
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Figure 5. Rates for on-off fading with ST = H and SR = 0. The GMI for the K = 2 partition uses the
threshold tR =

√
P + 3.
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To improve the auxiliary model at high SNR, consider the GMI (154) with K = 2 and
the subsets (65). We further choose the parameters h1 = 0, σ2

1 = 0, h2 = 2, σ2
2 = 1, and

adaptive coding with X(0) = 0, X
(√

2
)
=
√

2P U, X̄ =
√

P U, where U ∼ CN (0, 1). The
GMI (154) is

I1(A; Y) = Pr[E2]

[
log(1 + 4P) +

E
[
|Y|2|E2

]
1 + 4P

− E
[ ∣∣∣Y−√4P U

∣∣∣2∣∣∣∣E2

]]
. (259)

In Appendix B.2, we show that choosing tR = PλR + b where 0 < λR < 1 and b is a real
constant makes all terms behave as desired as P increases:

Pr[E2]→ 1/2,
E
[
|Y|2|E2

]
1 + 4P

→ 1, E
[ ∣∣∣Y−√4PU

∣∣∣2∣∣∣∣E2

]
→ 1. (260)

We thus have

lim
P→∞

[
1
2

log(1 + 4P)− I1(X; Y)
]
= 0. (261)

Figure 5 shows the behavior of I1(A; Y) for λR = 1/2 and b = 3 as the curve labeled “GMI,
K = 2”. As for the case without CSIT, the receiver can estimate H accurately at large SNR,
and one approaches the capacity with full CSIR.

Finally, the large-K forward model rates are computed using (70) but where X̄ replaces
X. One may again use the results of Appendix C.3 and the relations

E[ X̄|Y = y] =
√

P E[U|Y = y]

E
[
|X̄|2

∣∣∣Y = y
]
= P E

[
|U|2

∣∣Y = y
]

Var
[
X̄
∣∣Y = y

]
= P Var[U|Y = y].

The rates are shown as the curve labeled “GMI, K = ∞” in Figure 5. So again, the large-K
forward model is good at high SNR but worse than the best K = 1 model at low SNR.

7.4. Partial CSIR, CSIT@ R

Consider partial CSIR with ST = SR and

Pr[SR = H] = ε̄, Pr[SR 6= H] = ε (262)

where 0 ≤ ε ≤ 1
2 . We thus have both CSIT@R and CSIR@T. To compute I(X; Y|SR) in (230),

we write (231) and (232) as

pY|SR ,X(y|0, x) = ε̄
e−|y|

2

π
+ ε

e−|y−
√

2 x(0)|2

π

pY|SR ,X(y|
√

2, x) = ε̄
e−|y−

√
2 x(
√

2 )|2

π
+ ε

e−|y|
2

π

pY|SR
(y|0) = ε̄

e−|y|
2

π
+ ε

e−|y|
2/[1+2P(0)]

π[1 + 2P(0)]

pY|SR
(y|
√

2) = ε̄
e−|y|

2/[1+2P(
√

2 )]

π
[
1 + 2P

(√
2
)] + ε

e−|y|
2

π

where X(sT) is CSCG. We choose the transmit powers P(0) and P
(√

2
)

as in (250) to
compare with the best CSIR. Figure 6 shows the resulting rates for ε = 0.1 as the curve
labeled “Partial CSIR, I(X; Y|SR)”. Observe that at high SNR, the curve seems to approach
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the best CSIR curve from Figure 4 with SR = H
√

P(ST). We prove this by studying a
forward model GMI with K = 2.
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Figure 6. Rates for on-off fading with partial CSIR and CSIT@R. The curve “Best CSIR” shows
the capacity with SR = H

√
P(ST). The mutual information I(X; Y|SR) and the GMI are for

Pr[SR 6= H] = 0.1 and with CSCG inputs X(sT). The GMI for the K = 2 partition uses tR = P0.4. The
curve labeled ‘c-waterfill’ shows the conventional waterfilling rates.

The reverse model GMI requires Var[U|Y, SR], which can be computed by simulation;
see Appendix C.4. However, optimizing the powers seems difficult. We instead focus on
the forward model GMI of Theorem 3 for which we compute

g̃(0) = 2 ε2, g̃
(√

2
)
= 2 ε̄2, σ̃2(0) = σ̃2

(√
2
)
= 2 ε ε̄

and therefore (237) is

I1(X; Y|SR) =
1
2

log
(

1 +
2 ε2P(0)

1 + 2 ε ε̄ P(0)

)
+

1
2

log

1 +
2 ε̄2P

(√
2
)

1 + 2 ε ε̄ P
(√

2
)
. (263)

For CSIR@T, the optimal power control policy is given by the quadratic waterfilling speci-
fied by (239) or (245):

P(0) =
1 + ε̄

4 ε ε̄

√1 + 8 ε ε̄

(
1
λ
− 1

2 ε2

)+ ε

(1 + ε̄)2 − 1


P
(√

2
)
=

1 + ε

4 ε ε̄

√1 + 8 ε ε̄

(
1
λ
− 1

2 ε̄2

)+ ε̄

(1 + ε)2 − 1

.

The rates are shown in Figure 6 as the curve labeled “Partial CSIR, GMI, K = 1”. Observe
that at high SNR the GMI (263) saturates at

1
2

log
(

1 +
ε

ε̄

)
+

1
2

log
(

1 +
ε̄

ε

)
. (264)
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For example, for ε = 0.1, we approach 1.74 bits at high SNR. On the other hand, at low
SNR, the rate is maximized with P(0) = 0 and P

(√
2
)
= 2P so that I1(X; Y|SR) ≈ 2 ε̄2P.

We thus achieve a fraction of ε̄2 of the power compared to full CSIT. For example, if ε = 0.1,
the minimal Eb/N0 is approximately −3.69 dB.

Figure 6 also shows the conventional waterfilling rates as the curve labeled “Partial
CSIR, GMI, c-waterfill”. These rates are almost the same as the quadratic waterfilling rates
except for the range of Eb/N0 between 9 to 13 dB shown in the inset.

To improve the auxiliary model at high SNR, we use a K = 2 GMI with (see Remark 70)

h1(sR) = 0, h2(sR) =
√

2, σ2
1 (sR) = σ2

2 (sR) = 1

for sR = 0,
√

2. The receiver chooses X̄(sR) =
√

P(sR)U (see Remark 41) and we have (see
Remark 42)

I1(X; Y|SR) =
1
2

Pr[E2|SR = 0]

{
log(1 + 2P(0)) +

E
[
|Y|2

∣∣E2, SR = 0
]

1 + 2P(0)

−E
[ ∣∣Y−√2 X(0)

∣∣2∣∣∣E2, SR = 0
]}

+
1
2

Pr
[
E2|SR =

√
2
]log

(
1 + 2P

(√
2
))

+
E
[
|Y|2

∣∣E2, SR =
√

2
]

1 + 2P
(√

2
)

−E
[
|Y−

√
2 X
(√

2
)
|2
∣∣∣E2, SR =

√
2
]}

(265)

where the X(sT), sT ∈ ST , are given by (122). We consider P(0) and P
(√

2
)

that scale in
proportion to P. In this case, Appendix B.3 shows that choosing tR = PλR where 0 < λR < 1
gives the (best) full-CSIR capacity for large P, which is the rate specified in (249):

lim
P→∞

[
ε

2
log(1 + 2P(0)) +

ε̄

2
log
(

1 + 2P
(√

2
))
− I1(X; Y|SR)

]
= 0. (266)

In other words, by optimizing P(0) and P
(√

2
)

, at high SNR the K = 2 GMI can approach

the capacity of Proposition 2. This is expected since the receiver can estimate H
√

P(ST)
reliably at high SNR.

Figure 6 shows the behavior of this GMI and tR = P0.4, and where we have chosen
P(0) and P

(√
2
)

according to (250). The abrupt change in slope at approximately 2.5 dB
is because P(0) becomes positive beyond this Eb/N0. Keeping P(0) = 0 for Eb/N0 up to
about 12 dB gives better rates, but for high SNR one should choose the powers according
to (250).

8. Rayleigh Fading

Rayleigh fading has H ∼ CN (0, 1). The random variable G = |H|2 thus has the
density p(g) = e−g · 1(g ≥ 0). Sections 8.1 and 8.2 review known results.

8.1. No CSIR, No CSIT

Suppose SR = ST = 0 and X ∼ CN (0, P). The densities to compute I(X; Y) for CSCG
X are

p(y|x) = e−|y|
2/(|x|2+1)

π(|x|2 + 1)
(267)

p(y) =
∫ ∞

0

e−g/P

P
e−|y|

2/(g+1)

π(g + 1)
dg. (268)
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The minimum Eb/N0 is approximately 9.2 dB, and the forward model GMI (174) is zero.
The capacity is achieved by discrete and finite X [96], and at large SNR, the capacity behaves
as log log P [97]. Further results are derived in [98–102].

8.2. Full CSIR, CSIT@ R

The capacity (175) for B = 0 (no CSIT) is

C(P) =
∫ ∞

0
e−g log(1 + g P)dg = e1/PE1(1/P) log(e) (269)

where the exponential integral E1(.) is given by (A4) below. The wideband values are given
by (177):

Eb
N0

∣∣∣∣
min

= log 2, S = 1.

The minimal Eb/N0 is −1.59 dB, but the fading reduces the capacity slope. At high SNR,
we have

C(P) ≈ log(P)− γ

where γ ≈ 0.57721 is Euler’s constant. The capacity thus behaves as for the case without
fading but with an SNR loss of approximately 2.5 dB.

The capacity (182) with B = ∞ (or ST = G) is (see ([95], Equation (7)))

C(P) =
∫ ∞

λ
e−g log(g/λ)dg = E1(λ). (270)

where P(g) is given by (181) and λ is chosen so that

P =
∫ ∞

λ
e−gP(g) dg =

e−λ

λ
− E1(λ).

At low SNR we have large λ and using the approximation (A7) below we compute

C(P) ≈ e−λ/λ and P ≈ e−λ/λ2. (271)

We thus have Eb/N0 ≈ log(2)/λ and the minimal Eb/N0 is −∞.
Consider now B = 1 for which PST (3∆/2) = e−∆ and

E[G|G ≥ ∆] = 1 + ∆ (272)

E
[

G2|G ≥ ∆
]
= 2 + 2∆ + ∆2. (273)

We thus have the wideband quantities in (186) and (187):

Eb
N0

∣∣∣∣
min

=
log 2
1 + ∆

(274)

S =
2e−∆(1 + ∆)2

2 + 2∆ + ∆2 . (275)

Figure 7 shows the capacities for B = 1 and ∆ = 1, 2, 1/2. The minimum Eb/N0
value is

−1.59 dB− 10 log10(1 + ∆) (276)

and for ∆ = 1, 2, 1/2 we gain 3 dB, 4.8 dB, 1.8 dB, respectively, over no CSIT at low power.
Note that one bit of feedback allows one to approach the full CSIT rates closely.
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Figure 7. Capacities for Rayleigh fading with full CSIR, a one-bit quantizer with threshold ∆, and
CSIT@R.

Remark 71. For the scalar channel (159), knowing H at both the transmitter and receiver provides
significant gains at low SNR [73] but small gains at high SNR ([95], Figure 4) as compared to
knowing H at the receiver only. Furthermore, the reliability can be improved ([78], Figures 5–7).
Significant gains are also possible for MIMO channels.

Remark 72. An alternative way to derive (272)–(275) is as follows. Define P̂ = Pe∆ so for small
P the capacity is

C(P) =
∫ ∞

∆
e−g log

(
1 + g P̂

)
dg

= e1/P̂E1

(
1
P̂
+ ∆

)
+ e−∆ log(1 + P̂∆)

≈ P (1 + ∆)− 1
2

P2e∆
(

2 + 2∆ + ∆2
)

.

8.3. Full CSIR, Partial CSIT

Consider noisy CSIT with

Pr[ST = 1(G ≥ ∆)] = ε̄, Pr[ST 6= 1(G ≥ ∆)] = ε.

We begin with the most informative CSIR.

SR =
√

P(ST)H: Proposition 2 gives the capacity

C(P) =
∫ ∞

0
e−g ∑

sT

P(sT |g) log(1 + g P(sT)) dg

=
∫ ∆

0
e−g[ε̄ log(1 + g P(0)) + ε log(1 + g P(1))] dg

+
∫ ∞

∆
e−g[ε̄ log(1 + g P(1)) + ε log(1 + g P(0))] dg. (277)

It remains to optimize P(0), P(1) and ∆. The two equations for the Lagrange multiplier
λ are
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λ · PST (0) =
∫ ∆

0
e−g · ε̄ g

1 + gP(0)
dg +

∫ ∞

∆
e−g · ε g

1 + gP(0)
dg (278)

λ · PST (1) =
∫ ∆

0
e−g · ε g

1 + gP(1)
dg +

∫ ∞

∆
e−g · ε̄ g

1 + gP(1)
dg (279)

where PST (0) = ε̄ − (ε̄ − ε)e−∆ and PST (1) = ε + (ε̄ − ε)e−∆. The rates are shown in
Figure 8.

0 1 2

E
b
/N

0
 [dB]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
a
te

 [
b
it
s
/c

h
a
n
n
e
l 
u
s
e
]

No Fading 

Full CSIT

No CSIT

 = 0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

Figure 8. Capacities for Rayleigh fading, SR =
√

P(ST)H, and a one-bit quantizer with threshold
∆ = 1, and various CSIT error probabilities ε.

For fixed ∆ and large P, we have 1/λ ≈ P(0) ≈ P(1) ≈ P and approach the capac-
ity (269) without CSIT. In contrast, for small P we may use similar steps as for (183) and
(184). Observe the following for (278) and (279):

• both P(0) and P(1) decrease as λ increases;
• the maximal λ in (278) is obtained with P(0) = 0; this value is

E[G|ST = 0] =
ε̄− (ε̄− ε)(1 + ∆) e−∆

PST (0)
(280)

• the maximal λ in (279) is obtained with P(1) = 0; this value is

E[G|ST = 1] =
ε + (ε̄− ε)(1 + ∆) e−∆

PST (1)
. (281)

Thus, if E[G|ST = 0] < E[G|ST = 1] and 0 ≤ ε < 1/2, then for P below some threshold we
have P(0) = 0, P(1) = P/PST (1) and the capacity is

C(P) =
∫ ∆

0
e−g ε log

(
1 +

g P
PST (1)

)
dg +

∫ ∞

∆
e−g ε̄ log

(
1 +

g P
PST (1)

)
dg. (282)

We compute C′(0) = E[G|ST = 1] which is given by (281) so that 1 ≤ C′(0) ≤ 1 + ∆,
as expected from (274). For example, for ε = 0.1 and ∆ = 1 we have C′(0) ≈ 1.75 and
therefore the minimal Eb/N0 is approximately −4.01 dB.

The best ∆ is the unique solution ∆̂ of the equation
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e−∆ =
ε

ε̄− ε
(∆− 1) (283)

and the result is C′(0) = ∆̂ ≥ 1. We have the simple bounds

1 +
1
2

log
(

1
ε
− 2
)
≤ C′(0) ≤ 1 +

1
e

(
1
ε
− 2
)

(284)

where the left inequality follows by taking logarithms and using log(∆− 1) ≤ ∆− 2, and
the right inequality follows by using e−∆ ≤ e−1 in (283). For example, for ε→ 0 we have
C′(0)→ ∞, and for ε→ 1/2 we have C′(0)→ 1.

SR = H: For the less informative CSIR, one may use (191) and (193) to compute I(A; Y|H).
The reverse model GMI requires Var[U|Y, SR], which can be computed by simulation; see
Appendix C.2. Again, however, optimizing the powers seems difficult. We instead focus
on the forward model GMI of Corollary 1, which is

I1(A; Y|H) =
∫ ∞

0
e−g log(1 + SNR(g)) dg (285)

where

SNR(g) =
gP̃T(g)

1 + g ε ε̄
(√

P(0)−
√

P(1)
)2 (286)

and

P̃T(g) =


(

ε̄
√

P(0) + ε
√

P(1)
)2

, g < ∆(
ε
√

P(0) + ε̄
√

P(1)
)2

, g ≥ ∆.
(287)

It remains to optimize P(0), P(1) and ∆. Computing the derivatives seems complicated,
so we use numerical optimization for fixed ∆ = 1 as in Figure 8. The results are shown in
Figure 9. For fixed ∆ and large P, it is best to choose P(0) ≈ P(1) so that SNR(g) ≈ gP and
we approach the rate of no CSIT. For small P, however, the best P(0) is no longer zero and
C′(0) is smaller than (281).
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Figure 9. Rates for Rayleigh fading, SR = H and SR = H
√

P(ST), a one-bit quantizer with threshold
∆ = 1, and various ε. The curves labeled “best CSIR” show the capacities with SR = H

√
P(ST). The

curves labeled “GMI” show the rates (285) for the optimal powers P(0) and P(1).
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8.4. Partial CSIR, Full CSIT

Consider ST = H and suppose we choose the X(h) to be jointly CSCG with variances
E
[
|X(h)|2

]
= P(h) and correlation coefficients

ρ(h, h′) =
E
[
X(h)X(h′)*]√

P(h)P(h′)

and where E[P(H)] ≤ P. We then have

p(y|sR) =
∫
C

p(h|sR)
e−|y|

2/(|h|2P(h)+1)

π(|h|2P(h) + 1)
dh.

As in (98), p(y|sR) and h(Y|SR) depend only on the marginals of A and not on the ρ(h, h′).
We thus have the problem of finding the ρ(h, h′) that minimize

h(Y|A, SR) =
∫
A

p(a) h(Y|SR, A = a) da.

We will use fully-correlated X(h) as discussed in Section 6.5. We again consider SR = 0 and
SR = 1(G ≥ t).

SR = 0: For the heuristic policies, the power (206) is

P̂ =
P

Γ(1 + a, t)
(288)

and the rate (219) is

I1(A; Y) = log

1 +
P Γ
( 3+a

2 , t
)2

Γ(1 + a, t) + P
[
Γ(2 + a, t)− Γ

( 3+a
2 , t

)2
]
 (289)

where Γ(s, x) is the upper incomplete gamma function; see Appendix A.3. Moreover, the
expression (220) is

Eb
N0

∣∣∣∣
min

=
Γ(1 + a, t)

Γ
( 3+a

2 , t
)2 · log 2. (290)

We remark that Γ(s, 0) = Γ(s) where Γ(x) is the gamma function. We further have

Γ(0, t) = E1(t), Γ(1, t) = e−t,
Γ(2, t) = e−t(t + 1), Γ(3, t) = e−t(t2 + 2t + 2).

For example, the TCP policy (a = 0) has P̂ = P et. At low SNR, it turns out that
the best choice is t = 0.283 for which we have Γ(1, t)/Γ(3/2, t)2 ≈ 1.174. The minimum
Eb/N0 in (222) is thus −0.90 dB. At high SNR, the best choice is t = 0 so that (289) with
Γ(3/2, 0) = Γ(3/2) =

√
π/2 gives

I1(A; Y) = log
(

1 +
P π/4

1 + P(1− π/4)

)
. (291)

The TCP rate thus saturates at 2.22 bits per channel use; see the curve labeled “TCP, GMI,
K = 1” in Figure 10.
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Figure 10. Rates for Rayleigh fading with ST = H and SR = 0. The threshold t was optimized for the
K = 1 curves, while t = P−0.4 for the I(A; Y) and K = 2 curves. The K = 2 GMI uses tR = P0.4.

The TMF policy (a = 1) has P̂ = P et/(t + 1). The best choice is t = 0 for which we
have Γ(2) = 1 and Γ(3) = 2 and therefore (289) is

I1(A; Y) = log
(

1 +
P

1 + P

)
. (292)

The minimum Eb/N0 in (222) is −1.59 dB, and at high SNR, the TMF rate saturates at 1 bit
per channel use. The rates are shown as the curve labeled “TMF, GMI, K = 1” in Figure 10.

The TCI policy (a = −1) has P̂ = P/E1(t) and using Γ(0, t) = E1(t) and Γ(1, t) = e−t

gives

I1(A; Y) = log
(

1 +
P

e2t E1(t) + P(et − 1)

)
. (293)

The minimum Eb/N0 in (290) is

Eb
N0

∣∣∣∣
min

= E1(t) e2t · log 2. (294)

Optimizing over t by taking derivatives (see (A5) below), the best t satisfies the equation
2tetE1(t) = 1 which gives t ≈ 0.61 and the minimal Eb/N0 is approximately 0.194 dB. On
the other hand, for large SNR, we may choose t = 1/P and using E1(t) ≈ log(1/t) for
small t gives

I1(A; Y) ≈ log
(

1 +
P

1 + log P

)
.

Since the pre-log is at most 1, the capacity grows with pre-log 1 for large P. We see that
TMF is best at small P while TCI is best at large P. The rates are shown as the curve labeled
“TCI, GMI, K = 1” in Figure 10.

The simple channel output of TCI permits further analysis. Using Remark 65, we
compute the mutual information I(A; Y) by numerical integration; see the curve labeled
“TCI, I(A; Y)” in Figure 10. We see that at high SNR, the TCI mutual information is larger
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than the GMI for TCP, TMF, and (of course) TCI. Moreover, as we show, the TCI mutual
information can work well at low SNR.

Motivated by Section 7.3 and Figure 5, we again use the GMI (154) with K = 2 and
(65). We further choose h1 = 0, σ2

1 = σ2
2 = 1, and

X̄ =

√
P̂

h2
U, U ∼ CN (0, 1).

The expression (154) simplifies to

I1(A; Y) = Pr[E2]

[
log
(
1 + P̂

)
+

E
[
|Y|2|E2

]
1 + P̂

− E
[ ∣∣∣Y−√P̂ U

∣∣∣2∣∣∣∣E2

]]
. (295)

The GMI (295) exhibits interesting high and low SNR scaling by choosing the following
thresholds t, tR.

• For high SNR, we choose

t = P−λ and tR = P̂λR (296)

where 0 < λ < 1 and 0 < λR < 1. As P increases, t decreases and Appendix B.4
shows that

Pr[E2]→ 1,
E
[
|Y|2|E2

]
1 + P̂

→ 1, E
[∣∣∣Y−√P̂ U

∣∣∣2|E2

]
→ 1. (297)

Inserting P̂ = P/E1(t), we thus have

lim
P→∞

[
I1(A; Y)− log

(
1 +

P
E1(t)

)]
= 0. (298)

We further have E1(t) ≈ λ log P by using (A6) in Appendix A.2, and the high-SNR
slope of the GMI matches the slope of log P but the additive gap to log P increases.
The high SNR rates are shown as the curve labeled “TCI, GMI, K = 2” in Figure 10 for
λ = λR = 0.4.

• For low SNR, we choose

t = − log(P/c) and tR = P̂ (299)

for a constant c > 0. As P decreases, both t and P̂ = P/E1(t) increase and Appendix B.4
shows that

Pr[E2] ≈ e−t−1,
E
[
|Y|2|E2

]
1 + 2P̂

→ 1, E
[∣∣∣Y−√P̂ U

∣∣∣2|E2

]
→ 1. (300)

Using (A7), we have I1(A; Y) ≈ e−t−1 log t which vanishes as t grows. But we also
have

Eb
N0

=
P
R

log 2 ≈ c e−t log 2
e−t−1 log t

≈ c e log 2
log(− log P)

(301)

which decreases (very slowly) as P decreases. The minimal Eb/N0 is therefore −∞.
The low SNR rates are shown as the curve labeled “TCI, GMI, K = 2” in Figure 11 for
c = 1.4.
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Figure 11. Low-SNR rates for Rayleigh fading with ST = H and SR = 0. The threshold t was
optimized for the K = 1 curves, while t = − log(P/1.4) for the I(A; Y), rGMI, and K = 2 curves. The
K = 2 GMI uses tR = P̂. The TMF and TMMSE GMIs are indistinguishable for this range of rates.

Figure 11 shows that the TCI mutual information achieves a minimal Eb/N0 below
−1.59 dB. At Eb/N0 = −2 dB, we computed I1(A; Y) ≈ 6× 10−7 and I(A; Y) ≈ 3× 10−4.
The K = 2 partition is thus useful to prove that TCI can achieve Eb/N0 arbitrarily close to
zero. Figure 11 also shows the reverse model GMI as the curve labeled “TCI, rGMI” which
has the rate I1(A; Y) ≈ 8× 10−6 at Eb/N0 = −2 dB.

We compare the full CSIR and full CSIT rates. At high SNR, the GMI for SR = 0
achieves the same capacity pre-log as SR = H. At low SNR, recall from (271) that with full
CSIR/CSIT we have Eb/N0 ≈ log(2)/λ. To compare the rates for similar Eb/N0, we set
λ = log t, where t is as in (299) and c ≈ 1. The TCI K = 2 GMI without CSIR is approxi-
mately e−t log t while the full CSIR rate (271) is approximately e−λ/λ ≈ 1/(t log(t)). Thus,
the K = 2 GMI with no CSIR is a fraction te−t log(t)2 of the full CSIR capacity.

SR = 1(G ≥ t): The power in (206) is again (288) and the rate (224) is

I1(A; Y|SR) = e−t · log

1 +
P e2t Γ

( 3+a
2 , t

)2

Γ(1 + a, t) + P
[
et Γ(2 + a, t)− e2t Γ

( 3+a
2 , t

)2
]
. (302)

Moreover, the expression (225) is

Eb
N0

∣∣∣∣
min

=
Γ(1 + a, t)

et · Γ
( 3+a

2 , t
)2 · log 2 (303)

which is the same as (290) except for the factor et in the denominator. This implies that the
minimal Eb/N0 can be improved for t > 0.
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The TCP, TMF, and TCI rates (302) are the respective

I1(A; Y|SR) = e−t log

1 +
P e2t Γ

( 3
2 , t
)2

e−t + P
[
t + 1− e2t Γ

( 3
2 , t
)2
]
 (304)

I1(A; Y|SR) = e−t log
(

1 +
P (t + 1)2

e−t(t + 1) + P

)
(305)

I1(A; Y|SR) = e−t log
(

1 +
P

E1(t)

)
. (306)

Remark 73. As pointed out in Remark 68, the TCI GMI (306) is I(A; Y|SR). One can also
understand this by observing that the receiver knows

√
GP(G) for all G. The mutual information

is thus related to the rate (189) of Proposition 2.

The minimal Eb/N0 in (303) are the respective

Eb
N0

∣∣∣∣
min

=
1

e2t · Γ
( 3

2 , t
)2 · log 2 (307)

Eb
N0

∣∣∣∣
min

=
1

t + 1
· log 2 (308)

Eb
N0

∣∣∣∣
min

= et E1(t) · log 2. (309)

The above expressions mean that, for all three policies, we can make the minimal Eb/N0 as
small as desired by increasing t. For example, for TCI, we can bound (see (A9) below)

1
t + 1

< etE1(t) <
1
t

. (310)

TCI thus has a slightly larger (slightly worse) minimal Eb/N0 than TMF for the same t, as
discussed after (212).

For large P, the TCP rate (304) is optimized by t ≈ 0.163 and the rate saturates at
≈2.35 bits per channel use. The TMF rate (305) is optimized with t = 0, and the rate
saturates at 1 bit per channel use. For the TCI rate (306), we again choose t = 1/P and use
E1(t) ≈ log(1/t) for small t to show that the capacity grows with pre-log 1:

I1(A; Y|SR) ≈ log
(

1 +
P

log P

)
.

Again, TMF is best at small P while TCI is best at large P.

Remark 74. Comparing (298) and (306), the SR = 0, K = 2, TCI GMI in (295) approaches the
SR = 1(G ≥ t) mutual information I(A; Y|SR) in (306) at high SNR.

Optimal Policy: Consider now the optimal power control policy. Suppose first that SR = 0
for which Theorem 2 gives the TMMSE policy with t = 0:√

P(h) =
α|h|

β + |h|2 . (311)

For Rayleigh fading, we thus have (see (A13) below)

P =
∫ ∞

0
e−g α2g

(β + g)2 dg = α2
[
(β + 1)eβE1(β)− 1

]
(312)
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with the two expressions (see (A12) and (A14) below)

P̃ =
∫ ∞

0
e−g α2g

β + g
dg = α2

[
1− βeβE1(β)

]2
(313)

E[GP(H)] =
∫ ∞

0
e−g α2g2

(β + g)2 dg = α2
[
1 + β− β(β + 2)eβE1(β)

]
. (314)

Given P and β, we may compute α2 from (312). We then search for the optimal β for fixed
P. The rates are shown as the curve labeled “TMMSE, GMI, K = 1” in Figures 10 and 11
and we see that the TMMSE strategy has the best K = 1 rates.

Consider next SR = 1(G ≥ t) and the TMMSE policy. We compute (see (A13) below)

P =
∫ ∞

t
e−g α2g

(β + g)2 dg = α2
[
(β + 1)eβE1(t + β)− e−t β

t + β

]
(315)

and (see (A12) and (A14) below)√
P̃(1) =

∫ ∞

t

e−g

e−t
αg

β + g
dg = α

[
1− βet+βE1(t + β)

]
(316)

E
[
|Y|2|SR = 1

]
=
∫ ∞

t

e−g

e−t

(
1 +

α2g2

(β + g)2

)
dg

= 1 + α2
[

1 +
β2

t + β
− β(β + 2)et+βE1(t + β)

]
. (317)

We optimize as for the SR = 0 case: given P, β, t, we compute α2 from (315). We then
search for the optimal β for fixed P and t. The optimal t is approximately a factor of 1.1
smaller than for the TCI policy. The rates are shown in Figure 12 as the curve labeled
“TMMSE, GMI”.

8.5. Partial CSIR, CSIT@ R

Suppose SR is defined by (see (172))

H =
√

ε̄ SR +
√

ε ZR

where 0 ≤ ε ≤ 1 and SR, ZR are independent with distribution CN (0, 1). We further
consider the CSIT ST = |SR|2.

The reverse model GMI again requires Var[U|Y, SR], which can be computed by
simulation; see Appendix C.4. However, as in Sections 7.4 and 8.3, optimizing the powers
seems difficult, and we instead focus on forward models. The expressions (235) and
(236) are

g̃(sR) = ε̄ sT , σ̃2(sR) = ε. (318)

The GMI (237) of Theorem 3 is

I1(X; Y|SR) =
∫ ∞

λ/ε̄
e−sT log

(
1 +

ε̄ sT P(sT)

1 + ε P(sT)

)
dsT (319)

where the power control policy P(sT) is given by (245). The parameter λ is chosen so that
E[P(ST)] = P. For example, for ε→ 0 we recover the waterfilling solution (181). Figure 13
shows the quadratic and conventional waterfilling rates, which lie almost on top of each
other. For example, the inset shows the rates for ε = 0.2 and a small range of Eb/N0.
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Figure 12. Rates for Rayleigh fading with full CSIT and SR = 1(G ≥ t).
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Figure 13. Rates for Rayleigh fading with partial CSIR and CSIT@R. The curves labeled ‘q-waterfill’
and ‘c-waterfill’ are the quadratic and conventional waterfilling rates, respectively.

9. Channels with In-Block Feedback

This section generalizes Shannon’s model described in Section 4.1 to include block
fading with in-block feedback. For example, the model lets one include delay in the CSIT
and permits many other generalizations for network models [22].

9.1. Model and Capacity

The problem is specified by the FDG in Figure 14. The model has a message M, and
the channel input and output strings

XL
i = (Xi1, . . . , XiL), YL

i = (Yi1, . . . , YiL)
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for blocks i = 1, . . . , n. The channel is specified by a string Sn
H = (SH1, . . . , SHn) of i.i.d.

hidden channel states. The CSIR SRi` is a (possibly noisy) function of SHi for all i and `.
The receiver sees the channel outputs (see (159))

(Yi`, SRi`) =
(

f`
(

X`
i , SHi, ZL

i

)
, SRi`

)
(320)

for some functions f`(·), ` = 1, . . . , L. Observe that the X`
i influence the Yi` in a causal

fashion. The random variables M, SH1, . . . , SHn, ZL
1 , . . . , ZL

n are mutually independent.

Y12 SH2

ZL
1 ZL

2SL
R1 SL

R2

M

A22

X11 X12

A12A11

Y11

ST11

Y22

X21 X22

Y21

ST21

A21

ST12 ST22

SH1

Figure 14. FDG for a block fading model with n = 2 blocks of length L = 2 and in-block feedback.
Across-block dependence via past STi` is not shown.

We now permit past channel symbols to influence the CSIT; see Section 1.2. Suppose
the CSIT has the form

STi` = fT`

(
SHi, X`−1

i , Y`−1
i

)
(321)

for some function fT`(.) and for all i and `. The motivation for (321) is that useful CSIR may
not be available until the end of a block or even much later. In the meantime, the receiver
can, e.g., quantize the Y`−1

i and transmit the quantization bits via feedback. This lets one
study fast power control and beamforming without precise knowledge of the channel
coefficients.

Define the string of past and current states as

si`
T =

(
sL

T1, . . . , sL
T(i−1), s`Ti

)
. (322)

The channel input at time i` is X(si`
T ) and the adaptive codeword AnL is defined by the

ordered lists

Ai` =
[

X(si`
T ), ∀ si`

T

]
(323)

for 1 ≤ i ≤ n and 1 ≤ ` ≤ L. The adaptive codeword AnL is a function of M and is thus
independent of Sn

H and SnL
R .

The model under consideration is a special case of the channels introduced in ([22],
Section V). However, the model in [22] has transmission and reception begin at time ` = 2
rather than ` = 1. To compare the theory, one must thus shift the time indexes by 1 unit
and increase L to L + 1. The capacity for our model is given by ([22], Theorem 2) which we
write as
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C
(a)
= max

AL

1
L

I(AL; YL, SL
R)

(b)
= max

AL

1
L

I(AL; YL∣∣SL
R). (324)

where (a) follows by normalizing by L rather than L + 1, and step (b) follows by the
independence of AL and SL

R.

9.2. GMI for Scalar Channels

We will study scalar block fading channels; extensions to vector channels follow as
described in Section 4.4. Let Y = [Y1, . . . , YL]

T be the vector form of YL and similarly for
other strings with L symbols. The GMI with parameter s is

Is(AL; YL∣∣SL
R) = E

[
log

q(Y
∣∣A, SR)

s

q(Y
∣∣SR)

]
(325)

Reverse Model: For the reverse model, let A be a column vector that stacks the X`(s`T) for all
s`T and `. Consider a reverse density as in (105):

q
(
aL|yL) = exp

(
−z(y, sR)

† Q−1
A|Y=y,SR=sR

z(y, sR)

)
πN det QA|Y=y,SR=sR

where

z(y, sR) = a− E
[

A|Y = y, SR = sR

]
.

Using the forward model q(yL|aL) = q(aL|yL)/p(aL), the GMI with s = 1 becomes

I1(AL; YL, SL
R) = E

[
log

det QA

det QA|Y,SR

]
. (326)

To simplify, consider adaptive symbols as in (89) (cf. (107)):

X`(S`
T) =

√
P`(S`

T) ejφ`(S`
T) U` (327)

where U ∼ CN (0, I). In other words, consider a conventional codebook represented by the
U` and adapt the power and phase based on the available CSIT. The mutual information
becomes I(AL; YL, SL

R) = I(UL; YL, SL
R) (cf. (96)) and the GMI with s = 1 is (cf. (108))

I1(AL; YL∣∣SL
R) = E

[
− log det QU|Y,SR

]
. (328)

In fact, one may also consider choosing U` = U for all ` in which case we compute (cf. (139))

I1(AL; YL∣∣SL
R) = E

[
− log Var

[
U
∣∣Y, SR

]]
. (329)

Forward Model: Consider the following forward model (cf. (111) and (141)):

q(y
∣∣a, sR) =

exp
(
−z(sR)

†QZ(sR)
−1z(sR)

)
πL det QZ(sR)

. (330)

with

z(sR) = y−H(sR) x̄(sR)
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and where similar to (142) we define

X̄(sR) = ∑
sT

W(sT , sR) X(sT) (331)

where the W(sT , sR) are L× L complex matrices. Note that

X(sT) = [X1(sT1), X2(s2
T), . . . , X2(sL

T)]
T (332)

so X` is a function of AL and S`
T , ` = 1, . . . , L.

We have the following generalization of Lemma 4 (see also Theorem 1) where the
novelty is that ST is replaced with ST . Define U(sT) ∼ CN (0, I) and X(sT) = Q1/2

X(sT)
U(sT)

for all sT .

Theorem 4. A GMI (325) for the scalar block fading channel p(yL|aL, sL
R), an adaptive codeword

AL with jointly CSCG entries, the auxiliary model (330), and with fixed QX(sT)
is

I1(AL; YL|SL
R) = E

[
log

(
det QY(SR)

det
(
QY(SR)− D̃(SR) D̃(SR)

†
))]. (333)

where

QY(sR) = E
[

Y Y†
∣∣∣SR = sR

]
(334)

and for M×M unitary VR(sT , sR) the matrix D̃(sR) is

E
[

UT(ST , sR)Σ(ST , sR)VR(ST , sR)
†
∣∣∣SR = sR

]
(335)

and UT(sT , sR) and Σ(sT , sR) are N × N unitary and N × M rectangular diagonal matrices,
respectively, of the SVD

E
[

Y U(sT)
†
∣∣∣ST = sT , SR = sR

]
= UT(sT , sR)Σ(sT , sR)VT(sT , sR)

† (336)

for all sT , sR and the VT(sT , sR) are M×M unitary matrices. One may maximize (333) over the
unitary VR(sT , sR).

Suppose next that the actual channel is Y = HX + Z where Z ∼ CN (0, I). The
extension of (136) and (168) to block fading channels with CSIR is

I1(AL; YL|SL
R) =

L

∑
`=1

E

[
log

(
1 +

P̃`(SR)

1 + E
[
GP`(S`

T)
∣∣SR
]
− P̃`(SR)

)]
(337)

where (cf. (166) and (167))

P̃`(sR) = E
[ ∣∣∣∣E[H

√
P`(S`

T)

∣∣∣∣S`
T , SR = sR

]∣∣∣∣ ]2

E
[
|Y`|2

∣∣SR = sR

]
= 1 + E

[
GP`(S`

T)
∣∣SR = sR

]
.

9.3. CSIT@ R

Continuing as in Section 5.2, suppose the CSIT in (321) can be written by replacing
SHi with S`

Ri for all i and `:

STi` = fT`

(
S`

Ri, X`−1
i , Y`−1

i

)
. (338)
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The capacity (324) then simplifies to a directed information. To see this, expand the mutual
information in (324) as

I(AL; YL∣∣SL
R)

(a)
=

L

∑
`=1

I
(

AL, X`; Y`

∣∣SL
R, Y`−1

)
(b)
=

L

∑
`=1

I(X`; Y`

∣∣SL
R, Y`−1) (339)

where step (a) follows because X` is a function of AL and S`
T in (338), and step (b) follows

by the Markov chains

AL − [SL
R, X`, Y`−1]−Y`. (340)

The capacity is therefore (see the definition (27))

C = max
X`(S`

T), `=1,...,L

1
L

I(XL → YL∣∣SL
R). (341)

The maximization in (341) under a cost constraint becomes a constrained maximization for
which E

[
c(XL, YL)

]
≤ LP for some cost function c(·).

Remark 75. As outlined at the end of Section 9.1, the capacity (341) is a special case of the theory
in ([22], Equation (48)). To see this, define the extended and time-shifted strings

ÂL+1 = (0, AL), X̂L+1 = (0, XL), ŶL+1 = (0, YL).

Since AL and SL
R are independent, one may expand (339) as

I(AL; YL∣∣SL
R) = I(AL ; (SR2, . . . , SRL, 0), YL∣∣SR1)

(a)
=

L

∑
`=1

I(AL, X` ; SR(`+1), Y`

∣∣S`
R, Y`−1)

(b)
=

L

∑
`=1

I(X` ; SR(`+1), Y`

∣∣S`
R, Y`−1)

=
L+1

∑
`=2

I(X̂` ; SR`, Ŷ`

∣∣S`−1
R , Ŷ`−1) (342)

where step (a) follows because X` is a function of AL and S`
T in (338), and where SR(L+1) = 0, and

step (b) follows by the Markov chains

AL − [X`, Y`−1, S`
R]− [Y`, SR(`+1)]. (343)

The expression (342) is the desired directed information

I(AL; YL, SL
R) = I(X̂L+1 → ŶL+1, SL+1

R ). (344)

Remark 76. Consider the basic CSIT model

STi` = fT(SRi`) (345)

for some function fT(·) and for ` = 1, . . . , L and i = 1, . . . , n. This model was studied in ([103],
Section III.C) and its capacity is given as (see ([103], Equation (35) with Equation (13)))

C = max
X`(S`

T), `=1,...,L

1
L

I(XL; YL∣∣SL
R, SL

T). (346)
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To see that (346) is a special case of (341), observe that

I(XL → YL|SL
R)

(a)
=

L

∑
`=1

I(X`; Y`

∣∣SL
R, SL

T , Y`−1)

(b)
=

L

∑
`=1

I(XL; Y`

∣∣SL
R, SL

T , Y`−1) (347)

where step (a) follows by (339), and step (b) follows by the Markov chains

[X`+1, . . . , XL]− [SL
R, SL

T , Y`−1, X`]−Y`. (348)

The expression (347) gives (346). Related results are available in ([10], Section III) and [104,105].

Remark 77. The capacity (341) has only SL
R in the conditioning while (346) has both SL

R and SL
T in

the conditioning. This subtle difference is due to permitting X`−1 to influence the ST` in (338), and
it complicates the analysis. On the other hand, if we remove only X`−1 from (338) then the receiver
knows ST` at time ` and the capacity (341) can be written as (see the definition (28))

C = max
X`(S`

T), `=1,...,L

1
L

I(XL → YL∥∥SL
T
∣∣SL

R). (349)

We treat such a model in Section 9.7 below.

9.4. Fading Channels with AWGN

The expression (341) is valid for general statistics. We next specialize to the block-
fading AWGN model

Y` = HX` + Z` (350)

where ` = 1, . . . , L, ZL ∼ CN (0, I), and (H, SL
R), AL, ZL are mutually independent. Con-

sider the power constraint

L

∑
`=1

E
[

P`
(

S`
T

)]
≤ LP (351)

where P`(s`T) = E
[
|X`(s`T)|2

]
. The optimization of (341) under the constraint (351) is usu-

ally intractable, and we again desire expressions with log(1 + SNR) terms to obtain insight.

Capacity Upper Bound: Using similar steps as in (162), we have

I(AL; YL|SL
R) ≤ I(AL; YL, H | SL

R)

=
L

∑
`=1

I
(

AL; Y`

∣∣ SL
R, H, Y`−1

)
≤

L

∑
`=1

[
h(Y`|SL

R, H, Y`−1)− h(Z`)
]

(a)
≤

L

∑
`=1

E
[
log
(

1 + E
[

GP`(S`
T)
∣∣SL

R, H, Y`−1
] )]

(352)

where G = |H|2 and step (a) follows by (163). However, CSCG inputs do not necessarily
maximize the RHS of (352) because the inputs affect the CSIT.

Remark 78. The expectation inside the logarithm in (352) becomes GP`(S`
T) if S`

T is a function of
SL

R, H, Y`−1; see (161), Remark 77, and Proposition 3 below.
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Achievable Rates: Deriving achievable rates is more subtle than in Section 6. Consider the
CSIT model (338) where for each block, we have

ST` = fT`(H, X`−1, Y`−1)

for all `. The capacity (341) is

C(P) = max
X`(S`

T), `=1,...,L

1
L

I(XL → YL∣∣H) (353)

= max
X`(S`

T), `=1,...,L

[
1
L

h(YL∣∣H)

]
− log(πe). (354)

However, CSCG inputs are not necessarily optimal since the inputs affect the CSIT.
Instead of trying to optimize the input, consider X` that are CSCG. We may write

I(XL → YL|H) =
L

∑
`=1

E
[
log
(

1 + GP`(S`
T)
)]

(355)

and the Lagrangians to maximize (355) are

L

∑
`=1

E
[
log
(

1 + GP`(S`
T)
)]

+ λ

(
LP−

L

∑
`=1

E
[

P`(S`
T)
])

. (356)

Suppose the ST` are discrete random variables. Taking the derivative with respect to P`(s`T),
we obtain

λ =
∫ ∞

0
p(g|s`T)

g
1 + gP`(s`T)

dg

+
L

∑
k=`+1

∑
sk

T

∫ ∞

0
p(g)

dPSk
T |G

(sk
T |g)

dP`(s`T)

log
(

1 + gPk(sk
T)
)

PS`
T
(s`T)

dg (357)

as long as P`(s`T) > 0. This expression is complicated because the choice of transmit
powers P`(s`T) influences the statistics of the future CSIT ST(`+1), . . . , STL. If (357) cannot

be satisfied, choose P`(s`T) = 0. Finally, set λ so that ∑L
`=1 E

[
P`(S`

T)
]
= LP.

Instead of the above, consider the simpler CSIT model with ST` = fT`(H) for all `,
cf. (345). The capacity (346) is now given by (355) with CSCG inputs and (357) simpli-
fies because the derivatives with respect to P`(s`T) are zero, i.e., the double sum in (357)
disappears and for all ` and s`T we have

λ =
∫ ∞

0
p(g|s`T)

g
1 + gP`(s`T)

dg. (358)

We use (358) for (362)–(364) in Section 9.7 below.

9.5. Full CSIR, Partial CSIT

We next generalize Proposition 2 in Section 6.4 to the block-fading AWGN model (350)
with the CSIR

SR` = H
√

P(S`
T), ` = 1, . . . , L (359)

and where ST` = fT`(SH), i.e., we have discarded X`−1
i and Y`−1

i in (321). We then have
the following capacity result that implies this CSIR is the best possible since one achieves a
capacity upper bound similar to (161).
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Proposition 3. The capacity of the channel (350) with the CSIR (359) and ST` = fT`(SH) for
` = 1, . . . , L is

C(P) = max
1
L

L

∑
`=1

E
[
log
(

1 + GP`(S`
T)
)]

(360)

where the maximization is over the power control policies P`(S`
T) such that ∑L

`=1 E
[

P`(S`
T)
]
≤ LP.

One may use (358) to compute the P`(S`
T).

Proof. For achievability, apply (337) with

P̃`(SR) = GP`(S`
T) and E

[
|Y`|2|SR

]
= 1 + P̃`(SR).

The converse follows by applying similar steps as in (162):

I(AL; YL|SL
R) ≤ I(AL; YL, SL

T , H|SL
R)

=
L

∑
`=1

I
(

AL; Y`

∣∣ SL
R, SL

T , H, Y`−1
)

≤
L

∑
`=1

[
h(Y`|SL

R, SL
T , H, Y`−1)− h(Z`)

]
(a)
≤

L

∑
`=1

E
[
log Var

[
Y`|SL

R, SL
T , H, Y`−1

]]
. (361)

Finally, insert Var
[
Y`|SL

R, SL
T , H, Y`−1

]
= 1 + GP`(S`

T).

The RHS of (361) is at most the RHS of (352) and hence (361) gives a better bound.
However, the bound (361) is valid only for particular CSIT, as in Remark 78.

9.6. On-Off Fading with Delayed CSIT

Consider on-off fading where the CSIT is delayed by D symbols, i.e., we have ST` = 0
for ` = 1, . . . , D and ST(D+1) = H. Define the transmit powers as P`(s`T) = E

[
|X(s`T)|2

]
for

` = 1, . . . , L. The capacity is

C(P) =
D
2L

log(1 + 2P1) +
L− D

2L
log(1 + 2PD+1)

where we write PD+1 = PD+1
(
sD+1

T
)
. Optimizing the powers, we obtain{

P1 = P− L−D
4L

PD+1 = 2P + D
2L

}
if P ≥ L− D

4L{
P1 = 0
PD+1 = 2LP

L−D

}
else.

For large P, we thus have C(P) ≈ 1
2 log(P) for all 0 ≤ D ≤ L. For small P, we have

C(P) =

{
L−D

2L log
(

1 + 4LP
L−D

)
, if 0 ≤ D < L

log(1 + 2P)/2, if D = L

≈
{ (

2P− 4L
L−D P2

)
log(e), if 0 ≤ D < L(

P− P2) log(e), if D = L.
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The CSIT thus gives a 3 dB power gain at low SNR since C(P) ≈ 2P log(e) for 0 ≤ D < L
and C(P) ≈ P log(e) for D = L. Furthermore, using (37), the slope of the capacity versus
Eb/N0 in bits/s/Hz/(3 dB) is

1− D/L if 0 ≤ D < L
1 if D = L.

In other words, the delay reduces the low-SNR rate by a factor of 1− D/L for 0 ≤ D < L.

9.7. Rayleigh Fading and One-Bit Feedback

Let qu(.) be the one-bit (B = 1) quantizer in Section 2.9. We study Rayleigh fading
for two scenarios with SL

R = H, i.e., the receiver knows H after the L transmissions of
each block.

• For the CSIT (345), we study delayed feedback where ST` = 0 for ` = 1, . . . , L− 1 and
STL = qu(G). The delay is thus D = L− 1 in the sense of Section 9.6.

• For the CSIT (338), we study the case ST1 = 0, ST2 = qu(|Y1|), and ST` = 0 for
` = 3, . . . , L. The delay is thus D = 1 in the sense of Section 9.6.

Delayed Quantized CSIR Feedback: Consider ST` = 0 for ` = 1, . . . , L− 1 and STL = qu(G).
CSCG inputs are optimal, and (347) has the same form as (360). The Lagrangians are given
by (356), and we again obtain (358). For the case at hand, we have L + 1 equations for
λ, namely

λ =
∫ ∞

0
e−g g

1 + gP`
dg, ` = 1, . . . , L− 1 (362)

λ =
∫ ∆

0

e−g

1− e−∆
g

1 + gPL(∆/2)
dg (363)

λ =
∫ ∞

∆

e−g

e−∆
g

1 + gPL(3∆/2)
dg (364)

where we used (40) and (41) and abused notation by writing PL(sTL) for PL(sL
T). We thus

have P1 = · · · = PL−1 and obtain three equations. We now search for λ such that

(L− 1)P1 + ∑
s

PSTL(s)PL(s) = LP

and the capacity (353) is

C(P) =
L− 1

L
e1/P1 E1(1/P1) +

1
L ∑

s

∫
I(s)

e−g log(1 + gPL(s))dg (365)

where the sums are over s = ∆/2, 3∆/2 and

I(∆/2) = [0, ∆), I(3∆/2) = [∆, ∞).

We remark that, if P1 = 0, then we set e1/P1 E1(1/P1) = 0 since limx→∞ exE1(x) = 0.
Figure 15 shows these capacities for L = 1, 2, 3 and ∆ = 1. At low SNR (e.g., for L = 3

below −2.97 dB) we have P1 = 0 and PL(∆/2) = 0, i.e., the transmitter is silent unless
STL = 3∆/2 and it uses power at time ` = L only. Observe that, as in Section 9.6, a delay of
L steps reduces the low-SNR slope, and therefore the low-SNR rates, by a factor of L. Delay
can thus be costly at low SNR.
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Figure 15. Capacities for Rayleigh block fading with L = 1, 2, 3 and a CSIT delay of D = L− 1. The
CSIT at symbol L is STL = qu(G).

Quantized Channel Output Feedback: Consider ST1 = 0, ST2 = qu(|Y1|), and ST` = 0 for
` = 3, . . . , L. As discussed in Remark 77, the capacity is given by the directed information
expression (349). However, optimizing the input statistics seems difficult, i.e., CSCG inputs
are not necessarily optimal. Instead, we compute achievable rates for a strategy where one
symbol partially acts as a pilot.

Suppose the transmitter sends X1 =
√

P1ejΦ as the first symbol of each block, where Φ
is uniformly distributed in [0, 2π). The idea is that |X1| =

√
P1 is known at the receiver, and

thus X1 acts as a pilot to test the channel amplitude. Next, we choose a variation of flash
signaling. Define the event E = {|Y1| ≥ ∆} = {ST2 = 3∆/2}. If this event does not occur,
the transmitter sends X` = 0 for ` = 2, . . . , L. Otherwise, the transmitter sends independent
CSCG X` with variance P2/Pr[E ] for ` = 2, . . . , L. Define P`(s`T) = E

[
|X(s`T)|2

]
. We have

P` = P2 for ` ≥ 2 and the power constraint is P1 + (L− 1)P2 ≤ LP.
We use (347) to write

C(P) ≥ 1
L

I(X1; Y1|H) +
L− 1

L
I(X2; Y2|H, Y1). (366)

The first mutual information in (366) is

I(X1; Y1|H) = h(Y1|H)− log(πe)

and we compute (see ([52], Appendix A))

p(y1|h) =
1
π

e−(|y1|2+P1|h|2) I0

(
2 |y1| |h|

√
P1

)
where I0(.) is the modified Bessel function of the first kind of order zero. The Jacobian of
the mapping from Cartesian coordinates [<(y1),=(y1)] to polar coordinates [|y1|, arg y1] is
|y1|, so we have

h(Y1|H = h) =
∫ ∞

0
− p(y1|h) log(p(y1|h)) 2π|y1| d|y1|.

We further compute
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I
(

X2; Y2|H, Y1

)
=
∫ ∞

0
e−gPr[E|G = g] log

(
1 +

gP2

Pr[E ]

)
dg. (367)

The conditional probability of a high-energy Y1 is

Pr[E|G = g] = Q1

(√
2gP1,

√
2∆
)

where Q1(.) is the Marcum Q-function of order 1; see (A3) in Appendix A.1. For Rayleigh
fading, we compute

Pr[E ] = Pr
[∣∣∣H√P1ejΦ + Z1

∣∣∣2 ≥ ∆2
]
= e−∆2/(P1+1).

The resulting rates are shown in Figure 16 for the block lengths L = 10, 20, 100.
Observe that each curve turns back on itself, which reflects the non-concavity of the directed
information rates in P; see ([74], Section III). All rates below the curves are achievable by
“time-wasting”, i.e., by transmitting for some fraction of the time only. This suggests that
flash signaling [73] will improve the rates since one sends information by choosing whether
to transmit energy.
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Figure 16. Rates for Rayleigh block fading with block lengths L = 10, 20, 100. The CSIT at symbol 2 is
ST2 = qu(|Y1|).

10. Conclusions

This paper reviewed and derived achievable rates for channels with CSIR, CSIT, block
fading, and in-block feedback. GMI expressions were developed for adaptive codewords
and two classes of auxiliary channel models with AWGN and CSCG inputs: reverse and
forward channel models. The forward model inputs were chosen as linear functions of the
adaptive codeword’s symbols. We showed that, for scalar channels, an input distribution
that maximizes the GMI generates a conventional codebook, where the codeword symbols
are multiplied by a complex number that depends on the CSIT. The GMI increases by
partitioning the channel output alphabet and modifying the auxiliary model parameters for
each partition subset. The partitioning helps to determine the capacity scaling at high and
low SNR. Power control policies were developed for full CSIT, including TMMSE policies.
The theory was applied to channels with on-off fading and Rayleigh fading. The capacities
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with in-block feedback simplify to directed information expressions if the CSIT is a function
of the CSIR and past channel inputs and outputs.

There are many possible applications and extensions of this work. For example,
adaptive coding and modulation are important for all practical communication systems,
including wireless, copper, and fiber-optic networks. Shannon’s adaptive codewords can
improve current systems since the CSIT is usually a noisy version of the CSIR; see Remark 25.
Moreover, the information theory for in-block feedback [22] applies to beamforming [106]
and intelligent reflecting surfaces [107,108]. One may also apply GMI to multi-user channels
with in-block feedback, such as multi-access and broadcast channels. Finally, it is important
to develop improved capacity upper bounds. The standard approach here is the duality
framework described in [97,109]; see also ([110], page 128).
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Appendix A. Special Functions

This appendix reviews three classes of functions that we use to analyze informa-
tion rates: the non-central chi-squared distribution, the exponential integral, and gamma
functions.

Appendix A.1. Non-Central Chi-Squared Distribution

The non-central chi-squared distribution with two degrees of freedom is the probability
distribution of Y = |x + Z|2 where x ∈ C and Z ∼ CN (0, 2). The density is

p(y) =
1
2

e−(y+|x|
2)/2 I0(|x|

√
y) · 1(y ≥ 0) (A1)

where I0(.) is the modified Bessel function of the first kind of order zero. The cumulative
distribution function is

Pr[Y ≤ t] = 1−Q1

(
|x|,
√

t
)

(A2)

where Q1(.) is the Marcum Q-function of order 1. Observe that if we change Z to Z ∼
CN (0, σ2) then for Y = |x + Z|2 we instead have

Pr[Y ≤ t] = 1−Q1

(√
2|x|2/σ2,

√
2t/σ2

)
. (A3)

Appendix A.2. Exponential Integral

The exponential integral is defined for x > 0 as

E1(x) =
∫ ∞

x

e−t

t
dt. (A4)

The derivative of E1(x) is

dE1(x)
dx

=
−e−x

x
. (A5)
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For small x one may apply ([111], Equation (3))

E1(x) ≈ −γ− log x + x (A6)

where γ ≈ 0.57721 is Euler’s constant. For large x we have

E1(x) ≈ e−x

x

(
1− 1

x
+

2
x2 −

6
x3

)
. (A7)

We have the bounds [112]

1
2

log
(

1 +
2
x

)
< exE1(x) < log

(
1 +

1
x

)
(A8)

1
x + 1

< exE1(x) <
x + 1

x(x + 2)
. (A9)

Using integration by parts, for x > 0, we have∫ ∞

x
e−t log t dt = E1(x) + e−x log(x) (A10)∫ ∞

x
e−t 1

t2 dt =
e−x

x
− E1(x). (A11)

Using the translation t̃ = t + y we also have∫ ∞

x
e−t t

t + y
dt = e−x − y ey E1(x + y) (A12)∫ ∞

x
e−t t

(t + y)2 dt = −e−x y
x + y

+ (y + 1) ey E1(x + y) (A13)

∫ ∞

x
e−t t2

(t + y)2 dt = e−x
(

1 +
y2

x + y

)
− y(y + 2) ey E1(x + y). (A14)

Appendix A.3. Gamma Functions

The upper and lower incomplete gamma functions are the respective

Γ(s, t) =
∫ ∞

t
e−g gs−1 dg (A15)

γ(s, t) =
∫ t

0
e−g gs−1 dg. (A16)

For instance, we have Γ(1, t) = e−t and γ(1, t) = 1− e−t. We further have Γ(0, t) = E1(t)
where E1(x) is the exponential integral defined in Appendix A.2.

The Gamma function is Γ(s) = Γ(s, 0) = γ(s, ∞) and for positive integers n we have

Γ(n) = (n− 1)!, Γ
(

n− 1
2

)
=

(2n− 2)!
4n−1 (n− 1)!

√
π.

For example, the following cases are used in Section 8.4:

Γ(1) = Γ(2) = 1, Γ
(

1
2

)
=
√

π, Γ
(

3
2

)
=

√
π

2
, Γ

(
5
2

)
=

3
4
√

π.

The value Γ(0) is undefined but we have limx→0+ Γ(x) = ∞.
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Appendix B. Forward Model GMIs with K = 2

This appendix studies K = 2 GMIs to develop high and low SNR capacity scaling
results. Consider the independent random variables Z ∼ CN (0, 1) and X ∼ CN (0, P). We
need the following expression for the event E = {|X + Z|2 ≥ tR}:

E
[
|Z|2

∣∣∣E] = ∫
C

pZ|E (z) |z|2 dz

=
1

Pr[E ]

∫
C

e−|z|
2

π
|z|2 Pr

[
|X + z|2 ≥ tR

]
dz

= etR/(1+P)
∫ ∞

0
e−g g Q1

(√
2g
P

,

√
2tR
P

)
dg. (A17)

The integral can be computed using ([113], Equation (12)) with k = 2, m = 1, p = 1, the
Gamma functions above, and the following identities for Kummer’s confluent hypergeo-
metric function:

1F1(1; 2; z) = (ez − 1)/z, 1F1(2; 2; z) = ez.

The result is

E
[
|Z|2

∣∣∣|X + Z|2 ≥ tR

]
= 1 +

tR

(1 + P)2 . (A18)

Appendix B.1. On-Off Fading

Consider on-off fading as in Section 3.3 and the K = 2 partition in Remark 14 with
h2 =

√
2. We compute

Pr[E2] = ∑
h=0,

√
2

Pr[H = h]Pr[E2|H = h] =
1
2

e−tR +
1
2

e−tR/(1+2P). (A19)

If tR = PλR + b where 0 < λR < 1 and b is a real constant then Pr[E2]→ 1/2 as P→ ∞, as
desired. We further have

Pr[H = 0 |E2] =
e−tR

2Pr[E2]
(A20)

Pr
[

H =
√

2
∣∣∣E2

]
=

e−tR/(1+2P)

2Pr[E2]
. (A21)

The choice tR = PλR + b gives Pr
[

H =
√

2
∣∣∣E2

]
→ 1 as P→ ∞. In other words, the receiver

can reliably determine H by choosing tR to grow with P, but not too fast.
We next compute

E
[
|Y|2|E2

]
= ∑

h=0,
√

2

Pr[H = h|E2]E
[
|Y|2|E2, H = h

]
=

e−tR(tR + 1) + e−tR/(1+2P)(tR + 1 + 2P)
2Pr[E2]

. (A22)

The choice tR = PλR + b makes E
[
|Y|2|E2

]
/(1 + 2P)→ 1 as P→ ∞. Finally, we compute

E
[
|Y−

√
2X|2|E2

]
= ∑

h=0,
√

2

Pr[H = h|E2]E
[ ∣∣∣Y−√2X

∣∣∣2∣∣∣∣E2, H = h
]

=
1

2Pr[E2]

{
e−tR(tR + 1 + 2P) + e−tR/(1+2P)

(
1 +

tR

(1 + 2P)2

)}
(A23)

where the last step uses (A18). The choice tR = PλR + b makes E
[
|Y−

√
2X|2|E2

]
→ 1 as

P→ ∞.
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Appendix B.2. On-Off Fading, Partial CSIR, and Full CSIT

The analysis for Section 7.3 is similar to that of Appendix B.1. Consider the GMI (259)
and observe that we can replace 2P with 4P in (A19)–(A22). We also have

E
[
|Y−

√
4P U|2

∣∣∣E2

]
= ∑

h=0,
√

2

Pr[H = h|E2]E
[
|Y−

√
4P U|2 |E2, H = h

]
=

1
2Pr[E2]

{
e−tR(tR + 1 + 4P) + e−tR/(1+4P)

(
1 +

tR

(1 + 4P)2

)}
. (A24)

The choice tR = PλR + b as in Appendix B.1 gives (260).

Appendix B.3. On-Off Fading, Partial CSIR, and CSIT@R

The analysis for Section 7.4 is similar to that of Appendices B.1 and B.2. We compute

Pr[E2|SR = 0] = ε̄ e−tR + ε e−tR/[1+2P(0)] (A25)

Pr
[
E2|SR =

√
2
]
= ε e−tR + ε̄ e−tR/[1+2P(

√
2)] . (A26)

Suppose P(0) and P(
√

2) both scale in proportion to P. If we choose tR = PλR + b as in
Appendix B.1 then Pr[E2|SR = 0]→ ε and Pr

[
E2|SR =

√
2
]
→ ε̄ as P→ ∞. We also have

Pr[H = 0 |E2, SR = 0] =
ε̄ e−tR

Pr[E2|SR = 0]
(A27)

Pr
[

H =
√

2
∣∣∣E2, SR = 0

]
=

ε e−tR/[1+2P(0)]

Pr[E2|SR = 0]
(A28)

and similarly for the probabilities Pr
[

H = 0 |E2, SR =
√

2
]

and Pr
[

H =
√

2 |E2, SR =
√

2
]
.

Choosing tR = PλR + b gives the desired behavior Pr
[

H =
√

2 |E2, SR = 0
]
→ 1 and

Pr
[

H =
√

2 |E2, SR =
√

2
]
→ 1 as P→ ∞. Again, the receiver can reliably determine H by

choosing tR to grow with P, but not too fast.
We next have

E
[
|Y|2|E2, SR = 0

]
=

ε̄ e−tR(tR + 1) + ε e−tR/[1+2P(0)](tR + 1 + 2P(0))
Pr[E2|SR = 0]

. (A29)

The expression for E
[
|Y|2|E2, SR =

√
2
]

is similar but ε and ε̄ are swapped and P(0) is

replaced with P(
√

2). We also have

E
[
|Y−

√
2 X(0)|2

∣∣∣E2, SR = 0
]
=

1
Pr[E2|SR = 0]

{
ε̄ e−tR(tR + 1 + 2P(0)) +

ε e−tR/[1+2P(0)]
(

1 +
tR

(1 + 2P(0))2

)}
. (A30)

The expression for E
[
|Y−

√
2 X(0)|2

∣∣∣E2, SR =
√

2
]

is similar: swap ε and ε̄ and replace

P(0) with P(
√

2). The choice t = PλR + b makes all terms in (265) behave as desired. We
thus obtain (266).

Appendix B.4. Rayleigh Fading, No CSIR, full CSIT, and TCI

The analysis for Section 8.4 is similar to that of Appendices B.1–B.3, but we now have
a continuous H. Recall that E2 = {|Y|2 ≥ tR} and Y =

√
P(h)U + Z where P(h) = 0 for

g < t and P(h) = P̂ otherwise. We compute
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Pr[E2] = Pr[G < t]Pr[E2|G < t] + Pr[G ≥ t]Pr[E2|G ≥ t]

= (1− e−t)e−tR + e−te−tR/(1+P̂) (A31)

where we used Pr[E2|G < t] = Pr
[
|Z|2 ≥ tR

]
and similarly for Pr[E2|G ≥ t]. For example,

for the t and tR in (296) we find that Pr[E2] → 1 as P grows. Similarly, for the t and tR in
(299) we find that Pr[E2] ≈ e−t−1 as P decreases.

We write

E
[
|Y|2|E2

]
= Pr[G < t|E2]E

[
|Z|2

∣∣∣E2, G < t
]

+ Pr[G ≥ t|E2]E
[ ∣∣∣√P̂ U + Z

∣∣∣2∣∣∣∣E2, G ≥ t
]

=
(1− e−t)e−tR(tR + 1) + e−te−tR/(1+P̂)(tR + 1 + P̂)

Pr[E2]
. (A32)

For the t and tR in (296) we have E
[
|Y|2|E2

]
/(1 + P̂) → 1 as P grows. Similarly, for the t

and tR in (299) we find that E
[
|Y|2|E2

]
/(1 + 2P̂)→ 1 as P decreases. Next, we write

E
[ ∣∣∣Y−√P̂ U

∣∣∣2∣∣∣∣E2

]
= Pr[G < t|E2]E

[ ∣∣∣Z−√P̂ U
∣∣∣2∣∣∣∣|Z|2 ≥ tR

]
+ Pr[G ≥ t|E2]E

[
|Z|2

∣∣∣∣∣∣∣√P̂ U + Z
∣∣∣2 ≥ tR

]
=

1
Pr[E2]

{
(1− e−t)e−tR(tR + 1 + P̂) + e−te−tR/(1+P̂)

(
1 +

tR(
1 + P̂

)2

)}
. (A33)

For the t and tR in (296) the expression (A33) approaches 1 as P grows. Similarly, for the t
and tR in (299) we find that (A33) approaches 1 as P decreases.

Appendix C. Conditional Second-Order Statistics

This appendix shows how to compute conditional second-order statistics for the
reverse model GMIs and the forward model GMIs with K = ∞. Suppose that U, Y are
jointly CSCG given H = h. Using (25) and (26), we have

E[U|Y = y, H = h] =
E
[
UY*

∣∣H = h
]

E
[
|Y|2

∣∣H = h
] · y (A34)

Var[U|Y = y, H = h] = E
[
|U|2

∣∣H = h
]
−
∣∣E[UY*

∣∣H = h
]∣∣2

E
[
|Y|2

∣∣H = h
] . (A35)

Now consider the channel Y = HX + Z where X =
√

P(ST) ejφ(ST)U with U ∼ CN (0, 1).
We may write

E
[
U
∣∣Y = y, SR = sR

]
=
∫
C×ST

p(h, sT |y, sR)
h*
√

P(sT)ejφ(sT)y
1 + |h|2P(sT)

dsT dh (A36)

and

E
[
|U|2

∣∣Y = y, SR = sR

]
=
∫
C×ST

p(h, sT |y, sR)(
1

1 + |h|2P(sT)
+
|h|2P(sT)|y|2

(1 + |h|2P(sT))
2

)
dsT dh. (A37)
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Appendix C.1. No CSIR, No CSIT

Consider SR = ST = 0. The expectations in (A36) and (A37) are computed via

p(h|y) = p(h) p(y|h)
p(y)

. (A38)

The expression (A36) with φ(0) = 0 gives

E[U|Y = y] =
∫
C

p(h|y) h*
√

P y
1 + |h|2P

dh. (A39)

Similarly, the expression (A37) gives

E
[
|U|2

∣∣Y = y
]
=
∫
C

p(h|y)E
[
|X|2

∣∣∣Y = y, H = h
]

dh

=
∫
C

p(h|y)
(

1
1 + |h|2P

+
|h|2P|y|2

(1 + |h|2P)2

)
dh (A40)

We may now compute Var[U|Y = y] using (A39) and (A40). For the expressions (69)
and (70), one may use

E[X|Y = y] =
√

P E[U|Y = y], E
[
|X|2

∣∣Y = y
]
= P E

[
|U|2

∣∣Y = y
]
.

For example, for on-off fading as in Section 3.3 we compute

E[X|Y = y] = PH|Y

(√
2
∣∣∣y) √2P

1 + 2P
· y (A41)

E
[
|X|2

∣∣∣Y = y
]
= PH|Y(0|y) P + PH|Y

(√
2
∣∣∣y)( P

1 + 2P
+

2P2|y|2
(1 + 2P)2

)
(A42)

and therefore

Var[X|Y = y] = PH|Y(0|y) P + PH|Y

(√
2
∣∣∣y)( P

1 + 2P
+

2P2|y|2
(1 + 2P)2 PH|Y(0|y)

)
(A43)

where PH|Y

(√
2
∣∣∣y) = 1− PH|Y(0|y) and

PH|Y(0|y) =
e−|y|

2

e−|y|2 + 1
1+2P e−|y|2/(1+2P)

. (A44)

For Rayleigh fading as in Section 8.1, the density (A38) is

p(h|y) = e−g e−|y|
2/(1+gP)

π2(1 + gP)
· 1

p(y)

where g = |h|2. Moreover, p(y) in (268) depends on g only. We thus have E[U|Y = y] = 0
and the integrand in (A40) depends on g and |y|2 only.

Appendix C.2. Full CSIR, Partial CSIT

Consider SR = H and partial ST . The expectations in (A36) and (A37) are computed
via (194) that we repeat here:

p(h, sT |y, sR) = δ(h− sR)
p(sT |h) p(y|h, sT)

p(y|h) .
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For on-off fading as in Section 7.2, the expression (A36) with φ(0) = 0 gives the
expectations E[U|Y = y, H = 0] = 0 and

E
[
U
∣∣Y = y, H =

√
2
]
= ∑

sT=0,2
PST |Y,H(sT |y,

√
2 )

√
2P(sT) y

1 + 2P(sT)

and, similarly, (A37) gives E
[
|U|2|Y = y, H = 0

]
= 1 and

E
[
|U|2

∣∣Y = y, H =
√

2
]
= ∑

sT=0,2
PST |Y,H(sT |y,

√
2 )

(
1

1 + 2P(sT)
+

2P(sT)|y|2

(1 + 2P(sT))
2

)

where PST |Y,H(2|y,
√

2 ) = 1− PST |Y,H(0|y,
√

2 ) and

PST |Y,H(0|y,
√

2 ) =
ε

1+2P(0) e−|y|
2/(1+2P(0))

ε
1+2P(0) e−|y|2/(1+2P(0)) + ε̄

1+2P(2) e−|y|2/(1+2P(2))
.

For Rayleigh fading as in Section 8.3, the sums over sT = 0, 2 become sums over
sT = 0, 1 and the probabilities P(sT |y, h) take on similar forms as above.

Appendix C.3. Partial CSIR, Full CSIT

Consider ST = H and partial SR. The expectations in (A36) and (A37) are computed
via (201) that we repeat here:

p(h, sT |y, sR) = δ(sT − h)
p(h|sR) p(y|h, sR)

p(y|sR)
.

For on-off fading with SR = 0 as in Section 7.3, the expression (A36) with φ(0) = 0
gives

E
[
U
∣∣Y = y

]
= PH|Y

(√
2
∣∣∣y) √4P y

1 + 4P

and (A37) gives

E
[
|U|2

∣∣Y = y
]
= PH|Y(0|y) + PH|Y

(√
2
∣∣∣y)( 1

1 + 4P
+

4P|y|2
(1 + 4P)2

)

where PH|Y

(√
2
∣∣∣y) = 1− PH|Y(0|y) and

PH|Y(0|y) =
e−|y|

2

e−|y|2 + 1
1+4P e−|y|2/(1+4P)

.

For Rayleigh fading with SR = 0 and TCI as in Section 8.4, the expressions (A36) and
(A37) give (cf. (A41) and (A42))

E
[
U
∣∣Y = y

]
= Pr[G ≥ t|Y = y]

√
P̂ y

1 + P̂

E
[
|U|2

∣∣Y = y
]
= Pr[G < t|Y = y] + Pr[G ≥ t|Y = y]

(
1

1 + P̂
+

P̂ |y|2

(1 + P̂)2

)
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and therefore (cf. (A43))

Var[U|Y = y] = Pr[G < t|Y = y] + Pr[G ≥ t|Y = y]

·
(

1
1 + P̂

+
P̂ |y|2

(1 + P̂)2
Pr[G < t|Y = y]

)
where (cf. (A44))

Pr[G < t|Y = y] =

(
1− e−t) e−|y|

2(
1− e−t

)
e−|y|2 + e−t 1

1+P̂
e−|y|2/(1+P̂)

.

Appendix C.4. Partial CSIR, CSIT@R

Consider ST = SR and partial SR. The expectations in (A36) and (A37) are computed
via (234) that we repeat here:

p(h, sT |y, sR) = δ
(
sT − f (sR)

) p(h|sR) p(y|h, sR)

p(y|sR)
.

For on-off fading as in Section 7.3, the expression (A36) with φ(0) = 0 gives

E
[
U
∣∣Y = y, SR = 0

]
= PH|Y,SR

(1|y, 0)

√
2P(0) y

1 + 2P(0)

E
[
U
∣∣Y = y, SR =

√
2
]
= PH|Y,SR

(1|y,
√

2 )

√
2P(
√

2 ) y

1 + 2P(
√

2 )

and (A37) gives

E
[
|U|2

∣∣Y = y, SR = 0
]
= PH|Y,SR

(0|y, 0)

+ PH|Y,SR
(1|y, 0)

(
1

1 + 2P(0))
+

2P(0)|y|2

(1 + 2P(0))2

)
E
[
|U|2

∣∣Y = y, SR =
√

2
]
= PH|Y,SR

(0|y,
√

2 )

+ PH|Y,SR
(1|y,

√
2 )

 1
1 + 2P(

√
2 )

+
2P(
√

2 )|y|2(
1 + 2P(

√
2 )
)2


where PH|Y,SR

(
√

2 |y, sR) = 1− PH|Y,SR
(0|y, sR) and

PH|Y,SR
(0|y, 0) =

ε̄ e−|y|
2

ε̄ e−|y|2 + ε
1+2P(0) e−|y|2/(1+2P(0))

PH|Y,SR
(0|y,

√
2 ) =

ε e−|y|
2

ε e−|y|2 + ε̄
1+2P(

√
2 )

e−|y|2/(1+2P(
√

2 ))
.

For Rayleigh fading as in Section 8.5, the probabilities P(h|y, sR) take on similar forms
as above.
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Appendix D. Proof of Lemma 2 and (119)

We prove Lemma 2 by using the same steps as in the proof of Proposition 1. The GMI
(102) with a vector Y is

Is(A; Y) = log det
(

I +
(
QZ/s

)−1HQX̄H†
)

+ E
[

Y†
(

QZ/s + HQX̄H†
)−1

Y
]

− E
[
(Y−H X̄)

†(QZ/s
)−1

(Y−H X̄)
]
. (A45)

One can again set s = 1. Choosing H = H̃ and QZ = Q̃Z̃ then gives (112).
Next, consider the channel Ya = H̃X̄ + Z̃ where Z̃ is CSCG with covariance matrix

QZ̃ and Z̃ is independent of X̄. Generalizing (50) and (51), we compute QYa
= QY and

E
[(

Ya − H̃ X̄
)(

Ya − H̃ X̄
)†
]
= E

[
(Y−H X̄)(Y−H X̄)

†
]
. (A46)

In other words, the second-order statistics for the two channels with outputs Y (the actual
channel output) and Ya are the same. Moreover, the GMI (112) is the mutual information
I(A; Ya). Using (104) and (A45), for any s, H and QZ we have

I(A; Ya) = log det
(

I + Q−1
Z̃ H̃QX̄H̃†

)
≥ Is(A; Ya) = Is(A; Y) (A47)

and equality holds if H = H̃ and QZ/s = QZ̃.
To prove (119), recall that tr(AB) = tr(BA) for matrices A and B with appropri-

ate dimensions. Furthermore, for Hermitian matrices A, B, C with the same dimensions
we have

tr(ABC) = tr
(
(ABC)†

)
= tr(CBA) = tr(ACB). (A48)

For notational convenience, consider the covariance matrix (117) with s = 1 and use

A = QZ̄, B =
(

HQX̄H†
)−1/2(

QY −QZ̄

)1/2

C = Q−1
Z̄

(
QY −QZ̄

)1/2(
HQX̄H†

)−1/2

to compute (cf. (A45))

E
[
(Y−H X̄)

†Q−1
Z (Y−H X̄)

]
= tr

(
QZ̄Q−1

Z

)
(a)
= tr

((
QY −QZ̄

)(
HQX̄H†

)−1
)

(A49)

where step (a) follows by (A48). Next, by using (117) we have(
QZ + HQX̄H†

)−1
=
(

QY −QZ̄

)1/2(
HQX̄H†

)−1/2
Q−1

Y

·
(

HQX̄H†
)−1/2(

QY −QZ̄

)1/2
(A50)

and therefore (cf. (A45))

E
[

Y†
(

QZ + HQX̄H†
)−1

Y
]
= tr

(
QY

(
QZ + HQX̄H†

)−1
)

(a)
= tr

((
QY −QZ̄

)(
HQX̄H†

)−1
)

(A51)
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where step (a) again follows by (A48). We are thus left with the logarithm term in (A45).
Finally, the determinant in (A45) is

det
(

I + Q−1
Z HQX̄H†

)
= det

(
Q−1

Z̄ QY

)
(A52)

where we applied (117) and Sylvester’s identity (33).

Appendix E. Proof of Lemma 3

Let P̄ = E
[
|X̄|2

]
and write

X̄ =
√

P̄ Ū, X(sT) =
√

P(sT)U(sT). (A53)

Since the U(sT) are CSCG we have

U(s′T) = ρ(s′T , sT)U(sT) + Z(s′T) (A54)

where ρ(s′T , sT) = E
[
U(s′T)U(sT)

*] and

Z(s′T) ∼ CN (0, 1− |ρ(s′T , sT)|2) (A55)

is independent of U(sT). As in (109), define

X̄ = ∑
s′T

w(s′T)X(s′T)

= ∑
sT

w(s′T)
√

P(s′T)
[
U(sT)ρ(s′T , sT) + Z(s′T)

]
=
√

P̄ ρ̄(sT)U(sT) + ∑
s′T

w(s′T)
√

P(s′T)Z(s′T) (A56)

where, assuming that P̄ > 0, we have

ρ̄(sT) = E
[
Ū U(sT)

*
]
= ∑

s′T

w(s′T)

√
P(s′T)

P̄
ρ(s′T , sT). (A57)

Observe that
√

P̄ ρ̄(sT)U(sT) is the LMMSE estimate of X̄ given U(sT).
Using Lemma 2, we have the auxiliary variables

h̃ =
E
[
YX̄*]
P̄

, σ̃2 = E
[
|Y|2

]
− |h̃|2P̄ (A58)

and the GMI

I1(A; Y) = log

(
E
[
|Y|2

]
E[|Y|2]− |h̃|2P̄

)
. (A59)

If the P(sT) are fixed, then so is E
[
|Y|2

]
because U(sT) is CSCG and independent of Z given

ST = sT . The GMI (A59) is thus maximized by maximizing |h̃|2P̄. We compute

|h̃|2P̄ =

∣∣∣∣∣∑sT

PST (sT)
E
[

YX̄*
∣∣ST = sT

]
√

P̄

∣∣∣∣∣
2

(a)
=

∣∣∣∣∣∑sT

PST (sT)E
[

Y U(sT)
*
∣∣∣ST = sT

]
ρ̄(sT)

*

∣∣∣∣∣
2

(A60)

≤
(

∑
sT

PST (sT)
∣∣∣E[Y U(sT)

*
∣∣∣ST = sT

]∣∣∣)2

(A61)
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where step (a) follows because we have the Markov chain A − [U(ST), ST ] − Y which
implies that Y and the Z(s′T) in (A56) are independent give ST = sT .

Equality holds in (A61) if the summands in (A60) all have the same phase and
|ρ̄(sT)| = 1 for all sT . But this is possible by choosing X(sT) as given in (122) so that
U(sT) = ejφ(sT) U. Moreover, choose the receiver weights as

w(s̃T) =

√
P̄

P(s̃T)
e−jφ(s̃T) (A62)

for one s̃T ∈ ST with P(s̃T) > 0, and w(sT) = 0 otherwise. We then have X̄ =
√

P̄ U and

ρ(s′T , sT) = ej(φ(s′T)−φ(sT)), ρ̄(sT) = e−jφ(sT) (A63)

and the resulting maximal I1(A; Y) is given by (120) and (121).

Remark A1. The full correlation permits many choices for the w(sT); hence, these weights do not
seem central to the design. However, including weights can be useful if the codebook is not designed
for the CSIR. For example, suppose A has independent entries X(sT) for which we compute

ρ̄(sT) =
w(sT)

√
P(sT)√

∑s′T
|w(s′T)|2P(s′T)

(A64)

and thus (A60) becomes ∣∣∑sT
PST (sT)E

[
YX(sT)

*
∣∣ST = sT

]
w(sT)

*
∣∣2

∑sT
|w(sT)|2P(sT)

. (A65)

Using Bergström’s inequality (or the Cauchy-Schwarz inequality), the expression (A65) is maxi-
mized by

w(sT) = PST (sT)
E
[

YX(sT)
*
∣∣ST = sT

]
P(sT)

· c (A66)

for some constant c 6= 0. The expression (A60) is therefore

∑
sT

PST (sT |h)2
∣∣∣E[YU(sT)

*
∣∣∣ST = sT

]∣∣∣2 (A67)

which is generally smaller than E
[ ∣∣E[YU(ST)

*
∣∣ST
]∣∣ ]2 (apply ∑i a2

i ≤ (∑i ai)
2 for non-negative ai).

Remark A2. The following example shows that more general signaling and more general X̄
can be useful. Consider the channel with two equally-likely states ST = {+1,−1} and Y =
|X| exp(jsT arg(X)) + Z. We compute

E
[
Y U(+1)*|ST = +1

]
=
√

P(1)

E
[
Y U(−1)*|ST = −1

]
= 0

ρ̄(+1) =
w(1)

√
P(1) + w(−1)

√
P(−1)ρ(−1,+1)√

P̄

and one should choose P(−1) = 0 and P(1) = 2P if the power constraint is E[P(ST)] ≤ P. We
thus have

E
[
|Y|2

]
= P + 1, P̃ =

P
2
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and therefore (120) gives

I1(A; Y) = log
(

1 +
P

2 + P

)
.

However, one can achieve the rate log(1 + P) with other Gaussian X̄, namely linear combinations
of both the X(sT) and the X(sT)

* in (A56). This idea permits circularly asymmetric X̄, also known
as improper X̄ [114]. Alternatively, the transmitter can send the complex-conjugate symbols if
ST = −1.

Appendix F. Large K for Section 5.3

We complete Remark 49 by proceeding as in Appendix C.1. To generalize (70), we
must deal with unit-rank matrices y y† that do not have inverses. Consider first finite K.
Conditioned on the event Ek, we may write

Y = y
k
+ ε1/2Z̃k (A68)

where y
k
= E[Y|Ek] and E

[
Z̃k
∣∣Ek
]
= 0. We abuse notation and write the conditional

covariance matrix of Z̃k as QZ̃k
, and we assume that QZ̃k

is invertible. Define ỹ
k
= Q−1/2

Z̃k
y

k
and compute

Q(k)
Y = ε Q1/2

Z̃k

[
I +

1
ε

ỹ
k
ỹ†

k

]
Q1/2

Z̃k
(A69)

(
Q(k)

Y

)−1
=

1
ε

Q−1/2
Z̃k

[
I−

ỹ
k
ỹ†

k
ε + ‖ỹ‖2

]
Q−1/2

Z̃k
. (A70)

We further compute approximations for small ε:

y†
k

(
Q(k)

Y

)−1
y

k
=

‖ỹ
k
‖2

ε + ‖ỹ
k
‖2 ≈ 1 (A71)

Hk =
(

y
k
E
[

X̄†
∣∣∣Ek

]
+ ε1/2E

[
Z̃kX̄†

∣∣∣Ek

])(
Q(k)

X̄

)−1
≈ y

k
E
[

X̄†
∣∣∣Ek

](
Q(k)

X̄

)−1
. (A72)

We can now treat the limit of large K for which ε approaches zero, i.e., we choose a
different auxiliary model for each Y = y. Applying the Woodbury and Sylvester identities
(32) and (33) several times, (158) becomes

I1(A; Y) =
∫
CN

p(y)

[
log det

(
I +

(
Q

(y)
X̄ − Ey E†

y

)−1
QX̄

(
Q

(y)
X̄

)−1
Ey E†

y

)

−tr

(Q
(y)
X̄

(
D

(y)
X̄

)−1
Q

(y)
X̄ − Ey E†

y

)−1

Ey E†
y

dy (A73)

where

Ey = E
[

X̄|Y = y
]
, Q

(y)
X̄ = E

[
X̄ X̄†

∣∣∣Y = y
]
, D

(y)
X̄ = QX̄ −Q

(y)
X̄ .

If X̄, Y are jointly CSCG, then using (25) and (26) we have

Ey = E
[

X̄ Y†
]
Q−1

Y · y (A74)

Q
(y)
X̄ − Ey E†

y = QX̄ − E
[

X̄ Y†
]
Q−1

Y E
[

X̄ Y†
]†

. (A75)
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For example, if Y = HX + Z where H, X, Z are mutually independent and E[Z] = 0, then
we have (cf. (A39))

Ey =
∫
CN×M

p(h|y)E
[

X̄|Y = y, H = h
]

dh

=
∫
CN×M

p(h|y)QX̄ h†
(

I + hQXh†
)−1

y dh (A76)

= E
[

QX̄H†
(

I + HQXH†
)−1

∣∣∣∣Y = y
]
· y (A77)

where we have applied (A74) with conditioning on the event H = h. Similarly, we apply a
conditional version of (A75) and the step (A76) to compute (cf. (A40))

Q
(y)
X̄ =

∫
CN×M

p(h|y)E
[

X̄ X̄†
∣∣∣Y = y, H = h

]
dh

=
∫
CN×M

p(h|y)
(

Q
(y,h)
X̄ + Ey,h E†

y,h

)
dh

= E
[

Q
(y,H)

X̄ + Ey,H E†
y,H

∣∣∣∣Y = y
]

(A78)

where

Q
(y,h)
X̄ = QX̄ −QX̄h†

(
I + hQXh†

)−1
hQX̄

Ey,h = E
[

X̄|Y = y, H = h
]
= QX̄ h†

(
I + hQXh†

)−1
y.

Appendix G. Proof of Lemma 4

We mimic the steps of Appendix E. Consider the SVDs

QX̄ = VX̄ ΣX̄ V†
X̄ , QX(sT)

= VX(sT)
ΣX(sT)

V†
X(sT)

.

Let Ū ∼ CN (0, I) and write

X̄ = Q1/2
X̄ Ū.

Since the U(sT) are CSCG, we have

U(s′T) = R(s′T , sT)U(sT) + Z(s′T) (A79)

where R(s′T , sT) = E
[
U(s′T)U(sT)

†] and

Z(s′T) ∼ CN (0, I− R(s′T , sT)R(s′T , sT)
†) (A80)

is independent of U(sT). As in (109), define

X̄ = ∑
s′T

W(s′T) X(s′T)

= ∑
s′T

W(s′T)Q1/2
X(s′T)

[
R(s′T , sT)U(sT) + Z(s′T)

]
= Q1/2

X̄ R̄(sT)U(sT) + ∑
s′T

W(s′T)Q1/2
X(s′T)

Z(s′T) (A81)
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where as in (A57), and assuming QX̄ � 0, we write

R̄(sT) = E
[
Ū U(sT)

†
]
= ∑

s′T

Q−1/2
X̄ W(s′T)Q1/2

X(s′T)
R(s′T , sT). (A82)

Observe that the vector Q1/2
X̄ R̄(sT)U(sT) is the LMMSE estimate of X̄ given U(sT).

Using Lemma 2, we have (see (A58))

H̃ = E
[
Y X̄†

]
Q−1

X̄ , QZ̃ = QY − H̃ QX̄H̃† (A83)

and we have the GMI (124) that we repeat here:

I1(A; Y) = log

 det QY

det
(

QY − H̃ QX̄H̃†
)
. (A84)

As in Appendix E, if the QX(sT)
are fixed, then so is QY because U(sT) ∼ CN (0, I) is

independent of Z given ST = sT . We want to maximize the GMI (A84). Similar to (A60),
we have the decomposition

H̃QX̄H̃† = D̃ D̃† (A85)

where

D̃ = ∑
sT

PST (sT)E
[

Y U(sT)
†
∣∣∣ST = sT

]
R̄(sT)

†. (A86)

As in (A60), we have the Markov chain A− [U(ST), ST ]−Y which implies that Y and the
Z(s′T) in (A81) are independent give ST = sT . It is natural to expect that the matrix R̄(sT)
of correlation coefficients should be “maximized” somehow. Indeed, the Cauchy-Schwarz
inequality gives

v†
1 R̄(sT) v2 = E

[
v†

1 Ū ·U(sT)
† v2

]
≤

√
E
[∣∣∣Ū† v1

∣∣∣2] ·√E
[
|U(sT)† v2|

2
]
= ‖v1‖ · ‖v2‖

for any complex M-dimensional vectors v1 and v2. The singular values of R(sT) are thus
at most 1. We will choose the U(sT) so that the R(sT) are unitary matrices, and thus all
singular values are 1.

Consider the SVD decompositions (126) and a codebook based on scaling and rotating
a common U ∼ CN (0, I) of dimension N (see (122)):

U(sT) = VT(sT)U. (A87)

The receiver chooses M × M unitary matrices VR(sT) for all sT and uses the weighting
matrix (cf. (A62))

W(s̃T) = Q1/2
X̄ VR(s̃T)VT(s̃T)

† Q−1/2
X(s̃T)

(A88)

for one s̃T ∈ ST with QX(s̃T)
� 0, and W(s̃T) = 0 otherwise. These choices give X̄ = Q1/2

X̄ U
and (cf. (A63))

R(s′T , sT) = VT(s′T)VT(sT)
†, R̄(sT) = VR(sT)VT(sT)

†. (A89)
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Using (126), (A86), and (A89), we have

D̃ = ∑
sT

PST (sT)UT(sT)Σ(sT)VR(sT)
†. (A90)
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