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Abstract: Using asymmetric topology cryptography to encrypt networks on the basis of topol-
ogy coding is a new topic of cryptography, which consists of two major elements, i.e., topological
structures and mathematical constraints. The topological signature of asymmetric topology cryptog-
raphy is stored in the computer by matrices that can produce number-based strings for application.
By means of algebra, we introduce every-zero mixed graphic groups, graphic lattices, and vari-
ous graph-type homomorphisms and graphic lattices based on mixed graphic groups into cloud
computing technology. The whole network encryption will be realized by various graphic groups.

Keywords: graphic group; mixed graphic group lattice; graphic coloring; graph homomorphism;
graphic category; network encryption

1. Introduction
1.1. Research Background

Cryptography is the core technology and basic support to ensure network and informa-
tion security. As is well known, modern cryptography and its mathematical theories, such
as lattice cryptography, are used as a kind of cryptography to resist quantum computing
attacks. From Ref. [1], one can learn more about the importance and research status of
lattice cryptography in the design of mathematical problems as well as its development
and applications.

Xiaogang Wen, an academician of the United States, pointed out in his article entitled
“New revolution in physics modern mathematics in condensed matter physics” that “But
since the quantum revolution, especially, the second quantum revolution, we are more and
more aware that our world is not continuous, but discrete. We should look at the world from
the perspective of algebra.” Indeed, the development of modern mathematics proceeds
exactly from continuous to discrete as well as from analysis to algebra. Modern mathematics
also asserts the notion that discrete algebra is more essential than continuous analysis.

Group theory and, in particular, non-Abelian groups provide plenty of supply of
complex and varied problems for cryptography. Over the past few decades, group-based
cryptography has been extensively studied. For example, in 1999 Anshel and coauthors
proposed the commutator key-exchange protocol based on the braid groups [2]. In 2004,
Eick and Kahrobaei proposed the polycyclic groups as a new platform for cryptography [3].
These polycyclic groups are a natural generalization of cyclic groups with more complex
algorithmic theory. In 2008, Ostrovsky and Skeith III determined sufficient and necessary
conditions for the existence of a fully homomorphic encryption scheme (over a non-zero
ring) if and only if homomorphic encryption exists over any finite non-Abelian simple
group [4]. Since 2016, graph groups have been proposed by Flores, Kahrobaei, and Koberda
for various cryptographic protocols as several of the algorithmic problems in these graph
groups are NP-complete, which provides quantum-resistant cryptosystems (see, Section 7 of
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Ref. [5] for more detail). Moreover, in 2019 Kahrobaei and coauthors proposed the nilpotent
groups for making multi-linear maps [6]. In 2021, Anshel and coauthors presented the
so-called WalnutDSA™ [7], a group-based quantum-resistant public-key digital signature
method on the basis of the one-way function E-multiplication. It can provide very efficient
means of validating digital signatures, as the authors claimed [7], which is essential for
low-powered and constrained devices. Just very recently, a complete overview of the actual
state of group-based cryptography in the quantum era was updated by Kahrobaei, Flores,
and Noce [8], in which some important encryption groups such as polycyclic groups and
graph groups, as well as relevant combinatorial algebraic problems, are reviewed in detail.

The advantages of asymmetric encryption are as follows: higher security, the public
key is public, and the private key is saved by oneself instead of sharing with others.
In Ref. [9], we proposed the graphic group based on the Abelian additive operation of finite
modulus in 2017, called every-zero graphic group. Graphic groups were further investigated
in detail [10–14]. The mixed graphic group was introduced for the first time in Ref. [15]
and then employed to encrypt networks in whole. Moreover, the infinite graphic group
was also introduced [16].

Cryptographical graphs should possess the following characteristics: (1) they can be
conveniently used in daily activities; (2) they are characterized by strong security, i.e., they
are difficult to crack; (3) graphs and colorings (resp. labelings) are available for making
topological key-pairs. In the present work, our goal is to propose some techniques of
asymmetric topology cryptography for encrypting networks.

The present paper is structured as follows. After introducing basic concepts and
definitions in Section 1.2, in the following section we shall focus on graphic groups by
introducing mixed graphic groups and some particular mixed graphic groups such as
infinite mixed graphic groups and their homomorphisms. In Section 3, some graphic
lattices will be built up by several every-zero mixed graphic groups for encrypting networks.
In Section 4, we will discuss the whole network encryption, such as encrypting tree-like
networks.

1.2. Basic Concepts and Definitions

In the present paper, the terminologies and notations from Refs. [17–19], as well as the
following notations, will be used.

Throughout this paper, let G be a non-trivial simple undirected graph with vertex
set V(G) and edge set E(G). A graph G is a (p, q)-graph if |V(G)| = p and |E(G)| = q.
A tree is a connected acyclic graph, in which a leaf is a vertex of degree one and any two
vertices are connected by a unique path. A simple graph is called a complete graph if each
pair of distinct vertices is joined by an edge in the graph. A complete graph of n vertices
is denoted as Kn. A bipartite graph H holds V(H) = X ∪Y with X ∩Y = ∅ such that each
edge uv ∈ E(H) holds u ∈ X and v ∈ Y.

The cardinality of a set X is denoted as |X|; [a, b] indicates a set {a, a + 1, a + 2, . . . , b}
with integers a, b holding a < b; [r, s]o denotes an odd-integer set {r, r + 2, . . . , s} with odd
numbers r, s holding 1 ≤ r ≤ s− 2 true; and Z0 represents the set of all non-negative integers.

A graph labeling is an assignment of integers to the vertices or edges, or both, subject
to certain conditions. In fact, graph labeling was first introduced in the mid 1960s, and
since then approximately 200 graph-labeling techniques have been investigated [20]. In
addition, the statement “a W-constraint proper total coloring (resp. labeling)” means one of
various graph labelings, or one of various graph colorings hereafter. Graph colorings and
labelings that are not defined here can be found in Refs. [20,21]. Motivated by the algebraic
category, here we propose the graphic category as follows:
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Definition 1. A graphic category G consists of
(i) A set of graphs admitting total colorings;
(ii) A set of morphisms from A to B for two graphs A, B ∈ G, which is denoted as Hom(A, B).

For two morphisms f ∈ Hom(A, B) and g ∈ Hom(B, C), the morphism g ◦ f ∈ Hom(A, C) is
called composition, and it satisfies the following two axioms:

(1) Associativity law. For morphisms f ∈ Hom(A, B), g ∈ Hom(B, C), and h ∈ Hom(C, D),
we have (h ◦ g) ◦ f = h ◦ (g ◦ f );

(2) Identity law. For any morphism f ∈ Hom(A, B), we have f ◦ 1A = f = 1B ◦ f , where
1A ∈ Hom(A, A) and 1B ∈ Hom(B, B).

Definition 2. A set S of graphs Si admitting X-constraint total colorings fi is called the X-
constraint every-zero mixed graphic group, if there is an Abelian additive operation “[+k]” on the
elements of S in the following way: arbitrarily take an element Sk ∈ S as the zero. We define the
operation Si[+k]Sj as follows:

Si[+k]Sj := Si[+]Sj[−]Sk = Sλ ∈ S (1)

with λ = i + j− k (mod ε) computed by

fi[+k] f j :=
[

fi(ω) + f j(ω)− fk(ω)
]
(mod ε) = fλ(ω) (2)

with fλ(ω) ∈ fλ(V(S) ∪ E(S)) and any preappointed zero Sk ∈ S.

Definition 3 (See also Ref. [22]). Suppose that a (p, q)-graph G admits a W-constraint total
coloring f : V(G) ∪ E(G)→ [a, b]; a colored Topcode-matrix Tcode(G, f ) of the graph G is defined
as

Tcode(G, f ) =

 f (x1) f (x2) · · · f (xq)
f (x1y1) f (x2y2) · · · f (xqyq)
f (y1) f (y2) · · · f (yq)


3×q

=

 X f
E f
Yf

 = (X f , E f , Yf )
T (3)

holding the W-constraint W〈 f (xi), f (xiyi), f (yi)〉 = 0 for i ∈ [1, q]. Moreover, if G is a bipartite
graph with the vertex set V(G) = Xv ∪Yv and Xv ∩Yv = ∅, we stipulate xi ∈ Xv and yi ∈ Yv

such that X f ∩Yf = ∅ in Equation (3), where “W-constraint” is a mathematical constraint, or a
group of mathematical constraints.

2. Graphic Groups
2.1. Mixed Graphic Groups

Wang et al. have defined the mixed graphic group [15]; here, we present an improved
definition of the mixed graphic group as follows:

Definition 4. Suppose that a (p, q)-graph G admits a W-constraint proper total coloring f :
V(G) ∪ E(G) → [1, M], such that two color sets f (V(G)) = { f (x) : x ∈ V(G)} and
f (E(G)) = { f (uv) : uv ∈ E(G)} hold a collection of restrictions. We define a colored graph
set M f (G) = {Gs,k : s ∈ [1, p], k ∈ [1, q]} with Gs,k

∼= G, we define a W-constraint proper
total coloring gs,k(x) = f (x) + s (mod p) for every vertex x ∈ V(Gs,k), and gs,k(uv) =
f (uv) + k (mod q) for each edge uv ∈ E(Gs,k).

Lemma 1. Each colored graph set M f (G) defined in Definition 4 forms an every-zero mixed
graphic group based on the Abelian additive operation defined in Definition 2.

Proof. By Definitions 2 and 4, we define the Abelian additive operation “Gs,k[+a,b]Gi,j” on
the colored graph set M f (G) under a preappointed zero Ga,b ∈ M f (G) as follows,[

gs,k(w) + gi,j(w)− ga,b(w)
]
(mod ε) = gλ,µ(w) ∈ M f (G) (4)
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for each element w ∈ V(G) ∪ E(G), where λ = s + i − a (mod p) and µ = k + j −
b (mod q). As w = x ∈ V(G), we have ε = p, and thus Equation (4) is equivalent to[

gs,k(x) + gi,j(x)− ga,b(x)
]
(mod p) = gλ,µ(x) ∈ M f (G). (5)

As w = uv ∈ E(G), we have ε = q, and Equation (4) is also equivalent to[
gs,k(uv) + gi,j(uv)− ga,b(uv)

]
(mod q) = gλ,µ(uv) ∈ M f (G). (6)

Especially, as s = i = a = α, we have mod ε = mod q in Equation (4), and thus
we obtain [

gα,k(uv) + gα,j(uv)− gα,b(uv)
]
(mod q) = gα,µ(uv) ∈ M f (G) (7)

for uv ∈ E(G). When k = j = b = β, and mod ε = mod p in Equation (4), we have[
gs,β(x) + gi,β(x)− ga,β(x)

]
(mod p) = gλ,β(x) ∈ M f (G) (8)

for x ∈ V(G).
We show the following facts on the colored graph set M f (G):
(i) Zero. Each graph Ga,b ∈ M f (G) can be determined as zero such that Gs,k[+a,b]Ga,b =

Gs,k.
(ii) Uniqueness. For Gs,k[+a,b]Gi,j = Gc,d ∈ M f (G) and Gs,k[+a,b]Gi,j = Gr,t ∈ M f (G),

we have the facts c = s + i − a (mod p) = r and d = k + j− b (mod q) = t under the
zero Ga,b.

(iii) Inverse. Each graph Gs,k ∈ M f (G) has its own inverse Gs ′ ,k ′ ∈ M f (G) holding
Gs,k[+a,b]Gs ′ ,k ′ = Ga,b determined by [gs,k(w) + gs ′ ,k ′(w)] (mod ε) = 2ga,b(w) for each
element w ∈ V(G) ∪ E(G).

(iv) Associative law. Under the zero Ga,b, each triple Gs,k, Gi,j, Gc,d ∈ M f (G) holds

Gs,k[+a,b]
(
Gi,j[+a,b]Gc,d

)
=
(
Gs,k[+a,b]Gi,j

)
[+a,b]Gc,d

(v) Commutative law. Each pair of Gs,k, Gi,j ∈ M f (G) holds Gs,k[+a,b]Gi,j = Gi,j[+a,b]Gs,k
under the zero Ga,b.

The proof of the lemma is complete.

Remark 1. Regarding the proof of Lemma 1, there are
(i) By Equations (5) and (6) shown in the proof of Lemma 1, we have[

f (x) + s + f (x) + i− ( f (x) + a)
]
(mod p) = f (x) + s + i− a (mod p) = gλ,µ(x) (9)

with λ = s + i− a (mod p), and[
f (uv) + k + f (uv) + j− ( f (uv) + b)

]
(mod q) = f (uv) + k + j− b (mod q) = gλ,µ(uv) (10)

with µ = k + j− b (mod q). Thus, we obtain a formula

Gs,k[+]Gi,j[−]Ga,b = Gλ,µ ∈ M f (G). (11)

(ii) We call the mixed graphic group M f (G) = {Gs,k : s ∈ [1, p], k ∈ [1, q]} every-zero mixed
graphic group based on the Abelian additive operation “Gi,j[+a,b]Gs,k” defined in Equation (4),
denote it as G = {M f (G); [+]}, and we present its matrix expression as follows:

G =


G1,1 G1,2 · · · G1,q
G2,1 G2,2 · · · G2,q
· · · · · · · · · · · ·
Gp,1 Gp,2 · · · Gp,q


p×q

(12)
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(iii) The every-zero mixed graphic group G contains pq graphs in total. There are two particular
every-zero graphic subgroups, {Fv(G); [+]} = {Gs,1 : s ∈ [1, p]} ⊂ G and {Fe(G); [+]} =
{G1,k : k ∈ [1, q]} ⊂ G, based on the Abelian additive operation. In fact, G contains at least
(p + q) every-zero graphic subgroups.

Figure 1 shows an every-zero mixed graphic group based on a colored graph set
M f (G) = {Gs,k : s ∈ [1, 6], k ∈ [1, 5]}, where 6 = 0 (mod 6) and 5 = 5 (mod 5) for
vertex colors, whereas 5 = 0 (mod 5) for edge colors. By using the colored graphs shown
in Figure 1, one can readily verify Equation (11): Gs,k[+]Gi,j[−]Ga,b = Gλ,µ for vertices
and edges.
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Figure 1. An every-zero mixed graphic group G for illustrating Definition 4 and Lemma 1.

Theorem 1. Each every-zero mixed graphic group G = {M f (G); [+]} defined in Remark 1;
Definitions 3 and 4 form a graphic category based on a preappointed zero Ga,b ∈ G defined in
Definition 1.

Proof. We define a graphic morphism θa,b(Gs,k, Gi,j) from Gs,k to Gi,j by the Abelian addi-
tive operation Gs,k[+a,b]Gi,j based on a preappointed zero Ga,b ∈ G = {M f (G); [+]}, that is,
θa,b(Gs,k, Gi,j) := Gs,k[+a,b]Gi,j. Notice that Gs,k[+a,b]Gi,j = Gi,j[+a,b]Gs,k, so θa,b(Gs,k, Gi,j) =
θa,b(Gi,j, Gs,k).

For Gi,j, Gi+1,j+1, Gi+2,j+2 ∈ G, we define the composition of two graphic morphisms
as follows:

θa,b(Gi,j, Gi,j+2) = θa,b(Gi,j, Gi,j+1) ◦ θa,b(Gi,j+1, Gi,j+2)

=
(

Gi,j[+a,b]Gi,j+1

)
◦
(

Gi,j+1[+a,b]Gi,j+2

)
= Gi,j[+a,b]Gi,j+2

(13)
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and
θa,b(Gi,j, Gi+2,j) = θa,b(Gi,j, Gi+1,j) ◦ θa,b(Gi+1,j, Gi+2,j)

=
(

Gi,j[+a,b]Gi+1,j

)
◦
(

Gi+1,j[+a,b]Gi+2,j

)
= Gi,j[+a,b]Gi+2,j.

(14)

So, we have

θa,b(Gi,j, Gi+2,j+2) = θa,b(Gi,j, Gi+1,j+1) ◦ θa,b(Gi+1,j+1, Gi+2,j+2)

=
(

Gi,j[+a,b]Gi+1,j+1

)
◦
(

Gi+1,j+1[+a,b]Gi+2,j+2

)
= Gi,j[+a,b]Gi+2,j+2.

(15)

Since θa,b(Gs,k, Gi,j) ◦ 1s,k = θa,b(Gs,k, Gi,j) for 1s,k = θa,b(Gs,k, Gs,k) and 1i,j ◦ θa,b(Gs,k, Gi,j)
= θa,b(Gs,k, Gi,j) for 1i,j = θa,b(Gi,j, Gi,j), the identity law in Definition 1 holds true.
The associativity law stands for graphic morphisms.

In general, by using Equations (13) and (14) repeatedly, we can obtain a graphic
morphism composition as follows:

θa,b(Gi,j, Gs,k) = θa,b(Gi,j, Gc,d) ◦ θa,b(Gc,d, Gs,k)

=
(

Gi,j[+a,b]Gc,d

)
◦
(

Gc,d[+a,b]Gs,k

)
= Gi,j[+a,b]Gs,k

(16)

and the graphic morphism triangular law.
We claim that the every-zero mixed graphic group G = {M f (G); [+]} forms a graphic

category based on the graphic morphism set Ha,b
om(Gi,j, Gs,k) = {θa,b(Gi,j, Gs,k) : Gi,j, Gs,k ∈

G} for the preappointed zero Ga,b ∈ G.

Theorem 2. Each every-zero mixed graphic group G = {M f (G); [+]} defined in Definitions 3
and 4 forms m graphic categories such as Ha,b

om(Gi,j, Gs,k), shown in the proof of Theorem 1, for each
Ga,b ∈ G , where m is the number of elements of the every-zero mixed graphic group G.

Theorem 3. A Topcode-matrix group {Tcode(Gs,k, gs,k) : Gs,k ∈ G = {M f (G); [+]}} based on
an every-zero mixed graphic group G = {M f (G); [+]} defined in Definitions 3 and 4 forms a
Topcode-matrix category defined in Definitions 1 and 3.

Remark 2. (i) We take three Topcode-matrices

Tcode(G1,2, g1,2), Tcode(G3,3, g3,3), Tcode(G6,4, g6,4) ∈ MT = {Tcode(Gs,k, gs,k) : Gs,k ∈ {M f (G); [+]}},

where the Topcode-matrix set MT is made by the Topcode-matrices of the colored graphs of the
every-zero mixed graphic group M f (G) = {Gs,k : s ∈ [1, 6], k ∈ [1, 5]} shown in Figure 1.
Let Tcode(G6,4, g6,4) be zero; we compute

Tcode(G1,2, g1,2) [+] Tcode(G3,3, g3,3) [−] Tcode(G6,4, g6,4)

=

 0 1 1 3 4
1 5 4 2 3
1 5 4 4 2

[+]

 2 3 3 5 0
2 1 5 3 4
3 1 0 0 4

[−]

 5 0 0 2 3
3 2 1 4 5
0 4 3 3 1


=

 3 4 4 0 1
5 4 3 1 2
4 2 1 1 5

 = Tcode(G4,1, g4,1)

=

 g4,1(x1) g4,1(y1) g4,1(y1) g4,1(y2) g4,1(x3)
g4,1(x1y1) g4,1(x2y1) g4,1(x3y1) g4,1(x3y2) g4,1(x3y3)
g4,1(y1) g4,1(x2) g4,1(x3) g4,1(x3) g4,1(y3)



(17)
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under the edge modular mod 5 and the vertex modular mod 6. By using the Abelian additive
operation “Tcode(Gs,k, gs,k)[+a,b]Tcode(Gi,j, gi,j)”, it is not hard to verify the Topcode-matrix set
MT forms a Topcode-matrix group.

(ii) From Definition 3, each Topcode-matrix Tcode(Gs,k, gs,k) generates (3q)! number-based
strings for real application. As can be seen from Equation (17), the Topcode-matrix Tcode(G4,1, g4,1)
can induce the following number-based strings:

344015431242115, 354244432110125, 343124421150154

for encrypting digital files of information networks.
(iii) Notice that a Topcode-matrix Tcode(Gs,k, gs,k) corresponds to two or more graphs, which

are mutually not isomorphic from each other in general; see Figure 2 for examples. Coloring a
connected graph with the elements of a Topcode-matrix group {Tcode(Gs,k, gs,k) : Gs,k ∈ G} is a
new topic in the Topcode-matrix category.
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Figure 2. (a–f) correspond to one Topcode-matrix, but (aa–ff) are mutually not isomorphic from
each other.

Theorem 4. For two every-zero mixed graphic groups {M f (G); [+]} and {Fh(H); [+]} defined
in Remark 1, suppose that M f (G) = {G1, G2, . . . , Gn} and Fh(H) = {H1, H2, . . . , Hn}, and
there are graph homomorphisms Gi → Hi defined by θi : V(Gi) → V(Hi) such that each edge
uv ∈ E(Gi) corresponds to an edge θi(u)θi(v) ∈ E(Hi) for i ∈ [1, n]. Then, we obtain an
every-zero mixed graphic group homomorphism,

{M f (G); [+]} → {Fh(H); [+]}. (18)

2.2. Some Mixed Graphic Groups
2.2.1. Twin Mixed Graphic Groups

In Ref. [23], the authors introduced several matching colorings (resp. labelings) of
graphs and also pointed out matching diversity: configuration matching partition, color-
ing matching partition, set matching partition, matching chain, one-vs.-more and more-
vs.-more styles of matching partitions, configuration-vs.-configuration, configuration-vs.-
labeling, labeling-vs.-labeling and (configuration, labeling)-vs.-(configuration, labeling),
etc. Moreover, Wang et al. [15,24] introduced the twin odd-graceful labelings: Suppose
f : V(G)→ [0, 2q− 1] is an odd-graceful labeling of a (p, q)-graph G with p vertices and
q edges, and g : V(H) → [1, 2q] is a labeling of another graph H with p ′ vertices and q ′

edges such that each edge uv ∈ E(H) has its own color defined as g(uv) = |g(u)− g(v)|
and the edge color set g(E(H)) = [1, 2q − 1]o; we say ( f , g) is a twin odd-graceful label-
ing, and H a twin odd-graceful matching of G. Figure 3 shows some examples of the twin
odd-graceful matchings.
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By the notation of Remark 1, we can obtain a twin odd-graceful mixed graphic groups
{M f (G); [+]} and {Mg(H); [+]} based on a twin odd-graceful labeling ( f , g). Notice that
G 6∼= H, or G 6→ H, in general.

H4 H5
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3 3

1

10

6

11

8 7

1
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3 3
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10

6

11

8 7

1

3 3

1

10

6

11

8

H1 H2 H3

51

9

3

7

5 2

90

74

G

7

1

5

3 3

1

10

6

0

8 7

9

3 3

1 10

6

7

8

Figure 3. The graph G admits an odd-graceful labeling, which forms a twin odd-graceful matching
together with each of the graphs Hi with i ∈ [1, 5].

2.2.2. Dual Mixed Graphic Groups

Suppose that a (p, q)-graph G admits a W-constraint total coloring f : V(G)∪ E(G)→
[a, b]. Let max f = max{ f (w) : w ∈ V(G) ∪ E(G)} and min f = min{ f (w) : w ∈ V(G) ∪
E(G)}. We call the total coloring g(w) = max f + min f − f (w) for each element w ∈
V(G) ∪ E(G) totally dual W-constraint total coloring of the total coloring f . Notice that

max g + min g = g(w) + f (w) = max f + min f , w ∈ V(G) ∪ E(G).

Then, {Mg(G); [+]} is called a dual mixed graphic group of the mixed graphic group {M f (G); [+]}
based on a pair of mutually dual W-constraint colorings f and g. Notice that these two mixed
graphic groups are built up on the same graph G.

Respectively, we call
(i) α(x) = max fv + min fv − f (x) for each vertex x ∈ V(G) and α(uv) = f (uv) for

each edge uv ∈ E(G) vertex-dual W-constraint coloring of G, where max fv = max{ f (x) :
x ∈ V(G)} and min fv = min{ f (x) : x ∈ V(G)};

(ii) β(uv) = max fe + min fe − f (uv) for each edge uv ∈ E(G) and β(x) = f (x) for
each vertex x ∈ V(G) edge-dual W-constraint coloring of G, where max fe = max{ f (uv) :
uv ∈ E(G)} and min fe = min max{ f (uv) : uv ∈ E(G)};

(iii) (α, β) defined in (i) and (ii) ve-separately dual W-constraint coloring of the total
coloring f .

Figure 4 shows some examples for illustrating the four dual colorings mentioned above.

G1,1 D1,1

ve-separately dual W-

constraint coloring

v-dual W-constraint 

coloring

totally dual W-

constraint coloring

e-dual W-constraint 

coloring

D1,2 D1,3 D1,4

4

3

21

5 1 50

4 23

1
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1 32

4

3

21
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1 32

2

3

45
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4 23

2

3

45

1 4 05

1 32

Figure 4. Examples for illustrating four dual colorings.

2.2.3. Matching Mixed Graphic Groups

If a (p, q)-graph G is bipartite and admits a set-ordered graceful labeling f , there is a
dozen of labelings gi equivalent to f [21,25], and thus we obtain a dozen matching mixed
graphic groups {M f (G); [+]} and {Fgi (Hi); [+]} with i ∈ [1, m] for m ≥ 2. For example,
these labelings gi are odd-graceful labeling, odd-elegant labeling, edge-magic total labeling,
image-labeling, 6C-labeling, odd-6C-labeling, even-odd separable 6C-labeling, and so on
(see Ref. [23] for details). Here, we refer to the mixed graphic group {M f (G); [+]} as a
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private-key, and each mixed graphic group {Fgi (Hi); [+]} with i ∈ [1, m] as a public-key in
encrypting networks.

The complement G of a simple graph G is the simple graph with vertex set V(G),
and two vertices are adjacent in G if and only if they are not adjacent in G. So, we have
{M f (G); [+]} and {Mg(G); [+]} as a pair of matching mixed graphic groups, where G
admits a W-constraint coloring g. In general, for a graph L = G ∪ H with V(L) = V(G) =
V(H) and E(G)∩ E(H) = ∅, we have {M f (G); [+]} and {Fh(H); [+]} as a pair of matching
mixed graphic groups based on the graph L = G ∪ H, where H admits a W-constraint
coloring h.

Figure 5 shows the complementary graph of a given graph G1 and some labellings
generated from a given set-ordered graceful labelling f1 of the graph G1.

G1

the complementary 

graph of G1 based on 

the complete graph K6

H1 H2

G1 admits a set-

ordered graceful 

labelling f1 

H1 admits a set-

ordered odd-graceful 

labelling g1 

H2 admits an edge 

total labelling g2

H3

H3 admits a 

felicitous-difference 

labelling g3

H0

5

3
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4 0 54

3 21

9

5

13

7 0 97

5 42

5

3

12

4 0 34

5 21

1

3

54

2 0 34

5 21

0 54

3 21

Figure 5. Examples of the complementary graph and three colorings g1, g2, g3 generated from the
coloring f1 of G1 by equivalent transformation.

2.3. Infinite Mixed Graphic Groups and Their Homomorphisms

From Definition 4, we obtain an every-zero infinite mixed graphic group

I+∞
−∞ (G, f ; [+]) = {Gs,k : −∞ < s, k < +∞} (19)

with Gs,k
∼= G based on a (p, q)-graph G admitting a W-constraint proper total coloring

f and G ∼= G0,0, where “[+]” is the Abelian additive operation “Gs,k[+a,b]Gi,j” under a
preappointed zero Ga,b ∈ I+∞

−∞ (G, f ; [+]) for any pair of graphs Gs,k, Gi,j ∈ I+∞
−∞ (G, f ; [+]).

Remark 3. The elements of an every-zero infinite mixed graphic group I+∞
−∞(G, f ; [+]) defined in

Equation (19) can fully tile each integer point (x, y) of the xOy-plane. Moreover, I+∞
−∞(G, f ; [+])

contains infinite every-zero mixed graphic groups having finite elements, such as F({Gs+i,k}
p
i=1; [+])

and F({Gs,k+j}
q
j=1; [+]). Additionally, I+∞

−∞(G, f ; [+]) contains infinite every-zero mixed graphic
groups having infinite elements.

I+∞
−∞(G, f ; [+]) is also a graphic category under the graphic morphism composition defined

in Equation (16). Particular every-zero mixed graphic groups having infinite elements, or finite
elements can be used easily to randomly encrypt networks.

Theorem 5. (i) Suppose that the coloring f of the (p, q)-graph G based on an every-zero infinite
mixed graphic group I+∞

−∞(G, f ; [+]) is equivalent to another Wg-constraint total coloring g of the
(p, q)-graph G based on an every-zero infinite mixed graphic group I+∞

−∞(G, g; [+]). If a mapping
ϕ : V(G) ∪ E(G) → V(G) ∪ E(G) exists such that g(w) = ϕ( f (w)) for w ∈ V(G) ∪ E(G),
then we obtain an every-zero infinite mixed graphic group homomorphism,

I+∞
−∞(G, f ; [+])→ I+∞

−∞(G, g; [+]). (20)

(ii) Suppose a graph homomorphism from a (p, q)-graph G to a connected graph H based on a
mapping ϕ : V(G)→ V(H) such that each edge uv ∈ E(G) corresponds to an edge ϕ(u)ϕ(v) ∈
E(H), and vice versa. Suppose that the (p, q)-graph G admits a W-constraint total coloring f , and
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the graph H admits a W ′-constraint total coloring h. Then, we obtain an every-zero infinite mixed
graphic group homomorphism as follows:

I+∞
−∞(G, f ; [+])→ I+∞

−∞(H, h; [+]). (21)

Notice that, in general, G 6∼= H.

3. Graphic Lattices
3.1. Mixed Graphic B-Group Lattices

Definition 5. Using an every-zero mixed graphic group G = {M f (G); [+]} defined in Remark 1
to encrypt a connected graph H by a mapping ϕ : V(H) ∪ E(H) → G such that each edge
uv ∈ E(H) holds ϕ(uv) = ϕ(u)[+a,b]ϕ(v) under a preappointed zero Ga,b ∈ G, we obtain
another graph L from the set {ϕ(x), ϕ(uv) : x ∈ V(H), uv ∈ E(H)} by joining some vertices of
the graphs Giu ,ju = ϕ(u) ∈ G and Giv ,jv = ϕ(v) ∈ G together with some vertices of the graph
Giuv ,juv = ϕ(uv) ∈ G via edges, respectively.

In Figure 6, we first use an edge coloring ϕ to color the edges of the uncolored graph
H by the elements of the every-zero mixed graphic group M f (G) = {Gs,k : s ∈ [1, 6], k ∈
[1, 5]} shown in Figure 1, and then an edge-colored graph H1 is obtained by expending
this mixed graphic group edge coloring ϕ to the vertex set V(H), which is followed by
the totally colored graph H2. Moreover, the totally colored graph H3 is a colored graph
homomorphism to H2, that is, H3 →color H2.

(b) H1

y4

x1

x3x2 y1

y3x4y2

G1,2 G5,3

G6,4

G2,1

G2,4

G2,5 G1,1

G6,3G1,3

(a) H (c) H2, zero = G3,4 (d) H3, zero = G3,4

G1,2 G5,3

G6,4

G2,1

G6,1

G2,4

G3,5

G2,5 G1,1

G2,2G3,1 G2,3

G6,3G1,3 G6,5G3,2G1,5

G2,3 G2,3

G1,2 G5,3

G6,4

G6,1

G3,5

G2,5 G1,1 G2,2G3,1 G2,3

G6,3G1,3 G6,5G3,2G1,5

Figure 6. A graphic-group-coloring for illustrating Definition 5, where (a) is an uncolored graph
H; (b) is an edge-colored graph H1 obtained by coloring the edges of H with the elements of the
every-zero mixed graphic group M f (G) = {Gs,k : s ∈ [1, 6], k ∈ [1, 5]} shown in Figure 1; (c) is a
totally colored graph H2; and (d) is a tree obtained from H2 by splitting some vertices of H2.

From the proof of Lemma 1, we use the elements of an every-zero mixed graphic group
M f (G) = {Gs,k : s ∈ [1, p], k ∈ [1, q]} based on the Abelian additive operation “Gi,j[+]Gs,k”
defined in Equation (4) to make a mixed graphic lattice base, i.e.,

B = (G1,1, G2,1, . . . , Gp,1, . . . , Gs,k, . . . , Gp,1, Gp,2, . . . , Gp,q)

= (B1, B2, . . . , BM),
(22)

where M = pq.

Definition 6. With the notation of Equation (22), we can write the graph L in Definition 5 as
L = H[	k]

M
j=1ajBj and call the following set:

L(Fm,n[	k]B) =
{

H[	k]
M
j=1ajBj : aj ∈ Z0, Bj ∈ B, H ∈ Fm,n

}
(23)
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under a preappointed zero Bk ∈ B mixed graphic group lattice based on a mixed graphic lattice
base B, where ∑M

j=1 aj ≥ 1 and Fm,n is a set of graphs with vertex number ≤ m and edge number
≤ n. Moreover, we call the following set:

L(Fm,n[	]B) =
{

L(Fm,n[	k]B) : Hk ∈ B
}

(24)

mixed graphic B-group lattice since each element of the mixed graphic lattice base B can be
referred to as zero under the Abelian additive operation.

Remark 4. Regarding Definition 5, we have
(i) In general, two graphs H[	k]

M
j=1ajBj and H[	s]Mj=1ajBj are not isomorphic from each other

for two different zeros Bk, Bs ∈ B.
(ii) There are many different ways to join the graph Giuv ,juv = ϕ(uv) with two graphs

Giu ,ju = ϕ(u) and Giv ,jv = ϕ(v) by edges in Definition 5; in other words, the number of graphs of
forming H[	k]

M
j=1ajBj is two or more, see Figure 7.

(iii) Since two graphs Bk, Bs ∈ B form two homomorphically equivalent graph homomorphisms
Bk → Bs, we obtain the following mixed graphic group lattice homomorphisms:

L(Fm,n[	k]B)→ L(Fm,n[	s]B)→ L(Fm,n[	k]B). (25)

This technology has great potential for cloud computation in the future of quantum computing.
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Figure 7. A graph L for illustrating Definition 6 and Remark 4 (ii). L is obtained from the totally
colored graph H2 shown in Figure 6 by the edge-join operation and the every-zero mixed graphic
group shown in Figure 1.

3.2. Graphic Lattices Made by Graph Matchings

In the following discussion, we will use traditional complementary graphs and G-
complementary graphs to build up graphic lattices.
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3.2.1. Traditional Graph and Its Complement

Let G be the complement of a simple graph G; then, we say that (G, G) is a complete-
graphic matching. For a graph operation “(•)”, we have a complementary mixed graphic lattice

L(Fm,n(•)B) =
{

G(•)M
i=1aiBi : ai ∈ Z0, Bi ∈ B, G ∈ Fm,n

}
, (26)

where the mixed graphic lattice base B = (B1, B2, . . . , BM) is defined in Equation (22), Fm,n
is the set of all complements of graphs of Fm,n defined in Definition 6, and ∑M

i=1 ai ≥ 1.
Let B = (B1, B2, . . . , BM) be the complementary base of the mixed graphic lattice base B

with the complement Bi of Bi for i ∈ [1, M]. We obtain a complementary mixed graphic lattice

L(Fm,n(•)B) =
{

G(•)M
i=1aiBi : ai ∈ Z0, Bi ∈ B, G ∈ Fm,n

}
(27)

with ∑M
i=1 ai ≥ 1. Moreover, we obtain a totally complementary mixed graphic lattice as follows:

L(Fm,n(•)B) =
{

G(•)M
i=1aiBi : ai ∈ Z0, Bi ∈ B, G ∈ Fm,n

}
(28)

with ∑M
i=1 ai ≥ 1.

We call L(Fm,n[	k]B) and L(Fm,n(•)B) a matching of complementary mixed graphic
lattices. However, for each graph G∗ = G(•)M

i=1aiBi of L(Fm,n[	k]B), the complementary
graph G∗ of G∗ is not a graph G(•)M

i=1aiBi of L(Fm,n(•)B), in general.

3.2.2. G-Complementary

A graph G has two proper subgraphs G1 and G2 such that V(G) = V(G1) = V(G2),
E(G1) ∩ E(G2) = ∅, and E(G1) ∪ E(G2) = E(G). Thereby, we call (G1, G2) a G-matching.
Accordingly, we have the G-complementary mixed graphic lattice like that defined in
Equation (28).

4. Encrypting Networks in Whole

In asymmetric topology cryptography, one would encrypt graphs (resp. networks) by
mixed graphic groups, and we call these colorings mixed graphic group colorings. For the
number Nm of graphs of n vertices, Harary and Palmer [26] computed two graph numbers

N23 = 559946939699792080597976380819462179812276348458981632 ≈ 2179

N24 = 195704906302078447922174862416726256004122075267063365754368 ≈ 2197.
(29)

The large number of graphs, and of colorings in graph theory, can provide us with flexible
and diverse asymmetric topology technology with stable security performance and can also
increase the technical cost and intolerable time cost to the cracker. Encrypting networks in
whole is an application of mixed graphic groups and mixed graphic group lattices.

4.1. Mixed Graphic Group Colorings in Encrypting Networks

Here, we present a proof for the following theorem, as shown partly in Ref. [16]:

Theorem 6. For each graph L of a graphic B-group lattice L(Fm,n[	]B) defined in Definition 5,
Equations (23) and (24) form an every-zero mixed graphic group {Fα(L); [+]} defined in Remark 1,
where the graph L admits a total coloring α.

Proof. Suppose that a (p, q)-graph G admits a total coloring f and L is a graph of a
graphic B-group lattice L(Fm,n[	k]B), so L = H[	k]

M
j=1ajBj as defined in Equation (23) and

Definition 5.
Notice that each graph Gs,k ∈ G defined in Remark 1 admits a W-constraint proper

total coloring gs,k in Definition 4. Suppose the graph L admits a total coloring ϕ : V(L) ∪
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E(L) → G, then each edge uv ∈ E(L) holds ϕ(uv) = Giuv ,juv ∈ G, ϕ(u) = Giu ,ju ∈ G and
ϕ(v) = Giv ,jv ∈ G, such that

Giuv ,juv = ϕ(uv) = ϕ(u)[+a,b]ϕ(v) = Giu ,ju [+a,b]Giv ,jv (30)

with iuv = iu + iv − a (mod p) and juv = ju + jv − b (mod q), under a preappointed
zero Ga,b ∈ G. In the graph L, there is at least one edge between ϕ(u) = Giu ,ju and
ϕ(uv) = Giuv ,juv , and there is at least one edge between ϕ(v) = Giv ,jv and ϕ(uv) = Giuv ,juv .

Now, let us define a total coloring α for the graph L as follows:
(i) α(w) = gs,k(w) for each element w ∈ V(Gs,k) ∪ E(Gs,k) ⊂ V(L) ∪ E(L) if Gs,k ⊂ L.
(ii) For an edge xy ∈ E(L) holding x ∈ V(Gs,k) and y ∈ V(Gi,j), we color this edge xy

with α(xy) = gs,k(x) + gi,j(y) (mod q).
Next, we shall make the copies Li,j of the graph L with Li,j

∼= L for i ∈ [1, p∗] and
j ∈ [1, q∗], where p∗ = |V(L)| and q∗ = |E(L)|, and then put the copies into a set S(L) =
{Li,j : i ∈ [1, p∗], j ∈ [1, q∗]}. Moreover, we define a total coloring βi,j for each graph Li,j
by setting

(i) βi,j(u) = α(u) + i (mod p∗) for each vertex u ∈ V(Li,j);
(ii) βi,j(uv) = α(uv) + j (mod q∗) for each edge uv ∈ E(Li,j);
(iii) For an edge xy ∈ E(L) holding x ∈ V(Gs,k) and y ∈ V(Gi,j), we color this edge xy

with βs,k(x) + βi,j(y) (mod q∗).
For a preappointed zero La,b ∈ S(L), we have the following Abelian additive operation

“Li,j[+a,b]Ls,k”:
Li,j[+a,b]Ls,k := Li,j[+]Ls,k[−]La,b = Lλ,µ ∈ S(L) (31)

for any two graphs Li,j, Ls,k ∈ S(L), such that

βi,j(w) + βs,k(w)− βa,b(w) = βλ,µ(w) (32)

holds true as λ = i + s− a (mod p∗) and λ = j + k− b (mod q∗).
We show that the set S(L) holds the following facts:
(i) Zero. Every graph La,b ∈ S(L) can be as zero such that Li,j[+a,b]La,b := Li,j for any

graph Li,j of S(L).
(ii) Closure law. For each preappointed zero La,b, we have

Li,j[+a,b]Ls,k := Li,j[+]Ls,k[−]La,b = Lλ,µ ∈ S(L)

(iii) Inverse. Every graph Li,j ∈ S(L) has its own inverse Li−1,j−1 ∈ S(L) with i−1 =

2a− i and j−1 = 2b− j, such that Li,j[+a,b]Li−1,j−1 := La,b.
(iv) Associative law.

(
Li,j[+a,b]Ls,k

)
[+a,b]Lc,d = Li,j[+a,b]

(
Ls,k[+a,b]Lc,d

)
.

(v) Commutative law. Li,j[+a,b]Ls,k = Ls,k[+a,b]Li,j.
Thereby, the set S(L) forms an every-zero mixed graphic group, denoted as S(L) =

{Fα(L); [+]}, and the set S(L) is a graphic category under the graphic morphism composition
defined in Equation (16).

We can define another total coloring γi,j for each graph Li,j ∈ S(L) by making
(i) γi,j(x) = α(x) + i (mod p) for each vertex x ∈ V(Li,j);
(ii) γi,j(xy) = α(xy) + j (mod q) for each edge xy ∈ E(Li,j);
(iii) For an edge uv ∈ E(L) holding x ∈ V(Gs,k) and y ∈ V(Gi,j), we color this edge uv

with γs,k(u) + γi,j(v) (mod q), such that the set S(L) forms an every-zero mixed graphic
group S(L) = {Fα(L); [+]}.

The proof of the theorem is complete.
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4.2. Encrypting Tree-like Networks

As tree-like networks are easily accessible in real applications, have simple structures,
and admit a lot of colorings, we will apply mixed graphic group colorings to encrypt tree-like
networks. A tree T admits a mixed graphic group total coloring

θ : V(T) ∪ E(T)→ G = {M f (G); [+]}

as defined in Remark 1, where M f (G) = {Gi,j : i ∈ [1, p], j ∈ [1, q]}.

Theorem 7. A tree T with its maximum degree ∆ admits a mixed graphic group total coloring θ
from V(T)∪ E(T) to a mixed graphic group G = {M f (G); [+]} defined in Remark 1 and pq > ∆,
such that θ(uv) 6= θ(uw) for any pair of adjacent edges uv and uw of T.

Proof. We construct another tree H = T − wz by removing a leaf w of the tree T, where
the leaf w is adjacent to the vertex z of T, and keep the maximum degree ∆(H) = ∆(T).
Assume that the tree H = T − wz admits a mixed graphic group total coloring h from
V(H) ∪ E(H) to a mixed graphic group G = {M f (G); [+]} defined in Remark 1 and
pq > ∆(H), such that the colors h(uv) 6= h(uw) for any pair of adjacent edges uv and uw
of H.

Let N(z) = {x1, x2, . . . , xk, w} be the set of neighboring vertices of the vertex z
in the tree T. We define a mixed graphic group total coloring θ : V(T) ∪ E(T) →
G = {M f (G); [+]} as θ(x) = h(x) for x ∈ V(T) ∪ E(T) \ {w, wz}, θ(wz) = Gi0,j0 ∈
G \ {h(zxi) : i ∈ [1, k]}, and θ(w) = Gs0,k0 ∈ G \ {h(z), h(zxi) : i ∈ [1, k]}, such that
θ(wz) = h(z)[+a,b]θ(w) under a preappointed zero Ga,b ∈ G.

We obtain the proof of the theorem.

Theorem 8. Each tree T of n edges admits a mixed graphic group total coloring θ from V(T)∪
E(T) to a mixed graphic group G = {M f (G); [+]} defined in Remark 1, such that the edge index
set {(i, j) : θ(uivj) = Gi,j ∈ G, uivj ∈ E(T)} = X, where X = {(i1, j1), (i2, j2), . . . , (in, jn)}
with (is, js) 6= (ik, jk) for s 6= k is a preappointed index set.

Proof. Assume that any tree T of n− 1 edges holds this theorem and T admits a mixed
graphic group total coloring F : V(T) ∪ E(T) → G, such that each edge uv ∈ E(T) is
colored with

Gλ,µ = F(uv) = F(u)[+a,b]F(v) = Gi,j[+a,b]Gs,k

under a preappointed zero Ga,b ∈ G, and the edge index set is just

{(λ, µ) : F(uλvµ) = Gλ,µ ∈ G, uλvµ ∈ E(T)} = X \ {(in, jn)}.

We add a new vertex w to the tree T by joining w with any vertex x of T via a new edge xw.
The resulting tree is denoted as H = T + {w, xw}. Obviously, the tree H has n vertices.

We define a mixed graphic group total coloring θ : V(H) ∪ E(H)→ G, such that each
element z ∈ V(T) ∪ E(T) ⊂ V(H) ∪ E(H) is colored with θ(z) = F(z).

For the vertex w and the edge xw of the tree H = T + {w, xw}, we set θ(w) = Gα,β
and θ(xw) = Gin ,jn ∈ G \ θ(E(T)) such that

Gin ,jn = θ(xw) = θ(x)[+a,b]θ(w) = Gγ,δ[+a,b]Gα,β

with in = γ + α − a (mod p) and jn = δ + β − b (mod q), where the edge color set
θ(E(T)) = {Gλ,µ : F(uv) = Gλ,µ ∈ G, uv ∈ E(T)}. Finally, we obtain the desired edge
index set

{(i, j) : θ(xiyj) = Gi,j ∈ G, xiyj ∈ E(H)} = X

and the theorem follows from the induction.
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Corollary 1. If a connected graph H of n edges admits a mixed graphic group total coloring
θ from V(H) ∪ E(H) to a mixed graphic group G = {M f (G); [+]} defined in Remark 1, such
that the edge index set Index = {(i, j) : θ(uivj) = Gi,j ∈ G, uivj ∈ E(H)}, where Index =
{(i1, j1), (i2, j2), . . . , (in, jn)} with (is, js) 6= (ik, jk) for s 6= k is a preappointed edge index set,
then the connected graph H corresponds to at least a tree T of n edges such that T holds Theorem 8,
and there is a colored graph homomorphism T →color H.

Theorem 9. The edges of a tree T can be colored arbitrarily by a mixed graphic group proper
edge coloring ϕ from the edge set E(T) to a mixed graphic group G = {M f (G); [+]} defined in
Remark 1, and then this mixed graphic group proper edge coloring ϕ can be expended to the vertex
set V(T), such that each edge uv ∈ E(T) holds ϕ(uv) = ϕ(u)[+a,b]ϕ(v) under a preappointed
zero Ga,b ∈ G.

Proof. Let Ga,b ∈ G be a preappointed zero. Suppose that a tree T of p vertices admits a
mixed graphic group edge coloring F : E(T)→ G, and this coloring F has been expended
to V(T), such that F(uv) = F(u)[+a,b]F(v) for each edge uv ∈ E(T), and F(uv) 6= F(uw)
for any pair of adjacent edges uv, uw ∈ E(T). We construct a new tree H = T + {w, xw} by
adding a new vertex w to the tree T and a new edge xw with x ∈ E(T).

For this new tree H, we define a mixed graphic group edge coloring ϕ : E(H) → G
with ϕ(uv) = F(uv) if uv ∈ E(T) ⊂ E(H), and the mixed graphic group edge coloring ϕ
can be expended to V(T) ⊂ V(H), such that ϕ(uv) = ϕ(u)[+a,b]ϕ(v) for each edge uv ∈
E(T) by the induction. Next, we take ϕ(w) = Gα ∈ G and ϕ(xw) = Gλ ∈ G \ {ϕ(xyi) :
yi ∈ N(x)} holding Gλ = ϕ(xw) = ϕ(x)[+a,b]ϕ(w) = Gβ[+a,b]Gα with λ = α + β − k
(mod q). Finally, we expend the mixed graphic group proper edge coloring ϕ to V(H),
such that ϕ(xy) = ϕ(x)[+a,b]ϕ(y) for each edge xy ∈ E(H), and ϕ(uv) 6= ϕ(uw) for any
pair of adjacent edges uv, uw ∈ E(H); thus, the induction is complete.

4.3. Graphic Lattices for the Encryption of Dynamic Networks

For the encryption of dynamic networks, we define the following every-zero dy-
namically mixed graphic group: an every-zero dynamically mixed graphic group G(t) =
{M ft(G); [+]} is based on a dynamically colored graph set M ft(G) = {Gi,j(t) : i ∈ [1, p], j ∈
[1, q]} with Gs,k(t) ∼= G(t) for t ∈ [α, β], where a (p, q)-graph G(t) admits a W-constraint
proper total coloring ft : V(G) ∪ E(G) → [1, n(t)] for t ∈ [α, β], and each graph Gi,j(t)
admits a W-constraint proper total coloring gt

s,k(x) = ft(x) + s (mod p) for every vertex
x ∈ V(Gi,j(t)), and gt

s,k(uv) = ft(uv) + k (mod q) for each edge uv ∈ E(Gi,j(t)).
Obviously, G(t) = {M ft(G); [+]} for t ∈ [α, β] forms dynamically graphic categories.
With the dynamically colored graph set M ft(G) = {Gi,j(t) : i ∈ [1, p], j ∈ [1, q]}, we

have a dynamically mixed graphic lattice base as follows:

B(t) = (G1,1(t), G2,1(t), . . . , Gp,1(t), . . . , Gs,k(t), . . . , Gp,1(t), Gp,2(t), . . . , Gp,q(t))

= (B1(t), B2(t), . . . , BM(t)),
(33)

where M = pq. For a graph operation “(•)”, we have a dynamically mixed graphic lattice

L(Fm,n(t)(•)B(t)) =
{

H(t)(•)M
k=1akBk(t) : ak ∈ Z0, Bk(t) ∈ B(t), H(t) ∈ Fm,n(t)

}
(34)

such that each network H(t) is encrypted to another graph L(t) = Ht(•)M
k=1akBk(t) for

t ∈ [α, β], where ∑M
k=1 ak ≥ 1.

As the graph operation “(•)” in Equation (34) is the vertex-coinciding operation, an
example is shown in Figure 8.
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Figure 8. A graph Q for illustrating the vertex-coinciding operation in the dynamically mixed graphic
lattice shown in Equation (34) based on the every-zero mixed graphic group M f (G) = {Gs,k : s ∈
[1, 6], k ∈ [1, 5]} shown in Figure 1.

5. Summary

To summarize, in the present contribution we firstly defined the graphic category,
generalized the mixed graphic groups, and proposed the graphic lattices and various graph-
type homomorphisms, from which some useful results were obtained. Based on these
results, we then discussed in detail how to encrypt networks in whole by using the mixed
graphic groups and the mixed graphic group lattices. In the end, the graphic lattices for the
encryption of the dynamic networks were introduced, and the vertex-coinciding operation
in the dynamically mixed graphic lattice was illustrated on the basis of the every-zero
mixed graphic groups.
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