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Abstract: Recently, the use of convolutional neural networks for hand pose estimation from RGB
images has dramatically improved. However, self-occluded keypoint inference in hand pose estima-
tion is still a challenging task. We argue that these occluded keypoints cannot be readily recognized
directly from traditional appearance features, and sufficient contextual information among the
keypoints is especially needed to induce feature learning. Therefore, we propose a new repeated
cross-scale structure-induced feature fusion network to learn about the representations of keypoints
with rich information, ’informed’ by the relationships between different abstraction levels of features.
Our network consists of two modules: GlobalNet and RegionalNet. GlobalNet roughly locates hand
joints based on a new feature pyramid structure by combining higher semantic information and more
global spatial scale information. RegionalNet further refines keypoint representation learning via a
four-stage cross-scale feature fusion network, which learns shallow appearance features induced by
more implicit hand structure information, so that when identifying occluded keypoints, the network
can use augmented features to better locate the positions. The experimental results show that our
method outperforms the state-of-the-art methods for 2D hand pose estimation on two public datasets,
STB and RHD.

Keywords: hand pose estimation; RGB image; self-occluded; multi-layer features; feature fusion

1. Introduction

Hand pose estimation is one of the most important topics in natural human–computer
interaction. Moreover, it has become a key technology in human–computer interaction
(HCI), virtual reality (VR), sign language recognition, medical treatments, and interactive
entertainment [1–6], which can help humans to communicate with machines in a more
natural way. However, due to the complex articulation and high flexibility of hand fingers,
hand pose estimation remains challenging [7]. To address these difficulties, it is important
to adopt multi-view images of the hand [8,9]. Unfortunately, a multi-view acquisition
system requires expensive hardware and strict environmental configurations. In recent
years, alternative schemas with RGB-D images with depth information have been proposed
for hand pose estimation due to the popularity of low-cost depth sensors [10–12]. However,
this method has limited scenarios and is easily affected by the surrounding environment,
so it cannot be widely used. Compared with the data format above, RGB images can be
readily available via low-cost optical sensors, such as webcams and smartphones, which
makes hand pose estimation based on RGB images widely popular.

Even for 3D hand pose estimation directly from RGB images [13–18], most proposed
methods still need to estimate 2D hand poses first, and then upgrade the estimated 2D
poses to 3D [15–17]. With regard to 2D hand images, it is crucial to locate the occluded
joints that are pervasive in various hand poses. To tackle this challenge, the methods are
mainly divided into two categories: one is to mine the hand image features and locate the
keypoints by learning the keypoint information hidden in the hand features, and the other
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is to mine the geometric relationship between the keypoints of the hand and locate the key-
points by learning the physical constraint relationship between them. YG Wang et al. [7]
constructed a cascade network, including mask prediction and attitude estimation, to
provide some soft constraints to hand-feature learning. S Kyeongeun et al. [19] proposed
a new implicit semantic data augmentation method that can generate additional training
samples in the feature space and improve the performance of hand pose estimation. TH
Pen et al. [20] proposed an optimized convolutional pose machine (OCPM) for accurately
estimating hand poses. OCPM uses the CBAM attention module and information pro-
cessing module to extract hand features more effectively, leading to higher performance.
Moreover, YG Wang et al. [21] iteratively used the interested region of the hand as feedback
information to strengthen hand feature representation by an encoder–decoder framework.
DY Kong et al. [22] proposed an adaptive graph model network (AGMN) that combines
deep learning with a graph model to better learn the geometric relationship between
hand closing points, thus improving the accuracy of hand pose estimation. Addition-
ally, YF Chen et al. [23] proposed a new nonparametric structure regularization machine
(NSRM) for hand attitude estimation. NSRM learns the representation of hand compo-
sition and structure to regularize the confidence graph of keypoints in a nonparametric
way, effectively strengthening the structural consistency of the predicted hand posture.
Although the overall hand constraint is enhanced by extracted feature methods, such as
mask, attitude, and ROI, the occluded keypoints are in need of information on the adjacent
keypoints on the inside of the hand to assist the characterization. the graph model and
structural constraint methods are usually carried out after feature representation, but the
feature learning of occluded joints has not been effectively guided, and there is still room
for improvement in its effectiveness.

When examining variable keypoints, traditional feature learning networks work well
for clear visible keypoints. For obscure ones, additional perceptual fields can capture the
features, and for invisible points, more contextual information is necessary. Therefore, we
propose a novel repeated cross-scale fusion network to learn semantic-induced features
in hand images. Our network is divided into two parts: GlobalNet and RegionalNet. In
GlobalNet, four different scales of features are generated through ResNet50, providing
rich neighborhood information among keypoints. Then, we merge the deep semantic
features with the shallow features, one by one, to roughly locate the keypoints of the hand.
In RegionalNet, GlobalNet generates four features of different scales in parallel. These
features undergo multiple cross-scale convolutional fusions, allowing the deep features
to continuously exchange information with the shallow features, allowing the network
to learn rich deep semantic and contextual information, which is beneficial for locating
occlusion keypoints.

We show the efficiency of our proposed method on two public datasets: STB [24] and
RHD [15]. Our approach significantly outperforms the current state-of-the-art algorithms
on both datasets. Qualitative results show that our method can locate hand keypoints more
efficiently when self-occlusion is present.

The main contributions of this work are:

• We propose a new and effective hand pose estimation network, which integrates
the global feature pyramid network (GlobalNet) and then further refines the feature
fusion network (RegionalNet). It can provide rich information through the relationship
between features at different levels of abstraction.

• We explore the impacts of various feature fusion methods that contribute to the
localization of occlusion keypoints, and further demonstrate that the effective use of
deep-level information is highly beneficial for the mining of occlusion keypoints.

• Our model achieves high accuracy and can mine the keypoints of hand occlusion more
effectively than other methods.



Entropy 2023, 25, 724 3 of 14

2. Related Work

The progress on 2D hand pose estimation from a single RGB image and the multi-scale
feature fusion related to our method is as follows.

2.1. Hand Pose Estimation

Hand pose estimation can be divided into two categories: regression-based and
detection-based methods. The former directly regresses the hand image to the coordinates
of keypoints position and were mainly used in the early stage [25–27]. This approach makes
the training and forward computing fast but ignores the spatial information on the feature
map, resulting in poor spatial generalization. On the other hand, the latter is inspired by
human pose estimation [28] and are widely used in hand pose estimation [29–31]. This
method predicts a heatmap for each keypoint as the intermediate representation of the
keypoint. The maximum value on the heatmap corresponds to the coordinates of the
corresponding keypoint, where the ground truth of the heatmap is a two-dimensional
Gaussian distribution centered on keypoints [32]. The heatmap adds a gradual distribution
process to the target location, which helps the network find the gradient descent more
smoothly and alleviates overfitting in case of incorrect labeling.

Compared to the human body, the hand always covers a small area in the entire
RGB image, making hand pose estimation more challenging due to the high degree of
freedom of hand joints, similar skin colors, and self-occlusion. In addition, due to the
lack of depth information and susceptibility to factors such as illumination, existing hand
pose estimation methods based on RGB images still need help in locating the occlusion
keypoints efficiently and with satisfactory precision. Regarding robustness to environmen-
tal changes, YK Li et al. [29] proposed a self-disentanglement method, which decomposes
the monochrome hand image into the representative features of the hand pose and the
complementary appearance features of the image. However, it is still challenging to lo-
cate the occluded keypoints precisely through only the adjacent appearance features. To
learn the correlation between keypoints, N Santavas et al. [30] proposed an end-to-end
lightweight network that can understand the global constraints and correlations among
keypoints through attention-enhanced reverse bottleneck blocks. This improves the accu-
racy of hand pose estimation by sharing “collective knowledge” among subsequent layers.
DY Kong et al. [31] proposed a new structure called the rotation invariant mixed graph
model network (RMGMN), which combines the graph model and depth convolutional
neural network in a novel way, and can explicitly model the spatial constraints between
hand joints, thus improving the prediction performance of occluded keypoints. However,
the pairwise parameters in the GM are fixed, and cannot adapt to the characteristics of each
input image. Additionally, adopting belief propagation reasoning increases the complexity
of the model.

2.2. Method Using Multi-Layer Features

Multi-scale feature fusion is widely used in the field of human/hand pose estimation [33–39],
because different parts of the human/hand require feature maps of different scales to rep-
resent the keypoint locations. Suppose the keypoints are detected only through the feature
map of the last layer. Therefore, the multi-scale network structure considers the information
exchange and feature extraction between feature maps of different scales at the design’s
beginning and then fuse the features of different scales to obtain the final output. For
example, the feature pyramid network (FPN) [33] predicts images of different sizes based
on predictions. The cascaded pyramid network (CPN) [34] is a modified version of FPN
that converts low-resolution features into high-resolution features through an upsampling
process. Hourglass [35] continuously downsamples and upsamples to capture feature
information at different resolutions. The bisected hourglass network [36] improves the orig-
inal hourglass network by enabling it to output both keypoint heatmaps and hand masks.
Simple baseline [37] combines upsampling and convolution parameters in a simpler way
with the deconvolution layer based on ResNet, without using jump layer connections. On
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the other hand, HRNet [38] effectively exchanges information between multiple-resolution
feature channels while maintaining a high-resolution feature representation of the image to
obtain a highly accurate high-resolution output. Additionally, HandyPose [39] gradually
learns rich spatial and contextual information in the feature space through an advanced
multi-level waterfall module, which improves the accuracy of hand pose estimation.

Unlike the human body, which has obvious distinctions between different limbs, the
hand has the same skin color in different parts, making hand pose estimation much more
challenging than human body pose estimation; moreover, occluded keypoints are difficult
to mine using the appearance features of the hand. Thus, we received some inspiration
from the above methods to make the network focus more on deep-level feature learning
and used deep features to assist the shallow features for keypoint mining.

3. Method

Given a colored image of the hand I ∈ Rw∗h∗3, our task is to detect the hand pose
by using the convolutional neural network (CNN). We express the 2D hand pose (Pk) as
the position of the joint point in the image, i.e., pk = (xk, yk) (k is the number of labeled
keypoints in the hand; here, we set k = 21), where pk represents the 2D pixel coordinates of
the k-th keypoint in image I.

An overview of the proposed network structure, which includes two subnetworks,
GlobalNet and RegionalNet, is illustrated in Figure 1. The purpose of GlobalNet is to
roughly locate the joint points and build the loss function in the first stage as intermediate
supervision. The subsequent RegionalNet is responsible for predicting the joint points
more precisely.

Figure 1. Overview of our architecture. It comprises two modules: GlobalNet and RegionalNet.

3.1. GlobalNet

GlobalNet adopts a pyramid structure with four scale features, C2, C3, C4, and C5,
from ResNet50. Shallow features, such as C2 and C3, have a higher spatial resolution
but lower-level semantics, while deep features, such as C4 and C5, have the opposite
characteristics. A jump connection is added to the FPN, as shown by the dashed line in
Figure 1, between the input and output nodes at the same scale to fuse more features
without adding too much computational cost. The heatmaps output by GlobalNet are used
to learn the approximate location of keypoints and serve as intermediate supervision. In
CPN, the output of GlobalNet will perform upsampling and 3 × 3 convolution operations
on four different scale features to generate four keypoint heatmaps. As far as we know,
there is no significant difference between these four heatmaps. Therefore, we will upsample
and merge the four scale features and then output one keypoint heatmap through 3 × 3
convolution operations, which will not only fulfill the intermediate supervision function of
GlobalNet but also reduce the number of network parameters.



Entropy 2023, 25, 724 5 of 14

3.2. RegionalNet

After learning from GlobalNet, the network roughly located the keypoints. However,
the prediction accuracy of the network did not achieve satisfactory results because the fea-
ture information learned by GlobalNet was minimal. Therefore, we attached a RegionalNet
behind GlobalNet to obtain a more detailed prediction.

RegionalNet connects the four-scale features in parallel, as shown in Figure 1. At
the same time, the features from deep to shallow are gradually increased to form a new
level. Therefore, the features of the parallel subnet at a certain level are composed of the
features of the same scale from the previous level and other parallel features of different
scales. The specific fusion mode is shown in Figure 2. The four-way feature graphs in
GlobalNet are added with the features of the corresponding scale at the beginning of each
stage in RegionalNet. For features with the same resolution, the bottleneck blocks are
stacked directly to maintain self-resolution. For the feature that needs to be increased
in the resolution, an upsampling operation is used to add and fuse the feature with the
corresponding resolution. For the feature that needs to reduce the resolution, we use 3 × 3
convolution and add/fuse with the corresponding resolution feature. Finally, the features
of all scales are concatenated to compute the final heatmap prediction.

Figure 2. Schematic diagram of the fusion method. This explains how the exchange unit fuses
features of different scales, from left to right. The upsample adopts the upsampling method of 1 × 1
convolution, and the downsample adopts the downsampling method of 3 × 3 convolution with a
stride of 2.

RegionalNet uses cross-scale convolutional fusion to fuse information of different
scales. It is not a simple upsampling step that aggregates low-level and high-level informa-
tion together. In this process, each level feature receives information repeatedly from other
parallel features, allowing for the integration of rich spatial and semantic information. This
greatly increases the ability to mine occluded keypoints.

3.3. Loss Functions

Estimated loss in GlobalNet. For GlobalNet, we apply L2 loss to 2D heatmaps of k
keypoints, and calculate the estimated loss of GlobalNet. The loss function LG is defined
as follows:

LG =
k

∑
j=1

∥∥∥hG
j − hgt

j

∥∥∥
2

(1)

where hG
j and hgt

j represent the estimated and ground truth heatmaps, respectively, for the
j-th keypoint in GlobalNet. The ground truth heatmaps for the j-th keypoint are generated
by applying a 2D Gaussian centered at its ground truth 2D keypoint location.

Estimated loss in RegionalNet. For RegionalNet, we use the method of online hard
keypoint mining. We sort the loss values of 2D heatmaps of the k keypoints and select
only the top m keypoints with larger losses for backward gradient propagation. The loss
function is defined as follows:

LR =
m

∑
j=1

∥∥∥hR
j − hgt

j

∥∥∥
2

(2)
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where hR
j and hgt

j represent the RegionalNet estimated and ground truth heatmaps of the
j-th keypoint, respectively. m represents the number of selected heatmaps with the largest
loss values (m <= k).

Total Loss of Network. The total loss Ltotal of our entire network is defined as follows:

Ltotal = LG + LR (3)

4. Experiments

In this section, several experiments are conducted to verify the performance of the
proposed method; ablation experiments were carried out in STB [24] and RHD [15]. The
experimental results show that our method can increase estimation precision compared
with the state-of-the-art methods.

4.1. Experimental Settings

Dataset and Evaluation Metrics. Our proposed method is a 2D hand pose estimation
technique based on a single RGB image. Therefore, traditional hand pose datasets based
on depth images, such as MSRA [32] and NYU [40], are not suitable for our approach.
Therefore, we chose two open datasets, STB and RHD, both of which include RGB images
of human hands and the position coordinates of 2D keypoints. Among them, RHD is a
synthetic dataset, which consists of 39 different actions of 20 different hands, including
41,258 training samples and 2728 test samples, and the image pixels in the dataset are
320 × 320. We split RHD into 38,530 training images, 2728 validation samples, and 2728
test samples. The STB dataset is a real image dataset collected from different cameras; it
contains 18,000 images and can be divided into 6 scenes. Each scene contains two RGB
images and a depth image with the same action at different positions. The image pixels in
the dataset are 640× 480. We split STB into 12,000 training images, 3000 validation samples,
and 3000 test samples. Following [13], we transferred the root joint in STB from the palm to
the wrist to make it consistent with RHD. In these two datasets, we mirrored the left hands
to the right hands.

We used the probabilistic-predicted keypoint (PCK) [9] to quantitatively compare the
predicted results. PCK calculates the proportion of the normalized distance between the
predicted keypoints and their corresponding ground truth that is less than the set threshold
σ. For the k-th hand keypoint pk, we used PCKk

σ to represent it, and approximate it to
Formula (4) on the verification dataset D.

PCKk
σ =

1
‖D‖∑

D

(∥∥∥ppt
k − pgt

k

∥∥∥
2
≤ σ

)
(4)

where ppt represents the position of predicted keypoints, pgt represents the position of real
keypoints. We used a normalized threshold σ, ranging from 0 to 1, with respect to the size
of the hand’s bounding box.

Implementation Details. Our model was implemented using PyTorch. Before the
images were inserted into the model, all images were resized to 256 × 256, and a heatmap
with a size of 64 × 64 was generated for each joint. The Adam optimizer was used for
training, in which the batch training size was set to 32, and the initial learning rate was set
to 5 × 10−4. In the 100th iteration, the learning rate was reduced to half of the original one,
and the training stopped at the 150th iteration. Moreover, dropout and early stop strategies
were used during the training process to avoid overfitting problems in the network. Our
network parameters were randomly initialized, and no other external datasets were trained
in advance. All our experiments were run on a desktop with NVIDIA 2080Ti GPU.

For a comprehensive assessment, we used CPN and HRNet as the baselines of our
method. For CPN, we chose CPN50 and CPN101 structures. For HRNet, we tested the
results of both HRNet-W32 and HRNet-W48 structures. In addition, we trained and tested
CPN, HRNet, and our method under the same experimental settings, and all of the models
were trained from scratch.
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4.2. Ablation Experiment

The proposed subsection aims to validate the effectiveness of our network through
various experiments. Unless specified otherwise, all experiments in this subsection are
conducted on the STB and RHD datasets. The input size for all models is 256 × 256.

Comparison with baselines. In Tables 1 and 2, we compare the performance of
our method with two baseline methods, CPN and HRNet. In order to prove that our
method can effectively solve the problem of identifying occluded keypoints, we list the
recognition accuracy of the 21 keypoints in the tables. At the same time, Figure 3 shows the
corresponding schematic diagram of hand joint points.

Table 1. Detailed results of testing on the STB dataset. Ours * indicat s the results without online hard
keypoints mining.

CPN50 CPN101 HRNet-W32 HRNet-W48 Ours * Ours

Wrist Wrist 0.939 0.940 0.913 0.915 0.932 0.944

thumb

MCP 0.969 0.969 0.945 0.958 0.969 0.973
PIP 0.961 0.963 0.932 0.935 0.967 0.972
DIP 0.964 0.964 0.947 0.947 0.970 0.976
TIP 0.982 0.982 0.947 0.965 0.983 0.989

index

MCP 0.989 0.991 0.964 0.978 0.991 0.995
PIP 0.978 0.983 0.972 0.976 0.979 0.986
DIP 0.990 0.990 0.970 0.984 0.990 0.991
TIP 0.982 0.982 0.946 0.94 0.984 0.992

middle

MCP 0.993 0.994 0.972 0.988 0.994 0.997
PIP 0.982 0.982 0.962 0.975 0.984 0.984
DIP 0.971 0.986 0.943 0.969 0.975 0.981
TIP 0.973 0.981 0.949 0.950 0.983 0.993

ring

MCP 0.989 0.992 0.968 0.979 0.989 0.995
PIP 0.984 0.984 0.970 0.978 0.983 0.987
DIP 0.987 0.986 0.969 0.964 0.985 0.987
TIP 0.979 0.979 0.956 0.954 0.981 0.990

little

MCP 0.984 0.986 0.965 0.965 0.984 0.995
PIP 0.984 0.984 0.973 0.972 0.984 0.984
DIP 0.981 0.986 0.973 0.971 0.982 0.991
TIP 0.976 0.979 0.949 0.961 0.980 0.987

Figure 3. Schematic diagram of hand joint points.

As shown in Table 1 for the STB dataset, the wrist and thumb locations have the lowest
recognition accuracy compared to the other 19 joints in the 21 joints identified by the six
methods. The reason may be that the wrist and thumb positions are similar to the nearby
skin texture without more apparent details. In our method, GlobalNet can roughly identify
the approximate location of each node, while the recognition accuracy of keypoints is greatly
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improved by adding RegionalNet to learn high-level semantic information. Compared with
the baseline method, our method can achieve the best recognition of each keypoint. In
addition, the accuracy of recognition is further improved by introducing the OHKM method.

Table 2. Detailed results of testing on the RHD dataset. Ours * indicates the results without online
hard keypoints mining.

CPN50 CPN101 HRNet-W32 HRNet-W48 Ours * Ours

Wrist Wrist 0.854 0.846 0.779 0.794 0.866 0.894

thumb

MCP 0.951 0.949 0.90 0.932 0.943 0.977
PIP 0.945 0.948 0.888 0.916 0.948 0.970
DIP 0.933 0.933 0.885 0.913 0.935 0.958
TIP 0.903 0.914 0.860 0.885 0.929 0.936

index

MCP 0.971 0.975 0.920 0.943 0.971 0.989
PIP 0.952 0.949 0.898 0.929 0.956 0.970
DIP 0.933 0.934 0.889 0.913 0.935 0.953
TIP 0.910 0.918 0.855 0.885 0.919 0.936

middle

MCP 0.978 0.981 0.928 0.951 0.983 0.991
PIP 0.934 0.942 0.869 0.901 0.941 0.972
DIP 0.907 0.916 0.861 0.888 0.921 0.950
TIP 0.855 0.854 0.813 0.830 0.878 0.905

ring

MCP 0.975 0.975 0.925 0.944 0.980 0.990
PIP 0.955 0.958 0.910 0.924 0.964 0.979
DIP 0.922 0.926 0.868 0.904 0.922 0.956
TIP 0.847 0.854 0.796 0.831 0.866 0.902

little

MCP 0.958 0.964 0.892 0.923 0.966 0.979
PIP 0.921 0.921 0.860 0.892 0.9921 0.944
DIP 0.901 0.912 0.847 0.889 0.915 0.933
TIP 0.857 0.854 0.790 0.828 0.863 0.884

As RHD is a synthetic dataset, its appearance and posture distribution are different
from those of real datasets. For example, the hand images in RHD do not have a knuckle
pattern, and the difference between each joint is not obvious. Therefore, it is only possible
to distinguish different joint points by simple features, such as the adjacent appearance
of hands, which is why the accuracy of our GlobalNet test in Table 2 is much higher. At
the same time, CPN and HRNet achieve higher accuracy than our method, because CPN
captures more deep semantic information through its RefineNet, and CPN101 can obtain
more information due to its deeper layers compared to CPN50. However, our RegionalNet
uses a multi-scale fusion method through repeated cross-line convolution. Each feature
from deep to shallow continuously receives information from other parallel scales, allowing
the network to learn richer semantic and spatial information of keypoints to improve the
accuracy for occluded keypoints. Furthermore, the accuracy is further improved when
OHKM is applied in RegionalNet.

The PCK performance of our proposed model on two standard datasets (STB and
RHD) is presented in Table 3. As observed, our model consistently outperforms the two
baseline methods on both datasets. Moreover, we included some representative images to
demonstrate the prediction results, as shown in Figures 4 and 5. Our model can effectively
detect occluded keypoints, such as the little finger part of the third row of images and the
middle finger part of the sixth row of images. Our model performed significantly better
than the baseline methods when tested on the RHD dataset.
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Table 3. PCK performance on two common datasets. Ours * indicates the results without online hard
keypoints mining.

PCK 0.01 0.02 0.03 0.04 0.05

STB

CPN50 0.2084 0.5931 0.7886 0.9280 0.9614
CPN101 0.2475 0.6572 0.8382 0.9466 0.9773

HRNet-W32 0.1709 0.5299 0.7298 0.9013 0.9483
HRNet-W48 0.1722 0.5303 0.7292 0.9084 0.9531

Ours * 0.2493 0.6581 0.8366 0.9521 0.9789
Ours 0.2673 0.6856 0.8483 0.9558 0.9858

RHD

CPN50 0.2410 0.5951 0.7570 0.8787 0.9211
CPN101 0.2494 0.6018 0.7612 0.8878 0.9293

HRNet-W32 0.1703 0.4830 0.6534 0.8077 0.8683
HRNet-W48 0.1904 0.5178 0.6889 0.8394 0.8966

Ours * 0.2461 0.5968 0.7653 0.8944 0.9312
Ours 0.29 0.6628 0.8180 0.9174 0.9508

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Comparison results on STB. Where (a) is the true label, (b) is the result of the CPN50
estimation, (c) is the result of the CPN101 estimation, (d) is the result of the HRNet-W32 estimation,
(e) is the result of the HRNet-W48 estimation, (f) is the result of our method’s estimation without
OHKM, and (g) is the result of our method’s estimation with OHKM.

As can be seen in Figures 4 and 5, our model can recognize relatively complex hand
poses, but there are still some instances of recognition errors in extreme cases, as shown
in Figure 5. Similar to the last picture in Figure 6, the fingers in the photographed images
are blurred due to the rapid movement of the hand. While our method may not accurately
identify the keypoints of the middle finger, its performance is still better than the baseline
method. Additionally, we found that when the fingers are close together, our method
cannot accurately identify the keypoints of each finger, such as the little finger and the ring
finger in the penultimate picture, but its performance is still better than that of the baselines.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Comparison results on RHD. Where (a) is the true label, (b) is the result of the CPN50
estimation, (c) is the result of the CPN101 estimation, (d) is the result of the HRNet-W32 estimation,
(e) is the result of the HRNet-W48 estimation, (f) is the result of our method’s estimation without
OHKM, and (g) is the result of our method’s estimation with OHKM.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Some cases of poor performance. Where (a) is the true label, (b) is the result of the CPN50
estimation, (c) is the result of the CPN101 estimation, (d) is the result of the HRNet-W32 estimation,
(e) is the result of the HRNet-W48 estimation, (f) is the result of our method’s estimation without
OHKM, (g) is the result of our method’s estimation with OHKM.

Design Choices of RegionalNet. Here, we compare different design strategies of
RegionalNet, as shown in Table 4. The output of our pyramid based on GlobalNet is
compared using the following implementations:

1. Prediction using only the heat map output from GlobalNet.
2. A structure similar to HRNet is connected behind GlobalNet, starting with a high-

resolution sub-network as the first stage and gradually adding high-resolution to
low-resolution sub-networks, one by one, to form more stages, connecting multi-
resolution sub-networks in parallel.

3. In contrast to the structure in (2), the low-resolution subnetwork is added to the high-
resolution subnetwork, one by one, starting from the low-resolution subnetwork as
the first stage, to form more stages, and connecting the multi-resolution subnetworks
in parallel, as shown in Figure 1.

Finally, a convolution layer is attached to generate the score maps for each keypoint.
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Table 4. Comparison of models of different design choices of RegionalNet (the average PCK@0.02 score).

Models STB RHD

Models in (1) 0.4382 0.4280
Models in (2) 0.5206 0.5193

ours 0.6856 0.6628

We observed that both the models in (2) and our method achieved better accuracy
compared to keypoint prediction using GlobalNet only. Our method can be compared
with (2), revealing that deep semantic information of the network is more beneficial for
predicting hand keypoints compared to high-resolution information.

Online Hard Keypoint Mining. Here, we discuss the losses used in our network.
In detail, the loss function of GlobalNet is the L2 loss of all labeled keypoints, while the
second stage attempts to learn hard keypoints, i.e., we only penalize the loss of the first
m (m <= m) keypoints in k (the number of labeled keypoints in a hand, e.g., 21 in the
STB dataset). Table 5 shows the impact of m. In the case of m = 11, the performance
of the second stage achieves the best results of the balanced training between hard and
simple keypoints.

Table 5. Comparison of the number of different hard keypoints in online hard keypoint mining
(average PCK@0.02 score).

M 9 11 13 15 17 19 21

PCK 0.663 0.685 0.683 0.680 0.676 0.664 0.658

4.3. Comparison with the State-of-the-Art Methods

We compared our method with other state-of-the-art methods and reported the PCK
test results with a threshold value of 0.02 in Table 6. It can be observed that on the STB
dataset, our method outperforms SRHandNet by 0.16 in terms of PCK, outperforms [15]
by 0.06, outperforms [41] by 0.23, outperforms NSRM by 0.19, outperforms [35] by 0.22,
outperforms InterHand by 0.06, and outperforms [30] by 0.09. The method also outperforms
SRHandNet, [41], NSRM and [35] on the RHD dataset by 0.22.

Table 6. Comparison of hand keypoint estimation across different datasets (average PCK@0.02 score).

Model STB RHD

SRHandNet [21] 0.53 0.46
Model in [15] 0.63 0.58
Model in [41] 0.46 0.44

NSRM [33] 0.50 0.49
Model in [35] 0.47 0.45

InterHand [42] 0.63 0.61
Model in [30] 0.60 0.57

Ours 0.69 0.66

In Table 7, we present a comparison of the execution times, the number of model
parameters, and the number of GFlops for all methods on a laptop configured with an
NVIDIA 1650 GPU. The reported execution times are the forward inference times of the
model without any acceleration. It is evident that our method can execute at 34.86 frames
per second, indicating superior performance compared to the other methods. Although
our method has a larger number of model parameters relative to the other methods, the
GFlops of the network is not high, which further demonstrates the superiority of our
proposed network.
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Table 7. Comparison of reasoning times (frames-per-second—FPS) and computational complexities
of different pose estimation models.

Model FPS Size (MB) Calculations (GFlops)

SRHandNet [21] 22.18 71.90 −
Model in [15] 17.14 101.4 53.47
Model in [41] 16.38 49.34 55.38

NSRM [33] 15.51 139.55 102.76
Model in [35] 20.37 8.73 25.35

InterHand [42] 21.34 541.7 −
Model in [30] 3.98 7.13 2.32

Ours 34.86 120.20 12.01

5. Conclusions

In this paper, we propose a new 2D hand pose estimation network, the repeated cross-
scale structure-induced feature fusion network, which is designed to identify occluded
keypoints. Our network consists of two modules, GlobalNet and RegionalNet, where
RegionalNet connects features of different scales in parallel and uses cross-layer convolution
to fuse features of different scales many times. Throughout the entire process, deep features
are always involved in the exchange of information between other scales, allowing the
network to learn deeper semantic information and improve the accuracy and mining ability
of occluded keypoints. The experimental results on the STB and RHD public datasets
demonstrate that the proposed repeated cross-scale fusion network outperforms state-of-
the-art methods.
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