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Abstract: Infrared and visible image fusion (IVIF) aims to provide informative images by combining
complementary information from different sensors. Existing IVIF methods based on deep learning
focus on strengthening the network with increasing depth but often ignore the importance of trans-
mission characteristics, resulting in the degradation of important information. In addition, while
many methods use various loss functions or fusion rules to retain complementary features of both
modes, the fusion results often retain redundant or even invalid information.In order to accurately
extract the effective information from both infrared images and visible light images without omission
or redundancy, and to better serve downstream tasks such as target detection with the fused image,
we propose a multi-level structure search attention fusion network based on semantic information
guidance, which realizes the fusion of infrared and visible images in an end-to-end way. Our network
has two main contributions: the use of neural architecture search (NAS) and the newly designed
multilevel adaptive attention module (MAAB). These methods enable our network to retain the
typical characteristics of the two modes while removing useless information for the detection task in
the fusion results. In addition, our loss function and joint training method can establish a reliable
relationship between the fusion network and subsequent detection tasks. Extensive experiments on
the new dataset (M3FD) show that our fusion method has achieved advanced performance in both
subjective and objective evaluations, and the mAP in the object detection task is improved by 0.5%
compared to the second-best method (FusionGAN).

Keywords: computer vision; deep learning; image fusion; object detection; neural architecture search

1. Research Background and Introduction

A single sensor has its limitations, and it is challenging to create a thorough, credible,
and accurate description of a multitude of scenarios involving people, vehicles, roads,
traffic lights, and so on. This has emerged as the biggest obstacle to the ability of intelligent
systems to carry out various complex tasks. The core capabilities of the entire intelligent
system, such as information gathering and intelligent cognition, have advanced in recent
years thanks to the rapid development of multi-mode sensors [1]. Among them, visible
and infrared images, which serve as the primary visual data sources for intelligent systems,
are crucial for a variety of perception tasks.

Infrared and visible images have very different imaging principles and feature repre-
sentations. While visible images can more effectively present the scene texture details and
retain the illumination intensity information, infrared images aim to highlight the overall
contour characteristics of the object. However, due to hardware and environment factors,
blur and halos may appear in infrared images. Therefore, it is crucial to understand how
to fully exploit their benefits and combine infrared and visible images.

Additionally, the demands for multimodal fusion and subsequent downstream tasks,
such as object detection and semantic segmentation, are growing rapidly with the vigorous
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development of video surveillance and automated driving; the majority of currently used
approaches focus on creating networks or models to improve the visual impact of the
fused image, but they ignore the fact that the fused image only matches the human vision,
making it hard to meet the perceptual requirements of subsequent tasks, such as object
detection and segmentation.

The approach suggested in this paper aims to address the existing practical issues. In
order to effectively address the underlying visual issues in challenging environments, this
method employs two techniques: multi-layer semantic information guidance and a neural
network architecture search. These techniques work together to enhance the visual quality
and effects of fused images as well as the performance of downstream tasks.

Aiming to fully utilize semantic information and conduct target detection-oriented
fusion research, this paper employs a neural network search scheme and attention mecha-
nism to process various downstream tasks. The main research work and contribution of
this paper can be divided into two main parts:

• In order to reduce feature redundancy and preserve complementary information, we
designed a multi-level adaptive attention block (MAAB) in the network, which allows
our network learning to retain rich features at different scales, and more efficiently
and effectively integrate high-level semantic information.

• To discard the limitations of the existing manually constructed neural network struc-
ture, we introduce a neural architecture search (NAS) in the construction of the overall
network structure, so as to adaptively search the network structure that is suitable for
the current fusion task.

This paper will be divided into the following sections.
Section 1 introduces the research background and the significance of IVIF, as well as

the subsequent target detection. This section briefly introduces the research status of a deep
learning scheme of multimodal image fusion [2–4], and puts forward the main work and
innovation of this paper.

Section 2 introduces the research status of infrared and visible image fusion, including
traditional methods and deep learning methods [5–8].

In Section 3, an infrared visible image fusion and detection algorithm guided by
semantic information is proposed. This section introduces the specific network structure,
the construction of loss function, and the design of the search space.

In Section 4, experiments are carried out to verify the effectiveness of the method.
Moreover, the final section summarizes this paper.

2. Related Works

In this section, we review the current state of research on visible and infrared image
fusion methods, specifically divided into two parts: traditional fusion methods and deep
learning fusion methods. Moreover, we introduce the work on a neural architecture search.

2.1. Fusion Methods Based on a Traditional Approach

IVIF algorithms based on traditional approaches are divided into five categories: the
fusion method based on multi-scale transform, sparse representation, subspace, saliency,
and other traditional theories.

2.1.1. Fusion Methods Based on Multi-Scale Transform

Due to their unique information extraction tactics, multi-scale transform approaches
have had a lot of success in the image fusion field. The multiscale transform acquires the
multiscale representation of the input image, then constructs the fused multiscale coefficient
using fusion rules. Finally, to acquire the fusion result, the coefficient is inversely converted.
Although multi-scale transformation is a well-known and effective technique, it has issues
with halo and ghosting when reconstructing images.

Several researchers are altering the multi-scale transformation method to address these
issues. To accomplish greater noise reduction and more efficiently extract rich information,
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Nencini et al. [9] used the curvelet transform to divide source images into multiple wavelet
domains. In addition, Ma et al. [10] utilized Gaussian and rolling guidance filters to
decompose source images into four scales based on the base layer and detail layer. Then,
they employed an advanced visual saliency map to process the base layers and added the
detail layers into the base layers using weighted least square optimization. Their algorithm
generated fused images that contain more natural details and are more consistent with
human visual perception.

2.1.2. Fusion Methods Based on Sparse Representation

Sparse representation methods utilize an over-complete dictionary, which is trained on
a large set of high-quality natural images, to sparsely represent the input images. This is in
contrast to multi-scale-based fusion methods. This compact formulation is more practical
for infrared and visible image fusion processing since it only requires a small number of
atoms from the dictionary to describe the image’s information.

Creating an appropriate over-complete lexicon is a highly researched area. Liang et al. [11]
provided a solution for various image fusion problems by building a tensor and using singular
value decomposition (SVD) to deconstruct the images. A method for learning dictionaries
that combines sparse regularization words and low-rank representation was published by
Li et al. [12]. Additionally, this method effectively reduces noise interference in findings
from medical image fusion and even enhances soft tissue details. Zhu et al. [13] utilized
orthogonal matching pursuit, which is achieved by breaking down the multimodal image
source to obtain sparse coding of texture components. Liu et al. [14] integrated convolutional
sparse representation (CSR) into image fusion to preserve rich details and reduce the impact
of misregistration.

2.1.3. Fusion Methods Based on Subspace

A subspace is a region of space whose dimensions are less than or equal to the total
dimensions of the space. High-dimensional input image dimensions are reduced by the
subspace-based fusion technique so that they can be projected onto a low-dimensional
subspace. In order to fuse infrared and visible light, it is necessary to remove some
redundant information from the source images. By utilizing the dimensionality reduction
representation approach, it is possible to capture the valuable internal structure of the
original image while minimizing the execution time and memory costs.

Li et al. [15] used principal component analysis (PCA) to combine low-frequency
images that had undergone a morphological transformation, extracting and storing each
energy component separately to preserve the brightness information from the source image.
Ibrahim et al. [16] used the robust principle component analysis algorithm (RPCA) to split
the source image matrix into low-rank and sparse components, producing high and low
frequency subband coefficients after fusion in order to reduce some of the noise.

2.1.4. Fusion Methods Based on Saliency

Saliency detection is an intelligent algorithm that simulates the perceptual features
of the human visual system and extracts the key elements of human perception from a
picture. This bottom-up attention process is generated by the pixel and its neighbors, and
researchers aim to preserve the target’s position in the salient zone.

Saliency can inevitably be used to extract a considerable target region from a source
image. For instance, Liu et al. [17] used a sparse representation framework to fuse images
using global and local multi-scale saliency monitoring while simultaneously applying the
saliency model to the source images of two modes. Shibata et al. [18] used a super-pixel
based saliency model to extract crucial areas from an infrared image while keeping the
general information of targets.

Furthermore, a fusion method uses importance to calculate the weight. In this process,
the source image is first multi-scale transformed into the overall target layer and the detail
information layer. Afterward, the saliency map is extracted using the saliency model, and
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transformed into the weight map to create the fused two layers; finally, the fused image is
recreated using multi-scale inverse transformation.

Gan et al. [19], for example, employed phase consistency as a method of saliency
detection to produce the saliency layer of the whole layer and the detail and then used the
guided filtering on the saliency layer to obtain the fusion weighted map for fusion.

2.1.5. Fusion Methods Based on Other Traditional Theories

In addition to the fusion processes mentioned above, many other fusion methods exist
that offer novel concepts for infrared and visible light fusion. Researchers have presented
fuzzy theory and practice as a means of addressing the challenge of image blurring caused
by the fusion of high-quality source images. For example, Rajkumar et al. [20] proposed a
fusion method based on non-sampled contour transformation and fuzzy logic, along with
an adaptive average weighted fuzzy rule to guide the fusion process.

The amount of information conveyed by entropy is an indicator of its richness. It can
be used to evaluate the extent to which data from the source image is transmitted to the
fused image. Zhao et al. [21] developed a cost function that utilizes the global maximum
entropy as the primary term and gradient constraint as the regularization term, to maximize
the transmission of information from the source image to the fused image.

The primary concept of morphology is to extract the form or feature in an input image
for subsequent operation and processing using unique structural components. Bai et al. [22]
suggested a morphological center-based fusion approach. To produce the final fusion
features for fusion, the method first employs the morphological center operator to detect
the bright and fuzzy characteristics of the source image, and then extracts multi-scale
features using the correlation coefficient technique.

2.2. Fusion Methods Based on Deep Learning

The development of deep learning has led to outstanding achievements being made
in many fields of computer vision [23–28]. The IVIF algorithms based on deep learning are
divided into four categories: the fusion method based on a pretrained deep neural network,
autoencoder, end-to-end model, and the generative adversarial network.

2.2.1. Fusion Methods Based on Pretrained Deep Neural Network

This kind of method transforms the image feature extraction operation from the
manually designed mathematical operations to the pre-trained deep neural network. It
uses the multi-channel feature map generated by the neural network to achieve rich
information representation, and reconstructs the feature map through the fusion strategy
to generate results. The key to this kind of method lies in the design of the neural networks
and fusion rules.

In the image classification task, there are very mature, large-scale visible light databases
with multiple scenes and targets, and they have been used to train neural networks for
classification. Common ones include the linear multilevel VGG convolutional neural
network [29], ResNet based on the residual skip connection [30], DenseNet based on a dense
link [31], etc. Researchers working on image fusion have also started using pre-trained
feature extraction networks as methods for extracting features in the fusion framework. For
example, Li et al. [32] proposed a fusion framework based on the zero-phase component
analysis using the pre-trained ResNet-50 network as the feature extraction network. They
also apply the VGG network for multi-level feature extraction [33].

However, such methods have obvious limitations. First, the pre-trained network
parameters limit the infrared and visible light fusion since these networks are trained
for image classification. Secondly, the deep neural network suffers from the degradation
phenomenon. When using its deep-seated features for fusion, it will inevitably be disturbed
by the lost and redundant/useless features. How to reduce this impact in applications also
needs special consideration [34–36].
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2.2.2. Fusion Methods Based on Autoencoder

In the network structure based on the autoencoder, the main parts are the encoder
and the decoder. The overall process is that the source image pair is input into the encoder,
transformed into a feature map representation, and is fused at the feature level through the
set fusion strategy; the fused feature map is then reconstructed by the decoder to generate
the fusion result map.

The training strategy for the self-coding network is flexible. Encoders and decoders
with different network structures are designed and trained on large-scale datasets to obtain
network parameters with good generalization performance. After the training, in the test
phase, the learned parameters of the network are fixed, and the fusion strategy is added
between the encoder and the decoder to perform the fusion operation.

Compared with the fusion algorithm of the pre-training network, the encoder and
decoder have good scalability. Li et al. [37] took the lead in using self-coding networks
and dense convolution blocks for feature-level fusion. The use of dense blocks enriches
the feature image information. Zhao et al. [38] proposed a fusion network based on the
self-encoder. The encoder decomposes the image into the background and details feature
images that contain low-frequency and high-frequency data, respectively, restoring the
image through the decoder after fusion.

This method also has some disadvantages. First, the manually set fusion strategy
cannot reduce the difficulty and time cost of the algorithm in the operation. Second, this
method fails to address the challenge posed by the lack of multimodal images in the training
data, which ultimately limits the network’s ability to adapt to a wider range of parameters.

2.2.3. Fusion Methods Based on the End-to-End Model

The end-to-end model attempts to integrate the multi-step model into a single model
to directly realize feature extraction, fusion, and image reconstruction in the algorithm.
Li et al. [39] improved the self-coding fusion algorithm framework to an end-to-end fusion
framework. They replaced the artificially designed fusion part of the original network
with a learnable fusion network and trained it separately using the self-coding algorithm
training method. This method provides a new approach to improve the disassembly of
the end-to-end model. Zhang et al. [40] adopted the end-to-end fusion method in the
multimodal image fusion framework, using double-layer convolution for feature extraction
and deciding which fusion method to use based on the image mode.

Although the end-to-end model is widely used, it also has some issues. Compared
to the step-by-step multi-module model, the specific process in the end-to-end model has
poor interpretability, making it difficult to determine the contribution of each part to the
fusion result.

2.2.4. Fusion Methods Based on the Generative Adversarial Network

The generation adversarial network (GAN) [41] is composed of a generator and a
discriminator. The generator aims to generate pictures that are close to the real value, and
the discriminator aims to judge the false–true value output by the generator. The two play
games with each other to restrict each other and learn together.

Ma et al. [42] introduced this concept into infrared and visible light fusion. Consid-
ering that this is an unsupervised task without truth value, they combined the detailed
information of visible light with the overall infrared information to jointly create a compos-
ite loss function to constrain the generation of a countermeasure network.

Just as the encoders in the self-encoder structure can design their own encoders
for different modes of source images to better extract features, Ma et al. [43] split the
discriminator in the generated countermeasure network into the detailed discriminator
and overall discriminator, which further restricted the generator from generating a fused
image, with overall perceptions tending to the range of infrared thermal targets and local
details tending to the rich texture of visible light.
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Liu et al. [44] designed a double discriminator network and a new double-layer
optimization mathematical model for downstream target detection based on infrared and
visible light fusion at the level of decision-making fusion. Their two-level optimization
model and cooperative training design made their method perform better in subsequent
target detection tasks.

On the premise of good training, this type of method can fit the distribution of training
samples well and generate more realistic fusion images. Additionally, its loss function
design is relatively simple. However, its disadvantage is that the training process can be
unstable, and the training data samples at this stage may be limited and not diverse enough.

2.3. Neural Architecture Search

Lee et al. [45] introduced a differentiable neural architecture search method, which
optimizes hyperparameters in the search space through gradient descent, significantly
reducing the computational complexity and time cost of neural architecture search. This
method has applications in various fields, including image classification, object detection,
and speech recognition. Liang et al. [46] presented ProxylessNAS, a new differentiable
neural architecture search method that does not require a predefined search space and
can be optimized end-to-end for target tasks and hardware. It is mainly used for image
classification tasks and can quickly obtain efficient neural network architectures.

3. The Proposed Method
3.1. Method Motivation

As mentioned in the introduction, the goal of IVIF is to retain complementary infor-
mation and remove redundant information from the two modal images. At present, most
fusion methods achieve high-quality fusion results by increasing the network depth or
manually designing various loss functions. We anticipate that the foreground object in the
fused image will be nearer to the infrared image, consistent with the top-down attention
mechanism of human vision, which directs our focus toward the highlighted regions of the
infrared image. In addition, saliency representation has achieved great success in the field
of computer vision. It extracts salient features in images by similar means. For infrared and
visible image pairs, the internal specific contrast can distinguish between the foreground
target and background details using significance representation.

Moreover, it is well known that high-level semantic information can effectively guide
subsequent downstream tasks. When performing infrared-visible image fusion and sub-
sequent target detection simultaneously, incorporating such rich semantic information is
expected to enhance feature representation and improve target detection results.

Finally, considering that manually designed network structures may have difficulty
adapting to the introduction of high-level semantic information, we propose using neural
architecture search with a high upper limit and good effectiveness to determine sub-
operations. Thus, we propose a multi-level attention-guided search fusion network based
on semantic information. By incorporating saliency information constraints into the loss
function, designing multi-level attention modules, and introducing NAS, we expect that this
method can generate visual fusion results with clear thermal targets and rich real details.

3.2. Network Architecture

The network structure is composed of three parts: a high-level semantic network, a
multi-layer adaptive attention block, and a searched residual network. The overall structure
of the whole network is shown in Figure 1; each part will be introduced separately below.

3.2.1. High-Level Semantic Network

In this paper, we use the pre-trained VGG16 network as the basic framework of the
high-level semantic network φ. VGGNet has a simple structure, which is suitable for
image classification tasks. However, in other research fields of computer vision, researchers
found that networks with excellent pre-trained weights have outstanding generalization
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performances when migrating to other image data. Therefore, VGGNet is still often used to
extract high-level image features.

C

Infrared Image

Visible Image

Fused Image

CSearched 
Operation

Batch 
Normalization


ConV 3×3


ReLU 
Activation


Tanh

Activation


High-level 
Semantic Network Concatenate

Up-SamplingMulti-layer Adaptive 

Attention Block

Max

Pooling


Figure 1. The overall architecture of the proposed method.

As shown in Figure 2, we extract high-level semantic information at three different
scales in the VGG16. The larger the size of the feature map, the richer the details and
textures of the image, while the smaller the size of the feature map, to some extent, can
reflect the overall pixel distribution and significant areas. The extracted features are fu2,
fu1, fu0, and their dimensions are (64, H, W), (128, H/2, W/2), and (256, H/4, W/4),
respectively.

…

High-level Network

Visible image

Infrared image

Figure 2. The overall architecture of the high-level semantic network(part of VGG16).

3.2.2. Multi-Layer Adaptive Attention Block

To adapt the image features of the two modes to their semantic information at different
scales, this paper proposes a multi-layer adaptive attention block (MAAB) [47,48].

As shown in Figure 3, under the guidance of a similar spatial attention mechanism,
the module is designed to have an adaptive structure for processing at different scales,
where i denotes the number of downsampling operations applied. As the feature map size
continuously decreases, we reduce it to the order of i = 2, 1, 0 to ensure a minimum feature
size and prevent excessive loss of structural information.

Specifically, the module combines the feature information of different modes through
the searched convolution layer and then obtains the information by using the average pool
feature and the maximum pool feature. After downsampling operations for i times, the
module can fully contain local and global feature information. Jump links are added at
the corresponding convolution layer to enrich the amount of information and make up for
some losses. Then these intermediate features, containing spatially significant information,
are sent to the channel attention module introduced below to obtain richer and more
effective deep-seated semantic information [34–36].
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C C CA

C

CA

ConV 3×3 Max Pooling

Avg Pooling

Concatenate

Up-Sampling

ReLU 
Activation

Channel

AttentionConV 1×1

Figure 3. The architecture of MAABi. i = 2, 1, 0.

As shown in Figure 4, the input features undergo a squeeze operation on the channel
domain, generating a channel descriptor by integrating the feature map in the spatial di-
mension. This descriptor embeds the global distribution of channel characteristic response,
allowing the network to use information from the global receptive field. The two-channel
descriptors are multiplied element-wise and passed through a softmax function to generate
a weight graph representing the degree of dependence between channels through the
self-gating mechanism based on the dependence between channels. The weight graph
is multiplied by another channel descriptor point and reshaped into the original three-
dimensional feature representation. Similarly, in order to reduce information loss in the
process, there is a jump link between the original input characteristic map and the final
output result [49].

C×H×W

C×H×W
ConV 3×3

Softmax

C×HW

C×HW

Reshape

Reshape

Reshape

Figure 4. The architecture of channel attention.

3.2.3. Searched Residual Network

The method employed in this study uses different scales of semantic information, and
determining how to use this information manually can be challenging. To improve the
network’s adaptability to semantic information, the study incorporates a neural network
structure search to determine the network structure adaptively [47,48].

Considering that the original task of the directed acyclic graph used by darts is
image classification, and residual blocks and dense link blocks have exhibited outstanding
performance in image fusion tasks, the search network proposed in this paper fixes the form
of the residual network, and only searches for the weight of the single-layer convolution.
This cannot only reduce the search time and operation cost but also better adapt NAS to
the task of image fusion.

Constructing an effective search space is a critical task in the neural architecture
search (NAS) domain. A well-designed search space should balance the complexity of the
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candidate operations with their ability to improve the network architecture. In this paper,
we present ten effective and efficient operations that were selected from the search space,
as illustrated in Figure 5:

• ConV 1 × 1
• ConV 3 × 3
• ConV 5 × 5
• DilConV 3 × 3
• DilConV 5 × 5
• ResConV 1 × 1
• ResConV 3 × 3
• ResConV 3 × 3
• ConV 1 × 3 3 × 1
• ConV 1 × 5 5 × 1

We integrated these operations, referred to as searched operations, into the encoders
and decoders of both visible and infrared networks, as demonstrated in Figure 1.

The process of discovering searched operations involves three steps. First, a mixed
operation is constructed by computing a weighted sum of the ten operations in the search
space, with the weight coefficients represented by a weight matrix. Second, the training loss,
which incorporates the weight matrix, is minimized through gradient descent optimization.
The weight matrix is updated iteratively until convergence. Finally, the operation with the
maximum weight in the weight matrix is chosen as the Searched Operation, and the search
process is terminated.

Once we have identified each searched operation through the search process, the
architecture of the visible and infrared networks is fully determined. We then retrain the
network using the training data to obtain the training results. Integrating the searched
operations leads to better performance compared to using manually designed convolu-
tional operations in the encoder and decoder. The experimental results demonstrate the
effectiveness and efficiency of this NAS approach.

ConV1×1

ConV1×3 3×1 ConV1×5 5×1ResConV1×1 ResConV3×3 ResConV5×5

ConV3×3 ConV5×5 DilConV3×3 DilConV3×3^

Figure 5. The channel attention architecture.

3.3. Loss Function

The setting of the loss function is an important part of solving computer vision
problems by using the deep learning method. This section will introduce each part of the
loss function. In this section, I represents the image, and IA, IB, and IF represent the input
visible image, infrared image, and fused image, respectively.
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3.3.1. Pixel Loss Function

Considering that this is an image fusion task, we use the most common pixel-level
constraint to guide the network training, which is defined as follows:

Lpixel =
1

HW
||IF − IA||22 +

1
HW
||IF − IB||22 (1)

3.3.2. Structure Loss Function

Overall, we expect the final fusion image to be structurally similar to the source image,
because the most commonly used structural similarity index is used as the loss function,
which is defined as follows:

SSIMF,X = ∑
x, f

2µxµ f + C1

µ2
x + µ2

f + C1
·

2σxσf + C2

σx2 + σy2 + C2
·

σx f + C3

σxσf + C3
, (2)

LSSIM = (1− SSIMF,A) + (1− SSIMF,B). (3)

SSIMF,X represents the structural similarity between the source image X (X represents
the source images A and B) and the fused image F, and x and f , respectively, represent the
image patches of the source image and the fused image in the sliding window, σx, f is the
covariance of the source image patch and the fused image patch, σx and σf represent the
standard deviations of plaque, µx and µ f are the average values of the source image patches
and fused image patches. C1, C2, C3 are the parameters used to stabilize the algorithm [50].

The brightness information of an object’s surface is related to the illumination of its
environment and the object’s reflection coefficient. In natural scenes, an object’s structure
and material are generally independent of ambient illumination. This means that the
reflection coefficient is only related to the object itself. By taking this into consideration,
we can explore the structural information in an image by separating the influence of
illumination on the object.

From an image composition standpoint, the structural similarity index (SSIM) char-
acterizes structural information as a feature that portrays the object’s arrangement in the
scene, while being invariant to brightness and contrast. It models image distortion by
combining three distinct elements: brightness, contrast, and structure. The mean is used
as the estimate of brightness, the standard deviation as the estimate of contrast, and the
covariance as the measure of structural similarity. Compared with the traditional mea-
surement indicators, such as PSNR, the structural similarity is more consistent with the
judgment of human eyes on image quality in the measurement of image quality.

3.3.3. Gradient Loss Function

In addition, image gradient information can be used to represent texture details and
scene structures. In order to enrich the details in the fused image, this paper uses gradient
loss [51] to constrain texture factors, as follows

Lgrad =
1

HW
||∇ IF −Max(|∇ IA|, |∇ IB|)||22, (4)

where ∇ is defined as the gradient operation using the Sobel operator. The Sobel operator
is an important processing method in the field of computer vision, which is mainly used to
obtain the one-step degree of the digital image. HW represents the product of the height
and width of the image.

Technically, it is a discrete difference operator used to calculate the approximate value
of the gradient of the image brightness function. It weights the gray values of each pixel
in the image, and the extreme value obtained is the edge for edge detection. Applying
this operator at any point in the image will produce the corresponding gradient vector. In
general, the Sobel operator produces good detection results and has a smoothing effect
on noise, which is why it is widely used in image fusion. This paper calculates the Sobel
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operator in the X direction and Y direction, respectively, and combines them to obtain the
final result. As shown above, in the background, the same part often has large gradient
differences in images of different modes. We take the maximum value of the gradient
information of the two modes to calculate the loss function, which can reduce the impact
caused by modal differences.

3.3.4. Target-Aware Loss Function

In this paper, we propose a weighted average technique based on a visual saliency
map (VSM) to design the pixel-level loss function. VSM [52] can depict and highlight visual
structures, regions, or objects in images, making it useful in various computer vision and
computer graphics applications. In image fusion, VSM can reflect the salient features of the
image, providing a regional semantic information constraint based on the distribution of
pixel features.

Considering the simplicity and effectiveness of the method, this paper uses this
method [53] to construct VSM. The algorithm defines pixel-level saliency based on the
contrast of pixels with all other pixels. Let Pi represent the intensity value of a pixel i in
image I. The salient value V(i) of pixel i is defined as

V(i) = |Pi − P1|+ |Pi − P2|+ · · ·+ |Pi − PN |, (5)

where N denotes the total number of pixels in image I. The saliency values of two pixels
are equal if two pixels have the same intensity value. Thus, we can rewrite this as follows:

V(i) =
G−1

∑
j=0

Mj
∣∣Pi − Pj

∣∣, (6)

where j denotes the pixel intensity, Mj represents the number of pixels whose intensities are
equal to j, and G is the number of gray levels (256 in this paper). Then, V(i) is normalized
to [0, 1]. Let VB denote the VSMs of the infrared images. We can denote the target-aware
loss function as follows:

Ltarget =
1

HW
||IF ·VB − IB ·VB||1 (7)

3.3.5. Total Fusion Loss Function

Consequently, combining all of the loss functions above, the following total fusion loss
function guides the learning of image fusion.

L f usion = Lpixel + αLSSIM + βLgrad + γLtarget, (8)

where Lpixel is the pixel loss, and LSSIM and Lgrad are the structure loss and gradient loss,
respectively. α, β, and γ are the trade-off parameters. In the relevant settings of the neural
network search, we also use this loss function as the loss function of the training set and
the val set. The definitions are as follows:

Ltrain = L f usion = Lval (9)

In this way, the overall goal of the network can be consistently ensured, and the
convergence of the structure and parameters can be facilitated.

4. Experiments

We conducted experimental evaluations on three datasets, namely TNO, Roadscene,
and M3FD. For the image fusion task, we selected 180 images from the 4500 images in
the 3 datasets and converted them to grayscale. To enhance the data content and make
better use of the images, we randomly cropped these images to generate 20 K pictures of
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size 64 × 64 for network training. During training, these image blocks were normalized to
[−1, 1] before being fed to the network.

In the search process of the neural architecture search, we used Adam [54] as the
optimizer on the training set and set the learning rate as 1 × 10−5. In the validation set,
we used SDG as the optimizer and set the learning rate and the weight attenuation of the
weight matrix as 1 × 10−2 and 1 × 10−4, respectively. The batch size during training was
set to 16, and the number of epochs was set to 100. After determining the structure, we
used the Adam optimizer during training and set the learning rate to 2 × 10−5. The batch
size during this training was set to 64, and the number of epochs was set to 20.

In object detection, we used 4200 pairs of images labeled in M3FD for network training.
We used YOLOv5 as the object detection network and we used the pre-trained YOLOv5s
model. In object detection training, the image size was set to 320 × 320, and other parame-
ters were carried out according to the original data provided by the official.

Our approach was implemented on PyTorch with an NVIDIA Tesla V100 GPU. The
tuning parameters α, β, and γ were set to 0.3, 0.5, and 1.2, respectively.

First, as shown in Figure 6 below, we exhibit a heat map of the neural network search
results. The heat map depicts the weight matrix, which was introduced in Section 3.2.3.
The left subfigure illustrates the infrared network, while the right subfigure portrays the
visible network. Each column in the figure corresponds to ten operations in the search
space, and each row corresponds to a searched operation in either the encoder or decoder.
The intensity of the color used in the figure signifies the weight of the operation, with
darker shades denoting greater weights. Ultimately, the operation with the highest weight
is selected as the searched operation, which is highlighted by the red box.

0.1

0.2

0.3

0.4

0.5

1-C 3-C 5-C 3-DC 3-DC^ 1-RC 3-RC 5-RC 1×3-C 1×5-C1-C 3-C 5-C 3-DC 3-DC^ 1-RC 3-RC 5-RC 1×3-C 1×5-C

Ir_Network

E
nc
od
er

E
nc
od
er

D
ec
od
er

D
ec
od
er

Vis_Network

Figure 6. Heat map of search results by the training strategy.

4.1. Results of Infrared and Visible Image Fusion

We evaluated the fusion performance of our method by comparing it with seven state-
of-the-art methods: DenseFuse [37], FusionGAN [42], RFN [39], GANMcC [55], IFCNN [40],
MFEIF [56], and U2Fusion [57].

4.1.1. Qualitative Comparisons

(1) Qualitative Comparisons on TNO Datasets

The intuitive qualitative results on two typical image pairs from the TNO dataset
are shown in Figure 7. The boxes in the figure indicate the target objects and textured
background in the fused image that are of our interest.

The first pair of famous images depicts a residential area under night surveillance. The
infrared image clearly shows useful information that is difficult to distinguish in visible
images, such as human figures, clouds, shrubs, and wire circles. As shown in the red boxes,
our method effectively preserves the contrasted information of the image, and the fused
image indicates the shrubs as background with an even distribution of pixels, while other
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methods, such as FusionGAN and GANMcC, generate blurred backgrounds. As shown in
the green boxes, our approach outlines target objects that are more apparent, while other
methods, such as RFN-Nest, are greatly affected by the visible images, and the outline of
the target object is blurred and difficult to identify.

Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Figure 7. Qualitative comparison of typical image pairs in the TNO dataset.

The second pair of images depicts a daytime surveillance scene. The human figure
in the visible image blends into the background, while the target object is evident in the
infrared image. The outline of the street light pole in the infrared image is difficult to
identify, and the outline is more apparent in the visible image. As shown in the red box,
our method sharpened the contours of the target object compared to the visible image and
effectively absorbed the valuable information from the infrared light image, while other
methods, such as RFN-Nest and U2Fusion, generated blurred low-brightness target objects.
As shown in the green box, our method effectively preserves the gradient information and
clearly shows the outline of the street light pole as a detailed background, while other
methods, such as FusionGAN, generate fused images with uneven distribution of pixels in
the background, making it difficult to distinguish the outlined details.

(2) Qualitative Comparisons on Roadscene Datasets

The intuitive qualitative results of two typical image pairs from the Roadscene dataset
are shown in Figure 8. The boxes in the figure indicate the target objects and textured
background in the fused image that are of our interest. The grayscale image, as the fusion
result, is treated as the Y channel and merged with the Cb and Cr channels of the visible
light image to form a YCbCr image, which is then converted to the RGB channel to obtain
the color fusion image.

Two classic pairs of images depict street scenes at night. In contrast to the previous
pairs, both pairs include artificial light sources, setting a unique barrier to image fusion.

In the first group of images, the target object in the visible image is not identifiable,
while the background details in the infrared image have a chaotic pixel distribution. In the
second group of images, the vehicle in the visible image blends in with the blackness, while
the overexposure caused by the artificial light source blurs the background details in the
infrared images. Our method shows stronger contrast and richer color details compared
to FusionGAN and GANMcC, as shown in the green box in the first set and the red box
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in the second set. It also avoids overexposure that causes ghosting compared to MFEIF.
Moreover, as shown in the red box in the first group and the green box in the second group,
our method effectively enhances the contours of the target object.

Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Figure 8. Qualitative comparison of typical image pairs in the Roadscene dataset.

(3) Qualitative Comparisons of M3FD Datasets

The intuitive qualitative results of two typical image pairs from the M3FD dataset
are shown in Figure 9. The boxes in the figure indicate the target objects and textured
background in the fused image that are of our interest.

These two sets of images evaluate the effectiveness of different fusion approaches
under typical and unique barriers.

The first set of images shows a night street scene. The visible image has overexposure
due to artificial light sources, making it difficult to recognize the human silhouette. The
infrared image cannot capture the artificial light sources and loses text information on
the signboard. As shown in the green box, our method generates the fused image with
the brightest and most visible target object compared to other methods. As shown in the
red box, our method produces an image with the highest contrast, good distribution of
background details, and precise text information on the signboard.

The second set of images depicts a mountain scene during the daytime. The presence
of smoke in the visible image makes it impossible to identify the target object. Still, the
infrared image can capture the target object information through the smoke. As shown by
the green box, our method fully absorbs the knowledge of the target object in the infrared
image, with clear contour edge information and good brightness. As shown by the red box,
the fused image generated by our method has high contrast, good pixel distribution, and
rich color details compared to other methods in representing background details.
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Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Visible Image DenseFuse FusionGAN RFN-Nest GANMcC

Infrared Image IFCNN MFEIF U2Fusion Ours

Figure 9. Qualitative comparison of typical image pairs in the M3FD dataset.

4.1.2. Quantitative Comparisons

In order to make a more comprehensive quantitative comparison, we selected six com-
mon fusion indicators in the field of image fusion as the evaluation benchmark, including
three referenced indexes: mutual information (MI) [58], structural similarity (SSIM) [50],
and the sum of correlation differences (SCD) [59], and three non-referenced evaluation
indexes: entropy (EN) [60], standard deviation (SD) [61], and spatial frequency (SF) [62].

• The quantity of information transmitted from the source image to the fused image
is measured using MI. A larger MI indicates that more information from the source
image pair is maintained in the fused image.

• The human visual system is sensitive to picture loss and distortion, and this is modeled
using SSIM. It has a good correlation with fusion performance.

• SCD displays the correlation between the source and fused images. A larger SCD
indicates a higher fusion performance.

• EN measures the information in the fused image. A higher EN typically denotes
improved fusion performance.

• The contrast and pixel distribution of the fused image are reflected by SD. A larger SD
typically denotes a more aesthetically pleasing fused image.

• SF represents the overall gradient distribution of the image in the spatial domain. The
texture and edges become richer as the SF becomes larger.

The specific results are shown in Tables 1 and 2 below.
In the TNO dataset, as shown in Table 1, our method consistently delivers the highest

or second-highest mean compared to the other methods. The lower standard deviation,
on the other hand, illustrates the consistency of our approach across cases. Our method
specifically obtains the highest EN, SD, and SF, which shows that it produces fused images
with rich information, good pixel distribution, strong contrast, and rich texture. SSIM
reflects the pleasing visual effect of our fusion method.
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Table 1. Quantitative comparison display of the TNO datasets. The best result is highlighted in red
whereas the second-best one is highlighted in blue.

MI EN SD SF SSIM SCD

DenseFuse 0.867 ± 0.28 6.832 ± 0.31 34.419 ± 6.84 9.362 ± 2.86 0.437 ± 0.07 1.404 ± 0.11
FusionGAN 0.393 ± 0.14 6.611 ± 0.33 30.633 ± 7.74 6.313 ± 2.38 0.415 ± 0.06 1.359 ± 0.09

IFCNN 0.548 ± 0.16 7.033 ± 0.27 37.272 ± 5.39 9.325 ± 2.47 0.454 ± 0.10 1.300 ± 0.07
GANMcC 0.782 ± 0.20 6.697 ± 0.34 31.764 ± 6.49 6.301 ± 1.47 0.424 ± 0.03 1.340 ± 0.09
RFN-Nest 0.774 ± 0.21 7.038 ± 0.25 37.438 ± 8.05 5.941 ± 1.83 0.367 ± 0.07 1.441 ± 0.11
U2Fusion 0.793 ± 0.25 7.080 ± 0.19 37.509 ± 6.94 10.366 ± 4.00 0.451 ± 0.05 1.274 ± 0.08

MFEIF 0.957 ± 0.35 6.784 ± 0.49 34.340 ± 10.21 7.673 ± 2.27 0.399 ± 0.09 1.360 ± 0.10
Ours 0.948 ± 0.22 7.140 ± 0.35 42.400 ± 13.09 10.378 ± 3.79 0.457 ± 0.06 1.426 ± 0.08

Table 2. Quantitative comparison display of the Roadscene datasets. The best result is highlighted in
red whereas the second-best one is highlighted in blue.

MI EN SD SF SSIM SCD

DenseFuse 0.877 ± 0.23 7.271 ± 0.21 45.664 ± 6.44 10.513 ± 3.72 0.497 ± 0.03 1.671 ± 0.07
FusionGAN 0.676 ± 0.13 7.113 ± 0.23 39.790 ± 5.72 8.415 ± 2.98 0.485 ± 0.04 1.641 ± 0.08

IFCNN 0.636 ± 0.14 7.278 ± 0.17 47.414 ± 7.07 10.334 ± 2.75 0.529 ± 0.03 1.579 ± 0.15
GANMcC 0.964 ± 0.34 7.301 ± 0.22 46.872 ± 6.65 8.817 ± 1.82 0.421 ± 0.03 1.367 ± 0.09
RFN-Nest 0.926 ± 0.25 7.307 ± 0.22 48.832 ± 6.50 7.366 ± 2.36 0.502 ± 0.02 1.602 ± 0.03
U2Fusion 0.823 ± 0.25 7.275 ± 0.22 42.876 ± 7.39 13.143 ± 2.92 0.526 ± 0.04 1.726 ± 0.12

MFEIF 0.988 ± 0.27 6.076 ± 0.34 40.263 ± 8.83 8.522 ± 3.03 0.530 ± 0.03 1.590 ± 0.03
Ours 1.08 ± 0.20 7.354 ± 0.30 50.039 ± 4.82 13.679 ± 2.52 0.496 ± 0.03 1.667 ± 0.02

In the Roadscene dataset, as shown in Table 2, our approach yields the highest average
values under MI, EN, SD, and SF evaluations. The highest MI and EN values show how
effectively our method can transfer information from the source images to the fused images.
The highest SD and SF values demonstrate how the fused images generated by our method
are aesthetically pleasing and maintain their sharp edges and rich textures.

4.2. Results of IVIF and Object Detection

In the ensuing target detection section, we conducted the following actions to ensure
that the experiment was fair: 300 epochs were retrained based on the pre-trained YOLOv5s
model for each fusion method, and their corresponding detection network parameters were
obtained before detection. That is, a pre-trained YOLOv5s model was used and fine-tuned
on the fused images.

In the dataset used in this paper, only the M3FD dataset has object annotation, so
relevant experiments were carried out on this dataset. Different from our previous work,
this time we enabled a new training set and test set. The 4200 images in the dataset are
divided into a test set and a training set according to the 800/3400 images and scenes. Each
scene in the test set has not appeared in the training set.

The quantitative results of target detection in the M3FD dataset are shown in Table 3.
Almost all fusion approaches have shown excellent detection results in general. Except
for particular label categories, the detection accuracy of fusion approaches outperformed
that of using solely visible or infrared pictures. By highlighting the representation of
infrared thermal objects and activating highly rich information in the modes through high-
level semantic information, our method has greater advantages in this dataset featuring
challenging scenes.



Entropy 2023, 25, 718 17 of 21

Table 3. Quantitative results (precision) of object detection in the M3FD dataset among all of the
image fusion methods plus detectors. The best result is highlighted in red whereas the second-best
one is highlighted in blue.

Method Person Car Bus Truck Motorcycle Lamp All mAP@.5

Infrared 0.631 0.561 0.544 0.536 0.510 0.512 0.544 0.4354
Visible 0.612 0.591 0.596 0.569 0.547 0.531 0.574 0.4264

DenseFuse 0.633 0.603 0.631 0.583 0.599 0.523 0.595 0.4766
FusionGAN 0.597 0.589 0.584 0.589 0.544 0.534 0.572 0.4784
RFN-Nest 0.613 0.577 0.601 0.576 0.558 0.552 0.580 0.4772
GANMcC 0.582 0.568 0.565 0.510 0.527 0.554 0.551 0.4760

IFCNN 0.506 0.566 0.596 0.566 0.567 0.535 0.556 0.4569
MFEIF 0.622 0.610 0.578 0.576 0.575 0.514 0.579 0.4610

U2Fusion 0.577 0.584 0.596 0.548 0.577 0.558 0.573 0.4642
Ours 0.647 0.607 0.582 0.597 0.583 0.564 0.597 0.4810

4.3. Ablation Studies
4.3.1. Study on Model Architectures

We study our method’s model architecture and further validate the effectiveness
of several individual components as shown in Table 4. The introduction of NAS and
the MAAB module built for semantic information is the focus of the network structure
presented in this study. For these two components, we built appropriate ablation.

The initial single-layer search convolution layer is replaced with ConV 3× 3 (stride = 1)
operation when NAS is not used. When MMAB is not used, a combination of ConV 3 × 3
(stride = 1) + BN + ReLU is used instead. Figure 10 shows the visualization results of fused
images generated by models with different ablation degrees, where, w/o means “without”.

Source Image w/o MAAB & NAS w/o NAS w/o MAAB Full Model

Figure 10. Qualitative comparison of results using different networks.

Without MAAB, the utilization of high-level semantic information has some adaption
issues, and the overall contrast and color are poor. Without NAS, it is impossible to make
greater use of semantic information with the original features, resulting in a significant loss
of detail. These two components have favorable effects on the ultimate fusion result.

Table 4. Quantitative results of image fusion in the TNO and Roadscene datasets using different
networks. The best result is highlighted in red whereas the second-best one is highlighted in blue.

Component TNO Dataset Roadscene DatasetModel MAAB NAS EN SF SCD EN SF SCD

M1 × × 7.310 7.216 1.211 7.365 9.269 1.386
M2 X × 6.856 9.366 1.365 7.031 12.548 1.753
M3 × X 7.012 8.998 1.318 7.124 10.945 1.421
M4 X X 7.186 10.378 1.416 7.341 13.273 1.789

The relevance of MAAB and NAS in the network can also be seen in the quantitative
comparison presented in the table. Our overall model’s final findings came in second
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place. The M1 model creates too much noisy pixel distributions, which interferes with the
findings, thus ’en’ is not the greatest value.

4.3.2. Analyzing the Training Loss Functions

We discuss the impact of different loss functions on our method. The resulting image
is substantially deteriorated without SSIM limitations, as seen in Figure 11; moreover, the
contrast and brightness are drastically altered. The edge of the picture becomes blurred
without the gradient limitation, and more information is lost. The brightness of the charac-
ters in the image is lowered without the significant target limitation supplied by VSM, as is
the contrast with the environment, altering the viewing effect.

Overall, the loss functions we investigated do their jobs and have a significant impact
on the training process.

Figure 11. Qualitative comparison of loss functions. From left to right: w/o LSSIM, w/o Lgrad, w/o
LTarget and the L f usion.

5. Discussion

Overall, the paper presents a valuable contribution to the field of IVIF and object
detection by proposing a multi-level structure search attention fusion network based
on semantic information guidance. Future research could expand on these findings to
enhance the accuracy and robustness of object detection algorithms in fused images under
challenging conditions.

6. Conclusions

In this paper, a multi-level structure-search attention fusion network based on semantic
information guidance is proposed. The multi-level adaptive attention block (MAAB)
is designed in the network to reduce feature redundancy and preserve complementary
information. The neural architecture search (NAS) is introduced in constructing the overall
network structure to eliminate the limitations of the existing manually constructed neural
network structure. Extensive experiments on the new dataset (M3FD) show that our fusion
method has achieved advanced performance in both subjective and objective evaluations,
and the mAP in the target detection task is improved by 0.5%.
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