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Abstract: Implicit Motives are non-conscious needs that drive human behavior towards the achieve-
ment of incentives that are affectively incited. Repeated affective experiences providing satisfying
rewards have been held responsible for the building of Implicit Motives. Responses to rewarding
experiences have a biological basis via close connections with neurophysiological systems controlling
neurohormone release. We propose an iteration random function system acting in a metric space to
model experience–reward interactions. This model is based on key facts of Implicit Motive theory
reported in a broad number of studies. The model shows how (random) responses produced by
intermittent random experiences create a well-defined probability distribution on an attractor, thus
providing an insight into the underlying mechanism leading to the emergence of Implicit Motives as
psychological structures. Implicit Motives’ robustness and resilience properties appear theoretically
explained by the model. The model also provides uncertainty entropy-like parameters to characterize
Implicit Motives which hopefully might be useful, beyond the mere theoretical frame, when used in
combination with neurophysiological methods.

Keywords: Implicit Motives; Iterated Random Function Systems; information entropy

1. Introduction

The Complex System approach [1] has been extremely useful to understand a broad
range of natural structures and phenomena in different areas of science. One way of recog-
nizing the complex nature of a given entity might consist of understanding the underlying
mechanism which generated it and to study whether such a mechanism fits some mathe-
matical scheme that explains the roots of complexity. This might allow the application of
different concepts, tools, and theoretical results from the Mathematics of Complexity and
hopefully find applications of interest in the field where the entity is located.

This work attempts to address the mathematical modeling of the Implicit Motive (IM)
construct within the well-established Motive Disposition Theory (MDT) [2,3]. IMs are
considered a central part of the psychological motivational system and have a great influ-
ence on human behavior [4]. These motives are assumed to operate outside of conscious
awareness and control, and implicit measures are adopted [5].

There are three major and fundamental needs that energize and direct behavior within
the Implicit Motives system. These are the need for Achievement (n Ach), the need for
Power (n Pow), and the need for Affiliation (n Aff). The first one is the need to reach
a standard of excellence while avoiding goals that are excessively difficult or too easily
achieved [6]. The need for Power is the motivation to exert influence over others. The use
of power may be manipulative and controlling but may also be used to help and support
others [7]. The Affiliation motive is the desire to establish and maintain close bonds and a
sense of belonging through individual relationships and social connectedness [8]. These
basic needs are considered fundamental to all humans but are assumed to differ in strength
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between cultures and individuals [2], and they represent a capacity to derive satisfaction
from the attainment of the above-mentioned domain-specific incentives (e.g., mastering a
challenge) and avoidance of certain classes of disincentives [4]. Comprehensive reviews of
research have explored the validity of the IM construct [4,9–13].

A person’s implicit motivational disposition is referred to as their Implicit Motives.
Adults can have very different IMs that may shape their behavior and career [4], but it is
agreed that these dispositions develop early in the childhood stage. Some studies relate
each need’s strength in adulthood to childhood rearing practices. For example, individuals
with high nAch have been observed to be raised by parents who set age-appropriate
challenging tasks and reward the children’s autonomous task mastery with affection [14].
A longitudinal study [15] indicates that there could be some relation between high nA f f
adult’s scores to the mother’s unresponsiveness to the child’s crying, but this relation is not
conclusive. Finally, nPow can be affected by both prenatal hormone exposure and parental
permissiveness for aggressive and sexual behavior [4].

In summary, researchers postulate that IMs are built and fine-tuned as a result of
repeated affective experiences yielding satisfying rewards in early childhood [4,5,9,15].
In particular, the hormonal cascade produced by the succession of repeated rewarding
experiences should be at the core of how IMs are built [2,9]. This does not come as a
surprise, as Implicit Motives show close connections with physiological systems controlled
by midbrain structures such as neurohormone release [2,4,16–21]. For a review, see [22].

Once IMs are developed, there are several ways to assess the predominance of the
needs in an individual, e.g., the Picture Story Exercise [23] or the Thematic Apperception
Test [24]. However, these methodologies are not without criticism [5,15] and the objective
of this paper goes in another direction.

Underlying the validity of the IM psychological identity, there is an implicit recog-
nition of structural organization, which is consistent with considering the brain as a
self-organizing system [25,26]. Under the point of view of self-organization theories,
the unsupervised learning through early intermittent rewarding experiences and their
modular storage would create a global (unconscious) stable structure [27]. In this way,
the IM construct has been solidly established within the psychology field and “has become
a poster child for the natural-science type of validity” [4,28]. The present work aims to
be a contribution in the direction of supporting the robustness of the construct from the
mathematical point of view.

This paper presents a mathematical model for the development of IM whose aim is two-
fold. First, it can provide insight into the underlying mechanism leading to the emergence
of these psychological structures and on its stability properties; second, it provides entropy-
like uncertainty parameters that can continuously characterize IMs.

2. Methods

A simple mathematical model is formulated to account for the rewarding dynamics
leading to Implicit Motives strictly based on key theses within the Motive Disposition
Theory. These are:

Thesis 1. Repeated responses to affective-emotional experiences are the responsible iter-
ated actions on which IMs are built. Any new experience would be supposed to leave a
physiological reward affecting, ultimately, the individual’s psychology. Implicit Motives
appear as a summary of the whole history of experiences across the early life. [2,4,5,9,15].

Thesis 2. The rewarding effect of any experience should have an effectiveness (intensity)
that depends on (i) the individual [4], (ii) the type of motive (achievement, power, affilia-
tion), i.e., physiological system activated [22], and (iii) the moment when the experience
occurs (“... the relationship between wanting and liking is an iterative process which
after every motivational episode needs to recalibrate, through the outcome evaluation
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represented by liking, whether less, the same, or more wanting will be appropriate in the
future...” [4]).

We propose a mathematical model of the previous ingredients without delving into
the physiological aspects of the process, which moreover may help in the parametrization
of the model itself. In particular, the model contains parameters which act as proxies for
the effectiveness of the reward gained by any new experience.

Due to the multidisciplinary nature of this work, we will use a sufficiently precise
presentation albeit avoiding strict mathematical formalism, which can be observed in
the references.

2.1. The Implicit Motive Space Model

We propose an abstract conceptualization of IM traits as points in a mathematical
metric space in order to link the underlying experience dynamics and the individual’s
Implicit Motives.

2.1.1. The Elemental Experiences Domain

We define an elemental experience, e, as any experience that is solely related to
any of the IMs, i.e., Achievement, Power, or Affiliation. Thus, e ∈ {n Pow, n Aff, n Ach}.
For mathematical reasons which will be obvious later, we will identify this set with {1, 2, 3},
respectively (i.e., n Pow = 1 and so on).

One can build sequences of experiences, or experiential pathways , e = (e1, e2, e3, . . .),
each ek being an elemental experience from the previously defined domain, (which could be
experienced by any individual growing up). Of course, the experiences of any individual
are finite in practice. However, we shall see in section 3 that this fact will not affect the
conclusions of the model.

We define the Elemental Experiences Domain, E, by the set of sequences of elemental
experiences. Given two sequences e, f in E, the distance

dE(e, f) =
∞

∑
n=1

|en − fn|
3n , (1)

defines a metric in E [29].
The metric space (E, dE) is our mathematical model of Implicit Motives Experience Space.
Although the distance just defined might seem rather artificial (in fact, numbers 1,2,

and 3 can be re-labeled), it is just a mathematical tool that allows the relationship of two
conceptually different (metric) spaces: one corresponding to the experiences and another,
the Implicit Motives trait space, related to the psychologic fingerprints introduced in the
next section. Theorem 3 will provide the link between these two metric spaces.

An element of E draws a complete picture of the history of experiences but does
not consider the rewarding effect and the respective individual response, which might be
decisive in the Implicit Motives generated by a given pathway.

When a sequence of E contains only one repeated element, i.e., ek is equal for all k, we
call these pathways Absolute Prevailing Experiences (APE). There are three APE points
in E (corresponding to the three IM). It would be tempting to relate these three, on one side
abstract, points in E, with individuals highly biased toward the corresponding implicit
motive. However, we can assume that these ideal experiential pathways should yield
individuals with prevailing IMs.

2.1.2. The Implicit Motives Trait Space

The individual physiological and psychological responses to experiences should be
considered directly related with the corresponding rewards. We shall model these reward-
ing effects through the IM-trait space X. We will represent the physiological fingerprints
related to the individual experiences as points on X. For simplicity, it will be supposed
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that X is embedded in the bidimensional Euclidean space, with the Euclidean distance, d;
thus, (X, d) is a metric space.

2.1.3. Assumptions

A precise relation between the Implicit Motive Experience Space, E, and the IM-trait
space, X, will be established. To do this, we assume the following:

Assumption 1. The three Absolute Prevailing Experiences, APE, points in E are linked
to three distinct points in the IM-trait space, X, which we will call Absolute Prevailing
Motives (APM). For visualization purposes, we can suppose they are the vertex of an
equilateral triangle of unit side length (see Figure 1).

Assumption 2. A rewarding system is represented by a family of random functions {ϕθ :
θ ∈ Ω} acting on the IM-trait space X. Any of these functions is, by average, a random
contraction and has as a fixed point one of the APM points presented in Assumption 1. The
contraction ratio, rθ , is related to the intensity of the reward, which is stochastic in the most
general version of the model.

Assumption 3. These functions act in an intermittent manner accruing the individual’s
(stochastic) responses to the timeline of experiences, coded by the space E. In particular, a
probability distribution µ characterizes the frequency and nature of the historical timeline
of these experiences.

Figure 1. Top left panel shows the 30 first iterations of three different IFS starting from the same
APM point (n Pow, bottom left edge of the triangle). Notice that no structure is revealed after a few
iterations. The other panels show how the orbits of those IFS’s stabilize into a long-term configuration
after N = 105 iterations. In all cases, the APM points are placed in the vertex of an equilateral triangle
of unit size.
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2.2. From the Experience Space to the IM-Trait Space

The idea is that a stochastic process drives the “IM experience–reward dance”. A historic
series of experiences generates a sequence of fingerprints (xn) in the IM trait space as xn =
ϕθn(xn−1), using successive draws θn from µ. The initial point of the sequence can be chosen
randomly, in particular, one of the APM points, as Theorem 1 states.

Here, ϕθ represents the response function to the experience θ in the motives set
(Achievement, Power, or Affiliation) characterized by its individual-specific (stochastic)
reward intensity (rθ). In this way, the model’s flexibility is noteworthy.

2.2.1. Implicit Motives as an Attractor

Some might pose a question about the features of IM pathways and whether the
sequences of IM-traits in X, obtained from the rewards defined by the distribution µ, which
codify the event history, draw, in some sense, a long-term configuration structure which
may be related to the Implicit Motives.

Theory provides an affirmative answer.

Theorem 1. Under the hypothesis above, if the functions {ϕθ : θ ∈ Ω} are contractive (“by
average”), then there is a unique stationary probability distribution π on X with P(xn ∈ A) →
π(A) as n→ ∞ which does not depend on the starting point x0 ∈ X.

Here, π(A) indicates relative abundance of fingerprints in any sub-region A of the
IM-trait space, defined by the three APM vertex points.

The proof of this theorem is obtained from Diaconis and Freedman [30]. The expression
“by average” is stated there in a technically precise manner.

In mathematical terms, the functions in Assumption 1 should be contractive (statis-
tically). As a consequence, under the frame of this model, Implicit Motives appear as a
well-defined structure: the probability distribution, π, and its support (the set where the
probability measure is concentrated), the attractor.

The real essence of the IM construct resides in the attractor which we will call the IM
Entity.

It is worth mentioning that the existence of the probability distribution π, i.e., the IM
Entity, is assured under vast general conditions, in particular the stochasticity of the rewards
rθ and the response functions ϕθ .

This mathematical tool will provide an interesting set of results, concepts and pa-
rameters from complex systems theories, which will become meaningful in the context of
psychological Implicit Motives theory, in particular related with the IM stability issue.

2.2.2. A Simplified Working Model

Next, we present a simplified working model in order to introduce entropy-like
parameters that will characterize the “IM entity” structure as attractor. It will allow for the
visualization of the attractor on the bidimensional Euclidean space.

In the simplified model, the experiences and their effect will be parametrized by means
of an Iterated (Random) Function System (IFS) [31] and Implicit Motives will appear as
attractor of the IFS within the space X.

Let ϕi : X → X be contractive functions, i.e.:

d(ϕi(x), ϕi(y)) = rid(x, y), i ∈ {1, 2, 3}, x, y ∈ X,

having as invariant or fixed points the respective APM points, and ri < 1 standing as the
corresponding intensity of the rewarding effect. To provide a more graphic illustration,
the reader may assume that ϕi represents fixed functions instead of random functions and
that they are affine maps.

In addition, let pi be probabilities or weights (∑ pi = 1). These discrete probabilities
reflect the distribution µ of experiences in the individual’s historic timeline. In practice,
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these frequencies represent the regime of appearance of the elemental experiences in the
individual’s historic timeline.

The set {ϕ1, ϕ2, ϕ3; p1, p2, p3} is the Iterated Random Function System (IFS), and defines
a Markov chain which drives the experience–reward dance as follows: (a) take as starting
point x0, any APM point (or any other point, see Theorem 1); (b) the chain proceeds by
choosing, at random, an integer i of the index set {1, 2, 3} with probability pi and moving
to x1 = ϕi(x0). Repeat the random experiment (b). Suppose the new outcome is j, then set
x2 = ϕj(x1). By iteration of (b), obtain the sequence x0, x1, x2, . . . This sequence is called
the orbit of x0.

The algorithm describes a simulation where the functions are chosen randomly ac-
cording to the probability distribution given by the pi values, which are unique to each
individual and correspond to the probabilities of each type of experience of happening.
Each motive has an associated ϕi function, and a probability pi of experiences related to that
motive happening. If the motive has a pi of 1/3, then, on average, the function associated
to it will act 33% of the time.

Even with this simplified IFS scheme, the approach might be relaxed in several direc-
tions. In particular, the functions may be contractive random functions instead of fixed func-
tions. The probabilities pi may be random numbers, and the condition ∑ pi = 1 may be re-
placed by the average value of the sumE(∑ pi) = 1 (see Hutchinson and Rüschendorf [32]).
In addition, the assumption that any experience is solely related to any of the IMs, which
may not be plausible, may be circumvented: if an experience is, indeed, related to more than
one motive, then the related reward should be obtained by applying all the corresponding
rewarding functions instead of just the one.

In all our simulations, the IFS functions take the form:

ϕi(x) = Aix + Bi,

where Ai are 2× 2 contractive matrices and Bi are 2× 1 vectors. The elements in Ai and Bi
are chosen so that the function i) is contractive with ratio ri, and ii) keeps the i-th APM point
fixed (for simulation purposes, we have added a link to our code at the end of the paper).

The following result provides some geometrical information about the support of the
probability distribution π:

Theorem 2. Given the IFS {ϕ1, ϕ2, ϕ3; p1, p2, p3}, there is a unique set K, such that

K = ϕ1(K) ∪ ϕ2(K) ∪ ϕ3(K).

This property is called selfsimilarity.

The proof of this result is provided by Hutchinson [33].
The following result provides the relation between the experiential pathway and the

set K, and also gives the justification of the term “attractor” of the IFS.

Theorem 3. Let (E, dE) be the IM Experiences Space. For each e = (e1, e2, . . .) in E, any x ∈ X,
and any n ∈ N, let

φ(e, x, n) = ϕe1 ◦ ϕe2 ◦ · · · ◦ ϕen(x).

Then, the limit

φ(e) = lim
n→∞

φ(e, x, n),

exists and belongs to K. The function φ : E → K from the experiences space to the IM identity
attractor thus provided is continuous and onto.



Entropy 2023, 25, 711 7 of 13

It is noteworthy that this limit is also independent of the initial point, x. This theorem
motivated the definition of the distance dE (1). For measurement purposes, we will use
Elton’s ergodic theorem [34]:

Theorem 4. If π denotes the corresponding probability distribution provided by Theorem 1 (fitted
to the above hypothesis), for any subset B, if δB is the indicator function, i.e., δB(x) = 1 if x ∈ B
and δB(x) = 0 if x /∈ B, then

1
N

N

∑
k=1

δB(xk)→ π(B), as N → ∞.

This allows the simulation of the probability distribution on the attractor. If
x0, x1, x2, . . . , xN is a sequence of points generated by the IFS defined in Section 2.2.2,
and mn is the number of xi values that fall inside a given region B, then the ratio mn/N
approaches the probability that the model assigns to that region, π(B), as the number of
iterations N grows to infinity. In practice, the estimation of such probability is archived
quickly (a number N equal to 105 suffices).

In particular, we can visualize the answer to the previously stated question (at the
beginning of Section 2.2.1) of whether the erratic IM-trait sequence draws a long-term
configuration. Figure 1 shows (top left panel) different realizations of the initial iterations
for three different IFS, whose parameters are defined in Table 1. Although the picture of
these may greatly differ from one realization to another, on the other panels of the figure
one can see how the orbit of each IFS stabilizes as the number of iterations grow.

Table 1. Contraction ratios for the affine functions used in the simulations of Figure 1. The values of
pi are equal to 1/3 for all IFSs and all i. As an example, for the first IFS, the affine functions use the

following matrices : Ai = ri Id2×2, B1 =

(
0
0

)
, B2 =

(
1/2

0

)
, B3 =

(
1/4√
3/4

)
.

IFS r1 r2 r3

1 1/2 1/2 1/2
2 0.9 0.55 0.6
3 3/4 3/4 3/4

2.3. Im Characterization: Uncertainty Entropy-like Parameters

Given a discrete distribution, pi, the Information Shannon Entropy, H, is calculated
as [35]

H = −∑
i

pi log2(pi), (2)

provided pi log2(pi) = 0 if pi = 0.
H is expressed in information units (bits) and is a recognized measure of information

which has been used in many areas of science with different, but conceptually linked,
meanings at diversity, uncertainty, heterogeneity, or entropic level [36].

This context supports the use of entropy. Given that the information would be stored
in bits in the brain, it might be wise to expect that brain responses, through spontaneous
behavior for instance, should happen according to such storage.

The modeling proposed allows the use of the Information Dimension (DI), an entropy-
like parameter [37,38], to continuously characterize the distribution that defines the IM
Entity, and it is related to the heterogeneity or diversity that these profiles may show. This
parameter is based in Shannon’s entropy in the following way:

DI =
−H

∑i pi log2(ri)
. (3)

Please note that ri values must be normalized to calculate this index.
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The Information Dimension becomes meaningful in the frame of Implicit Motive
modeling: it measures the inherent uncertainty of an unconscious structure which might
mediate the individual spontaneous behavior before a new experience (situation). Other
meanings, such as diversity of the psychological-mental resources that this model provides,
might be possible and have potentially been used in the Implicit Motives setting.

2.4. Robustness and Resilience of Implicit Motives

Different sources of changes in Implicit Motives have been discussed [39]. Without
going into such discussion, our model also provides some light on this matter through the
following result.

Theorem 5. Under certain general conditions, for any starting point, the convergence of P(xn ∈
A)→ π(A) occurs at an exponential rate. More precisely: For any n, the law of Pn(x, ·) is given
that x0 = x and ρ is the Prokhorov metric used as distance between two probability distributions.
Then, ρ[Pn(x, ·), π ≤ Bxrn] , and Bx and r serve as constants (0 < r < 1). These bounds apply to
all n values and all starting points x.

A proof can be found in Diaconis and Freedman [30].
Within the frame of this model, this theorem actually explains the resilience property of

Implicit Motives. Under the presented hypothesis, if the probability distribution defined by
the experiences vector is disturbed, restoration of Implicit Motives occurs at an exponential
rate whenever the pattern regime is again re-established.

2.5. Illustrated Application with Simulation

As is stated in [9,15], adult motive levels are determined (in part) by how parents treat
or influence the early life experiences of their children. For example, the emphasis that
parents put on learning bowel and bladder control is significantly related to adult levels
of n Achievement 25 years later. In addition, allowing very young children freedom in
expressing sexual and aggressive impulses is related to adult levels of n Power [15].

In this way, while the proposed model parametrizes the individual’s neurophysical
response to the different experiences by ri, the parameter pi can represent parenting strategies,
i.e., the relative importance, emphasis, or exposure that parents choose to give to different
kinds of experiences which will build, in part, the IM entity; i being the motive’s index:
i = 1 for n Pow, 2 for n Aff, and 3 for n Ach.

A first application of the model that we present here is to illustrate the possible, relative
effect of parenting on the individual’s IM identity. We can imagine an hypothetical child,
with fixed and equal response to the three types of experiences (i.e., ri = 0.9 for all motives i).
This child can be raised using a plethora of parenting strategies, parametrized by different
sets of pi values. Table 2 shows the pi values of three different strategies, along with their
entropic-like characterization, while Figure 2 (upper and bottom left panels) shows the
simulation of the corresponding attractors using N = 105 iterations. The first strategy is
homogeneous in the sense that no prioritization is given to any type of experience, and the
attractor shows a uniform distribution in the support. In this case, the DI parameter attains
its maximum possible value, indicating that for this hypothetical child, the highest possible
motivational diversity among all strategies is reached. The second strategy (upper right
panel) gives only 5% of the importance to the first kind of experiences (n Pow), while the
other two have the same strength. The lower diversity of this strategy, clearly visible in the
figure, is corroborated by the DI value of 0.78. The third strategy (bottom left panel) puts
90% of importance on the first motive, yielding a much more heterogeneous IM-identity
(bottom left panel) with the lowest DI value of all strategies considered.
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Figure 2. Simulation of the IM attractor for the three parenting strategies described in Table 2.
The model proposed generates clearly different IM identities that are affected by the parent strategy.
Top and bottom left panels have ri values equal to 0.9. Bottom right panel has r2 = 0.4 and
r1 = r3 = 0.8, using the same pi values as upper left panel.

One could also ask what is the effect of the neurophysiological response, parametrized
by ri, on the IM-identity. The bottom right panel of Figure 2 shows the attractor obtained us-
ing the previous first parenting strategy with r1 = r3 = 0.8 and r2 = 0.4, i.e., the contraction
towards the second motive (n Aff) has half the value (double the strength) than the other
two. This figure also justifies the use of the information dimension, DI , instead of the usual
entropy, H, as the value of H would be the same in top left and bottom right panels, while
the value of DI in the latter is 0.958.

In summary, any experience leaves a new point on the IM-trait space by means of
a function of the IFS (parametrized as above). After a sufficient number of experiences
(which mathematically does not need to be that long), a distribution appears on this space.
The dynamic of the IFS is limited to the triangle shown in Figure 2, whose vertex is the
APM points. When the experiences are mostly related to n Pow, the figure will show a great
accumulation of points near that vertex, while if the parenting strategy tends to supply
experiences of the three kinds equally (strategy 1: pi = 1/3), then no vertex seems to
be favored. The ri parameters (the child’s physiological response to the different kind of
experiences) also play a role. We see this in the bottom right graph, in comparison to the
upper left. In both, parents use strategy 1, but the child has a lower r2 value (associated to n
Aff) which leads to a bigger accumulation of points in his/her IM map near the n Aff vertex.
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By construction, lower ri values have more effect than bigger ones. This child will have
more “mass” of points near the n Aff vertex and thus, a stronger n Aff motivation level.

Table 2. Model parameters and entropy-like characterization of the IM-identity using the Information
Dimension, DI , of three parenting strategies for a hypothetical child with ri = 0.9 for all i.

Strategy p1 p2 p3 DI

1 0.333 0.333 0.333 1.000
2 0.050 0.475 0.475 0.780
3 0.900 0.050 0.050 0.359

3. Discussion

According to this model, Implicit Motives emerge as a well-defined robust structure
from an apparently erratic sequence of rewards. The probability distribution of IM-traits
is supported on the attractor which is ultimately the Implicit Motive Entity under the
mathematical point of view. The probability distributions theoretically described, which
can be easily simulated, are mathematically robust.

The fractal attractor is a type of scale-free structure that appears regularly in self-
organized systems. In this case, the hierarchical stratification derived from the model might
be consistent with the modular storage of information in the brain [26].

A combination of chance and determinism guides the experience “dance” lead-
ing to the creation of such an individual psychological structure. This mimics a some-
how alostheric control in the human body that is linked to the ability to adapt and self-
manage [40]. The dynamics origin of this stability derived from our model suggests that
Implicit Motives may be more accurately described as a homeorhetic state [41].

The attractor and associated probability distribution exhibit selfsimilarity entropy:
the information content (or else, uncertainty, diversity, heterogeneity) of the measure sup-
ported in the rescaled copies of the Implicit Motives support, resembles the one found in
the whole attractor (up to the scale). This would mean that relatively short experience path-
ways might provide similar information (and potentially reliable representation pictures)
to the one contained in the whole IM attractor. One wonders if there might exist some
relation between this fact and the brain’s neural storage information system.

The fact that finite (or even short) experience pathways may provide the whole picture
of the IM entity is supported by the fact that orbits have been shown to have the ergodic
property [34]. Thus, for practical applications, there is no need for the use of an infinite
sequence of experiences.

In particular, the attractor’s fractality would be a structural property resulting from a
(simple) method of achieving stability by keeping maximum entropy at any scale [41,42].

Another reason for this intrinsic robustness is that the probability distribution model
thrives on randomness. A certain amount of random perturbations are included in the
growing process, facilitating the formation of the stable structure rather than hindering it.

The Information Dimension (see Equation (3)) is an entropy-like information pa-
rameter that plays an important role in understanding the heterogeneity features of the
homeorhetic state and their interpretation as a kind of motivational diversity in the context
of the IM construct. The use of this heterogeneity index is justified by the example shown
in Section 2.5, as it takes into consideration all the model parameters.

Finally, as indicated in Section 2, Theorem 5 supports the resilience property in a
mathematically-based manner. Although this term has been widely used, in this setting it
appears as a theoretical result.

Practical applications of this theoretical modeling might lead to the estimations of the
individual parameters involved in the equation (i.e., ri), possibly by means of physiological
research, e.g., a precise design of hormone release. In this sense, it is interesting what was
pointed out by McClelland [9] (p. 17):
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“it should be possible to study individual differences in the output of DA [Dopamine]
and NE [Norepinephrine] in response to various types of stimulation and to determine
just what types of situations are most likely to give rise to increased outputs of one or the
other hormone. In this way, we could begin to get an understanding of how motives are
formed, based on early affective learning in connection with naturally occurring incentive
situations”.

One possible conjecture, which would be consistent with the IM construct, would be
that the individual-specific reward intensities, ri, will approach the value 1 as the number
of lived experiences grows. That is, the rewarding effect of new experiences diminishes
as the learning process advances. It also would be consistent with theories about how the
brain learns [27] and with the observation made by McClelland et al. [5] pointing out the
parallelism between implicit motive and semantic memory. A reliable picture of the whole
attractor, as well as associated parameters, is simulated after a relatively short number
of iterations which keep the long-term memory (in other terms, “semantic memory”).
Last terms or events (short-term memory), although ignored, do not add much to the
whole structure.

Hopefully, the proposed model and the parameters involved might help in the re-
search areas of implicit motives and affective neurosciences [43]. Since neurophysiological
methods allow us to measure endocrine and hormone responses related to different moti-
vational scenarios, such measures might serve as indicators of the ri values in the model.
Then, even in the case of scenarios of great diversity of experience (the frequencies pi
might be supposed to have similar values), entropy-like parameters might provide valuable
information on motivational disposition. The model will contribute to understanding indi-
vidual motivational differences in perceiving these situations and their consequences for
biological stress response and subsequent mental health. This will help to design chronic
stress measures and treatments adapted to motivational aspects of personality [4,22,44].

Despite the fact that this work aims to be no more than a theoretical contribution, we
hope it opens the door to an experimental approach. Following works should address
the problem of calibrating the quantitative parameters that the model proposes through
IM measurements techniques, both psychological and physiological, to be used in further
practical applications (see [4] and references therein).

4. Conclusions

The emergence of Implicit Motive as psychological structure is modeled by means
of iterated application of individual responses to repeated affective experiences. Under
natural translation of key facts of Implicit Motives psychological theory into the mathe-
matical frame, a Random Iteration Function System acting on a metric space is proposed
as a dynamical model of experience–reward responses. The model shows how (random)
responses produced by intermittent random experiences create a well-defined probability
distribution on an attractor which, in this manner, becomes the core of the Implicit Motive
entity and a mathematical support of the psychological IM construct. Implicit Motive
robustness and resilience properties appear theoretically explained by the model.

The simplified model also provides significant uncertainty entropy-like parameters
that may be useful to characterize the psychological structure of an individual IM, an
interesting byproduct of the model. Since neurophysiological methods allow the measuring
of endocrine and hormone responses related to different motivational scenarios, such
measures might serve as inputs in the model [4,18,22]. Thus, the mentioned quantitative
tools can potentially be used in empirical works to understand individual motivational
differences as well as their consequences [44]. The sum of psychological, physiological, and
mathematical facts concerning the issue form a set of resounding arguments supporting
the Implicit Motive approach. This mathematical IM model might be helpful to develop
new methodologies in this area of research.
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