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Abstract: Knowledge graphs as external information has become one of the mainstream directions
of current recommendation systems. Various knowledge-graph-representation methods have been
proposed to promote the development of knowledge graphs in related fields. Knowledge-graph-
embedding methods can learn entity information and complex relationships between the entities
in knowledge graphs. Furthermore, recently proposed graph neural networks can learn higher-
order representations of entities and relationships in knowledge graphs. Therefore, the complete
presentation in the knowledge graph enriches the item information and alleviates the cold start
of the recommendation process and too-sparse data. However, the knowledge graph’s entire en-
tity and relation representation in personalized recommendation tasks will introduce unnecessary
noise information for different users. To learn the entity-relationship presentation in the knowl-
edge graph while effectively removing noise information, we innovatively propose a model named
knowledge—enhanced hierarchical graph capsule network (KHGCN), which can extract node embed-
dings in graphs while learning the hierarchical structure of graphs. Our model eliminates noisy
entities and relationship representations in the knowledge graph by the entity disentangling for
the recommendation and introduces the attentive mechanism to strengthen the knowledge-graph
aggregation. Our model learns the presentation of entity relationships by an original graph capsule
network. The capsule neural networks represent the structured information between the entities
more completely. We validate the proposed model on real-world datasets, and the validation results
demonstrate the model’s effectiveness.

Keywords: knowledge graph; recommendation system; graph neural network; attention mechanism

1. Introduction

Recommendation systems have shown great potential in solving various online appli-
cations’ rapidly growing information volume problems, improving user efficiency, and in-
creasing stickiness. In commercial platforms, such as Netflix and Amazon, recommendation
systems provide excellent convenience for users by filtering out target items from thou-
sands of movies and TV shows or millions of products [1,2]. To cope with the problems
caused by the ever-increasing data, researchers have also developed neural network models
and deep learning methods that process massive amounts of information. Deep neural
networks have considerable advantages in many information-dominated fields, such as
healthcare [3] and the Internet of Things (IoT) [4], especially in recommendation systems
that rely on data [5,6].

Compared with traditional machine learning methods, deep learning methods can
more effectively incorporate additional information (such as text, pictures, and so on) re-
lated to the recommendation task. Data-sparse and cold-start problems in recommendation
systems (such as collaborative filtering-based recommendation systems) only utilizing
user–item interactions for recommendation usually face a sharp drop in recommenda-
tion performance during user–user or user–item interactions. To alleviate the troubling
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data-sparse and cold-start problems in collaborative filtering (CF) based recommendation
systems, researchers usually add the side information of users and items and design so-
phisticated algorithms to utilize this information. Various types of auxiliary information
have been utilized to alleviate these problems.

Researchers use valuable external knowledge as extra information, such as reviews,
social networks, tags, item attributes, etc., to improve the effectiveness of recommenda-
tions. Wang et al. used neural networks to extract the embedding of ratings and reviews,
respectively. Further, they combined the embedding with a collaborative filtering method
to propose a hybrid deep collaborative filtering model [7]. Chen et al. introduced label
information into the recommendation system and proposed a label intersection model by
studying the intersections between user labels and item labels for a better recommenda-
tion [8]. Shi et al. were motivated to utilize reviews and further reduced the dual graph
convolutional network method to capture the full description of an aspect in all reviews for
the recommendation [9]. The knowledge graph (KG) can encode users, items, and attributes
related to items in the graph structure to preserve relationship information, thus attracting
a wide range of research interests. Recently, researchers have explored the recommenda-
tion system based on the knowledge graph [10–14]. Knowledge-graph-embedding (KGE)
methods integrate the KG at the recommendation system, knowledge-aware recommen-
dation, to advance the accuracy and interpretability of the recommendation task, which
has catalyzed considerable research works [15–18]. Researchers consider KG effective for
improving quality recommendations because user and item attributes in KG are essential
auxiliary information. Integrated interactions between the user and item and the attributes
in KG (that is, they appear in the sample data simultaneously) can significantly improve
the prediction accuracy in various recommendation systems.

Figure 1 depicts an example of a collaboration knowledge graph (CKG) in the film
domain [19] to infer the preference of users u4 and u5 for item i5.As shown in the user–item
interactions section in Figure 1, the CF-based method determines whether to recommend
or not by calculating the value of the degree of association (cosine similarity, etc.) among
the u4, u5, and i5. For example, for sim(u4, i5) = sim(u5, i5) = 0, the result is negative. In
the knowledge graph part of Figure 1, item i3 (preferred by user u4), item i4 (preferred by
user u5), and item i5 have the same attribute e3. We refer to the hybrid structure of the
knowledge graph and user–item graph as CKG, which takes the user–item interactions and
knowledge graph into account. According to the attribute e3 in CKG, there is the interaction
between users u4, u5, and movie i5, which is connected by relation Gener. Obviously, at this
time, the recommendation system can mine the user’s more prolonged, deeper, and more
profound preference items to enhance the recommendation performance and interpretabil-
ity of the recommendation system. Next, the latest GNN-based algorithms can further mine
higher-order relationships between the user–item entities in CKG. However, to exploit
higher-order information in the CKG graph, the following questions are noteworthy:

1. With the increase in high-order size, the number of nodes related to the target user
increases sharply, which increases the computational load of the model.

2. Although the number of nodes related to target users has increased, nodes under
higher-order relationships have different effects on the recommendation. Therefore,
the contribution of nodes requires further screening by algorithmic models.

3. The increase in nodes is a double-edged sword. Knowledge graphs inevitably in-
troduce specific noise. Therefore, it is difficult for previous research methods to
characterize target users and candidate items to generate an accurate recommendation
list. Accurate user-embedding learning is essential for modern recommendation sys-
tems.
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Figure 1. A toy example of the CKG contains users, movies, entities, interactions, unknown, directed
by, and gener as relations.

Graph structure information provides valuable guidance for graph neural networks
learning node representation [20,21]. The excellent potential of the graph convolutional
network (GCN) for recommending each is due to its ability to learn better embeddings of the
user and item by using collaborative representations from high-level neighbor nodes [22,23].
Usually, attributes are not isolated but interconnected, which forms a KG. One must go
beyond the obligation to model user–item interactions and consider auxiliary information to
provide more accurate, diverse, and interpretable recommendations. Recently, leveraging
knowledge graphs in recommendation systems to alleviate data-sparse and cold-start
problems has attracted considerable attention. Despite recent advances in graph neural
networks (GNNs), high-level collaboration signals are combined to alleviate the problem.
Still, the ending of cold-start users and items is not optimized, and cold-start neighbors are
not handled during startup. Solving the cold-start problem in recommendation systems is
crucial for new users and new items. Under the premise of sparsely observed data, how to
further mine unobserved user–item pairs is also an important research direction to refine
users’ potential preferences. The other social relationships are usually used to improve the
recommendation quality when considering the sparsity of the user–item interactions in the
social recommendation.

Graph neural networks (GNNs) have significant advantages in the display modeling
of structured data. However, existing GNNs are limited in their ability to capture the
representation of the hierarchy, and the hierarchy graph plays an important role in the rep-
resentation learning of the graph. Like other GNN models, GNN-based recommendation
models inevitably suffer from the problem of over-smoothing. Over-smoothing is when
the graph neural network stacks more layers, and the node embeddings in the network
become increasingly similar until they become indistinguishable, resulting in performance
degradation. Aiming at the problems of graph representation learning, researchers try to
use the multi-channel feature of capsGNN to learn a complete graph structure from the
perspective of breadth [24–28]. In graph representation learning, capsule GNN has also
achieved good results [29]. Xu et al. proposed a taxonomy-enhanced graph neural network
(Taxo-GNN), which jointly optimizes the taxonomy representation and node representation
tasks, where categories in taxonomy are mapped to Gaussian distributions and nodes
are embedded with the GNN framework [30]. Inspired by the capsule neural network
(CapsNet) [31], we propose a hierarchical graph capsule network (HGCN), which uses
the capsule concept to solve the shortcomings of existing GNN-based graph-embedding



Entropy 2023, 25, 697 4 of 26

algorithms. By extracting node features in the form of capsules, the routing mechanism
can be used to capture important information in the hierarchy graph. However, there are
noisy nodes in the graph structure constructed by the knowledge graph. Most GNN-based
recommendations will also learn the representation of the noisy node when learning the
presentation of graph structure information. To alleviate the restrictions of the recom-
mendation methods with KG and GNN, we propose a novel transformer graph attention
network (TGAT) component in our model for high-order information propagation in the
collaborative knowledge graph. The attentive mechanism in TGAT is weighted to judge
the importance of each entity; the attention mechanism is used to extract the significance
of each channel; and multiple screenings weaken the significance of noisy entities and
strengthen the reputation of crucial entities. We summarize the problems existing in the
recommendation algorithms with KG and GNN. From the perspective of a knowledge
graph, there are noisy entities and relationships in a complete knowledge graph. From
the perspective of graph neural network methods, graph neural networks, such as GCN
itself, face the problem of model bottlenecks. To solve the problems that CKG and graph
neural networks face in recommendation systems, we propose the knowledge-enhanced
hierarchical graph capsule network method, which alleviates the problems existing in the
incorrect forms. In general, the contribution of our model is as follows:

1. Node disentangle is introduced, and the problem of the representation of noisy entities
and relationships in the complete KG for recommendations is alleviated, generating a
disentangled user–item knowledge graph;

2. A novel attention scoring function is designed to more effectively aggregate the nodes
in the disentangled knowledge graph and create a more accurate representation of
the user and item;

3. The introduction of KHGCN, the use of the hierarchical transformer graph attention
network (TGAT) to enhance the ability to represent relationships and entities in the
graph, learn the representation of entity relationships in the KG more efficiently,
and make accurate recommendations;

4. An end-to-end model recommendation framework is constructed, surpassing existing
state-of-the-art methods on three real-world datasets and four evaluation indicators.

2. Related Work
2.1. Knowledge Graph for Recommendations

Introducing the knowledge graph for the recommendation system can effectively
alleviate the data-sparse and cold-start problems. In recent years, many researchers have
been performing related work. To model both the dynamic interests and the dynamic
social influences, Gu et al. proposed a method to model and integrate item-embedding
representations and contextual friendship representations for recommendation tasks [32].

To integrate the knowledge graph with the recommendation system under a unified
framework, researchers combine the knowledge graph’s feature learning with the rec-
ommendation algorithm’s objective function and train in the same end-to-end objective
process. Zhang et al. exploited heterogeneous information in the knowledge graph to
enhance the performance of recommendation systems. They proposed that the integrated
framework of collaborative knowledge-graph embedding is learning semantic representa-
tions in items from the knowledge graph while learning latent representations of methods
in collaborative filtering [33]. Dong et al. proposed a novel and simple model to achieve a
low computational cost, which adopts a semi-automatic encoder to embed item attributes
and graph features simultaneously for recommendations [34]. In [12], a hybrid recommen-
dation system based on attention mechanism and knowledge-graph embedding (HRS) is
put forward to alleviate sparsity and cold-start problems and improve the performance
of the recommender systems. Zou et al. focused on exploring the contrastive learning in
KG-aware recommendation and proposed a novel multi-level cross-view contrastive learning
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mechanism (MCCLK), which comprehensively considers three different graph views for
KG-aware recommendation, including the global-level structural view, local-level collabora-
tive and semantic views [10]. In [14], Zou et al. focused on exploring contrastive learning in
KGR and proposed a novel multi-level interactive contrastive learning mechanism, which
contrasts nodes of two generated graph views. To tackle the problem that most existing
KG-based recommender systems ignore the fact that users attach different degrees of
importance to various relationships of items, Zhang et al. proposed a knowledge-graph rec-
ommender model based on adaptive relational attention (KGARA) [11]. Yin et al. proposed
a model for knowledge-aware recommendation systems, where the main components are
an attribute regularizer and a dynamic attention mechanism, which are attention compo-
nents. They explored potential connections between the users and items to enhance the
recommendation performance [35].

Since both recommendation and knowledge-graph embedding tasks are included,
knowledge-based recommendation systems are similar to multi-task learning frameworks,
which are related by items and entities in the knowledge graph. Knowledge-graph rep-
resentation and recommendation tasks are inevitably related. The knowledge-graph link
prediction can assist the recommendation system to keep away from the local minimum
and prevent the recommendation system from overfitting, thereby improving generaliza-
tion. Some researchers regard recommendation systems and knowledge-graph feature
learning separately and only adopt a multi-task learning framework in the final loss func-
tion training. Wang et al. proposed a compression unit to correlate the two tasks, which
automatically shares latent features while also learning higher-order interactions between
the user–item interactions and knowledge-graph entities [36]. The structured data features
of knowledge graphs have unique advantages compared with other auxiliary informa-
tion in personalized recommendation systems, which enhance the interpretability of the
recommendations’ knowledge-based representation learning framework to embed het-
erogeneous entities for the recommendation based on the knowledge-graph embedding,
and a soft matching algorithm is proposed. Regarding personalized explanations for the
recommended items [37], Liu et al. proposed a knowledge-graph-enhanced multi-task
learning method to learn cross features from ratings and reviews by fusing users and
movies with their review knowledge entities in the same graph [13].

2.2. GNN for Recommendations

With the deepening of knowledge-based recommendation-systems research, the re-
lational structure of external knowledge can be introduced while learning user and item
representations. In this regard, traditional neural networks have successfully extracted
features from Euclidean spatial data but, in many cases, still contain a lot of non-Euclidean
spatial data. However, the performance of traditional neural networks is still unsatisfactory
when addressing non-Euclidean spatial data. As the performance is still unsatisfactory,
the researchers draw on the ideas of convolutional neural networks, recurrent neural
networks, and deep auto-encoders to define the graph neural networks that can process
non-Euclidean spatial data. Since then, the related research of graph neural networks has
sprung up as new hot research.

In recent years, researchers have used GNN for recommendations with great success.
Thomas N. Kipf and Max Welling proposed a graph convolutional new algorithm derived
from the idea of the convolution algorithm and able to be directly used to process structural
graph data [20]. Another feature of GCN is that its model size increases linearly with the
number of edges in the graph. Given the problems of GCN addressing large-scale graphs,
GraphSAGE is proposed for inductive representation on large graphs. GraphSAGE is a
framework for inductive representation learning on large graphs, which is used to generate
low-dimensional vector representations of nodes that can efficiently process graphs with
many nodes’ attribute information [20]. For the fine-grained division of node attributes
information in a graph, Petar et al. proposed new neural network architecture, the graph
attention network (GAT), which learns the node weights in the graph structure through a
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masked self-attention layer [21]. It effectively alleviates the shortcomings of other methods,
such as GCN.

Some researchers have studied recommendations based on graph neural networks,
among which the works based on the GCN framework are as follows. In [38], Chen et al.
proposed a GCN-based linear collaborative model with a residual network component,
which can relieve the over-smoothing problem in higher-order graph convolution to a
certain extent. Furthermore, He et al., through empirical observation, found that the two
components of feature transformation and nonlinear activation in the structure of GCNs do
not contribute much to improving collaborative filtering. A new model named LightGCN
based on GCN is proposed, and the fundamental neighbor aggregation part in GCN is
reserved for collaborative filtering [23]. In [39], the problem of hashing with GNN for
high-quality retrieval was investigated, and a deep hashing with GNN framework was
proposed to learn continuous and GNN codes jointly. Wu et al. proposed an adaptive
GCN method for knowledge-based recommendations, effectively integrating the item rec-
ommendations and attribute inference [40]. The attribute inference part in adaptive GCN
can adjust the graph-embedding learning parameters and refine the item attributes and
preference behavior through the weak supervision information provided by the attribute
inference part to complete the item recommendation. Previous studies failed to model
the various impacts of multi-behavior in multi-behavior recommendations. In [41], a new
model, multi-behavior GCN, was proposed to solve the problems in multi-action recom-
mendation tasks. The main idea of multi-behavior GCN is to construct a multi-behavior
graph and then learn the representation of the multi-behavior graph through an improved
graph neural network. To solve food-recommendation problems, Gao et al. proposed
an innovative graph convolutional network, which hierarchically learns the relationships
in the food graph and models higher-order relationships in the food graph through an
information propagation mechanism [42]. To solve oscillation problems, Liu et al. proposed
a new model for recommendation tasks, named deoscillated adaptive graph collaborative
filtering, which includes the layer-wise propagation patterns and can adaptively learn local
factors [43]. To learn the fine-grained property features, Ge et al. proposed an end-to-end
model called the collaborative property-aware graph convolutional network (CPGCN),
which fuses the user–service collaborative information with the semantic information of
KG to construct collaborative property-aware graphs (CPGs) [44]. Wang et al. proposed
a new knowledge graph-aware light graph convolutional network (KLGCN), which re-
moves feature transformation and nonlinear activation in KG-aware recommendation
while improving performance [45]. Zhu et al. embedded users’ interests from their social
information by the attentional graph convolutional network (GCN) and improved news
representations via attention mechanisms [46].

The works based on the GraphSage framework are as follows. In [47], a matrix com-
pletion model based on the inductive graph is proposed, which performs 1-hop subgraph
expansion through the user–item interaction graph generated based on the rating matrix,
and aggregates these subgraph representations through GNN. Sun et al. proposed a new
framework that can explicitly aggregate neighbor node information, efficiently modeling
user–item bipartite heterogeneous graphs [48]. In the online recommendation services,
Xu et al. developed a framework based on incremental learning graph neural networks to
address the catastrophic forgetting problem faced during incremental learning training,
which implements a graph structure preservation strategy to preserve users’ long-term
preferences when the model is updated [49]. In the personalized video highlight recom-
mendations, Wu et al. proposed an inductive transfer learning framework consisting of
a graph neural network and an item embedding transfer network for the personalized
recommendations of video highlights [50].
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The works based on the GAT framework are as follows. To capture fine-grained user
preference, in [51], an inductive transfer learning framework was proposed, which consists
of a graph neural network and an item embedding transfer network for the personalized
recommendations of video highlights. Regarding social recommendations, Wu et al. pro-
posed a method (DiffNet++) based on the DiffNet to combine social networks and interest
networks in social recommendations to construct a new social interest heterogeneous
graph to redefine social recommendations [52]. Furthermore, DiffNet++ injects user–user
high-order implicit feedback in the social network, injects user–item high-order implicit
feedback in the interest network, and infiltrates the user-embedding representation in a
fine-grained manner. To effectively learn the contribution of different neighbor entities
to the target embedded in the process of neighborhood propagation, they developed a
hierarchical attention mechanism at the neighbor level and graph level, which can adap-
tively learn important content at different levels, and provides more possibilities for social
recommendations [53]. In multimodal recommendations, Sun et al. proposed multi-modal
knowledge GAT, a multimodal graph attention technology that uses a graph attention net-
work to model multimodal information on a multimodal knowledge graph [54]. The modal
knowledge-graph attention mechanism integrates the text and image information of entities
to the tail node of the knowledge graph, which enriches the entity representation of the
knowledge graph. Feng et al. proposed a model that can effectively capture user–item
pairs in knowledge graphs and employ graph-connection and graph-pruning techniques to
construct the behavioral graphs of adaptive targets in collaborative knowledge graphs [55].
Wang et al. proposed a new method called knowledge GAT (KGAT), which innovatively
handles knowledge graphs with graph attention neural networks and proposes a new
neighbor aggregation method to improve the target node’s embedding; the attention
mechanism in KGAT can effectively divide the importance of neighbor nodes [19].

3. Models and Methods of KHGCN for Recommendation

This section discusses in detail the knowledge-enhanced hierarchical graph capsule
network (KHGCN) proposed to address the problems of knowledge-based recommenda-
tion tasks. KHGCN aims to learn node embeddings in collaborative knowledge graphs
as well as fine-grained learning of the representation of target nodes in the CKG using a
hierarchical graph capsule neural network. We take the dissociated representation of nodes
in a collaborative knowledge graph as input to a graph capsule neural network. Therefore,
the primary capsule in each graph capsule neural network is composed of multiple disen-
tangled independent latent factors, where each latent factor represents a different attribute
of the entity. Transformer GATs (TGATs) generate the primary capsules, whose main
function is to encode the part–whole relationship between the low level and high level by
further integrating the high-order neighbor representations of target nodes in collaborative
knowledge graphs. Specifically, the instantiation parameters in the upper-layer capsules are
obtained by the voting of the lower-layer capsules TGAT, which depends on the structure
between the lower-layer capsules. The lower layer is routed to high-level capsules through
the routing mechanism of the capsule neural networks. After several rounds of iterations,
high-order representations of user items are obtained through objective function training.
Finally, the obtained user and item representations are fitted by the prediction layer to
complete the recommendation. Figure 2 shows the description of the KHGCN model
framework and other components.
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Figure 2. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as follows: (a) The framework of KHGCN. (b) The residual connection in the routing
part. (c) The TGAT layer part in the primary graph capsule. (d) The attentive embedding propagation
layer part in the TGAT.

3.1. Problem Formulation

In this section, we introduce a detailed definition of the KHGCN model for the CKG-
based recommendation. According to the collaborative knowledge graph constructed in
Figure 1, the datasets are divided into the following three parts for introduction. User–item
interaction graph: This contains users, items, and user–item interactions. The set of users is
denoted as U =

{
u1, u2, · · · , u|U|

}
. The set of items is denoted as V = {v1, v2, · · · , v|V|}.

Moreover, the user–item interactions set is denoted as Y = {yuv|u ∈ U, v ∈ V}. For each
interaction, yuv = 1 means that the user u has positive feedback for item v, and yuv = 0
means that the user u has no feedback for item v.

Knowledge graph: The knowledge graph consists of entity connection relationships.
The entity set is denoted as E = {e1, e2, · · · ,e|E|}, and |E| represents the number of entities
in knowledge graph. The relationship set is denoted as R = {r1, r2, · · · ,r|R|}, and |R|
represents the number of relations in knowledge graph. where (h, r, t) is a triple in G, and h,
t represent the entities of head and tail, and relation r represents the relation between the
head h and tail t. Here, we adopt a set of triples to represent the entire knowledge graph
G(E, R, E).

Collaborative knowledge graph: This is a joint user–item graph and knowledge graph,
for which we define user–item interactions as ŷuv = z(u; v; Θ, Y,G), where ŷuv represents
the predicted interaction between the user u and item v pairs in the collaborative knowledge
graph, and Θ is the parameter of the function z.

Candidate items set for the target user are generated according to the predicted in-
teractions. Some of them are selected for the recommendation list according to the actual
situation. The function z is defined by the KHGCN. KHGCN generates the top@N list
for the CKG-based recommendation, where N is the number of items in the recommenda-
tion list.
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Figure 2a shows the overall framework of the recommendation model KHGCN, where
the main components of the model are the embedding of CKG, disentanglement, capsule
neural networks, and hierarchical graph attention networks.

3.2. Knowledge Graph Embedding

Knowledge-graph embedding maps entities and relations in a knowledge graph to a
unified space for efficient representation, while preserving the structure of the knowledge
graph. KHGCN adopts TransR [17], a widely used KGE method, to learn representations
of knowledge graphs. Specifically, TransR learns the translation principle for (h, r, t) triples
and learns to embed each triple existing in the knowledge graph by optimizing the transla-
tion principle er

h + er ≈ er
t . Where eh, et ∈ Rd and er ∈ Rk, d are the embedding dimensions

of the entity in the knowledge graph, k is the embedding dimension of the relation in the
knowledge graph, and er

h and er
t are the mappings of the entities h and t in the relation

r space. To sum up, given the triples present in the knowledge graph, the energy score
formula calculated by TransR is as follows:

g(h, r, t) = ||Wreh + er −Wret||22 (1)

where Wr ∈ Rk×d is the spatial transformation matrix of relation r, and the transformation
matrix is used to map d- dimensional entities into k-dimensional relation space r. In the
formula, if the triplet has a higher score, the triplet is likely to be not true, and the lower
the triplet score, the more likely it is to be true.

3.3. Node Disentangle

In most cases, highly complex interactions are involved in connecting each node
pair in a graph. For example, the researchers largely model the relationships uniformly
as before while neglecting the diversity of user intentions in watching the films, which
could be for the director, actors, accompanying family or friends, etc. Therefore, it is
necessary to disentangle the interpretable latent factors underlying the variation of entity
representations in knowledge graphs. We expect to completely dissociate the independence
between different intents in entity representations [29,43].

Motivated by [31], we add the disentanglement component into our model, which
can be called disentangled HGCN, to disentangle the entities’ representation factors and
focus on disentangled representations for recommendation tasks. The dissociated entity
node is used as the input of the graph capsule. Each graph capsule is composed of
multiple independent heterogeneous factors, where each factor describes a piece of the
representation of the entity.

For a knowledge graph, G = (E, R, E), node i in the graph is represented by ei ∈ Rd.
Specifically, we project the input entity features into K different subspaces, assuming there
are K latent factor parameters:

ei,k = σ(WT
k ei) + bk (2)

where Wk ∈ Rd× dh
K , and bk ∈ R

dh
K are learnable parameters, σ is a nonlinear activation

function, and dh
K is the dimension of each factor. Our study uses linear projection due to its

efficiency and remarkable performance. Therefore, each graph capsule is represented by a

pose matrix Ei ∈ RK× dh
K [56].

After the dissociation operation, we reshape Ei into the dissociated vector format
Ei ∈ Rdh . At this point, we obtain the de-dissociated entity vector to match the capsule
graph’s input. Therefore, we compress zi as follows [31]:

pi = squash(ei) =
||ei||2

1 + ||ei||2
ei
||ei||

(3)
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where e(1)i = pi ∈ Rdh is the primary graph capsule representing the lowest-level entity
and the basis upon which all advanced capsules are founded.

3.4. Hierarchical Graph Capsule Learning

We propose the hierarchical graph capsule layers, consisting of TGATs and residual
routing parts. The task of TGATs is to vote for the instantiation parameters of higher-level
graph capsules.

Figure 2c shows the attentive embedding propagation layer part. Unlike KGAT [19],
we pass the dissociated vector through a layer of the self-attention mechanism with residual
values and then feed the resulting vector into the improved attention mechanism and embed
the propagation layer.

3.4.1. Transformer Graph Attention Layers

• Residual Transformer: As shown in Figure 2b, we add a residual self-attention mech-
anism before the attention embedding propagation, which facilitates better coarse
extraction of the embedding representation of the graph:

fRT(X) = (λt + so f tmax(
QtKt

T√
dKt

)Vt)X (4)

where Qt = Kt = Vt = X, λt = 1, and X = e(1)i is the representation of disentangled
entity embedding and relation in knowledge-enhanced graph G. The embedding of
the i-th node e(1)i can be represented as e(1)i = fRT(e

(1)
i ), where RT is short for residual-

transformer.
• Knowledge-aware graph attention: For each entity h in graph G, we define its asso-

ciated neighbor entity as Nh = (h, r, t)|(h, r, t) ∈ G, where Nh represents the set of
triples associated with the head node h. The attentive embedding propagation layer
part is shown in Figure 2d.
To characterize the first-order connectivity structure of entity h, we obtain the relevant
first-order neighbor embedding by computing the relation score π and the relevant
entity t in Nh as

eNh = ∑
(h,r,t)∈(Nh)

π(h, r, t)et (5)

where π(h, r, t) controls the decay factor on each propagation on edge (h, r, t), indi-
cating how much information is being propagated from t to h conditioned to relation
r. In this part, we construct a new formula, and the learned node embedding with
attention is integrated with the bi-interaction function. The improved formula for
calculating π(h, r, t) is as follows:

π(h, r, t) = (tanh(Wret + er))
T tanh(Wreh + er) (6)

where we select tanh as the nonlinear activation function. The attention score π(h, r, t)
between nodes h and t is determined by the relational spatial distance of relation r in
TransR. The higher the degree of association to node h in the relationship space, the higher
the value of the attention score π(h, r, t). After calculating the scores of all nodes t related
to node h in Nh, we normalize the attention scores by the softmax function:

π(h, r, t) =
exp(π(h, r, t)

∑(h,r′ ,t′)∈Nh
exp(π(h, r′, t′))

(7)

Therefore, the final attention score determines that nodes with high scores should be
given more weight and attention so that high-order features in the neighbor set of the
target node can be learned more accurately. During the training process, the attention
scores divide the importance of each datum while enhancing the interpretability of
the recommendation.
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• Bi-interaction aggregator: The Bi-interaction aggregator is the result of considering
various feature interactions between eh and eNh . The Bi-interaction calculation formula
is as follows:

fBi = LeakyRelu(W1(eh + eNh) + LeakyRelu(W2(eh � eNh)) (8)

where W1, and W2 ∈ Rd′×dh are the trainable weight matrices, and � denotes the
element-wise product. We encode the feature interactions between eh and eNh . This
term makes the information being propagated sensitive to the affinity between eh
and eNh , e.g., passing more messages from similar entities, where Bi is short for Bi-
interaction. We encode the target node h embedding and its corresponding neighbors’
set Nh embedding by Bi. Through the encoding method of Bi, we can further encode
the high-order connection of the target node in the graph. Our method is built upon
TGATs by following the attention information propagation paradigm:

e(l+1)
h = fBi(e

(l)
h , e(l)Nh

) (9)

The final representation of node eh is given by TGAT(e(1)h , e(1)Nh
) = e(L)

h ∈ RL×dh after
L iterations.

3.4.2. Learning Primary Capsules

For all primary capsules in layer l, generated by the proposed hierarchical TGATs, it is
assumed that the m-th node embedding of layer l can be calculated via

p(l)j = TGATj(e
(l)
i , e(l)Ni

) (10)

After stacking the hierarchical TAGTs outputs, we concatenate the primary capsules of
node i at layer l into a vector p(l). The j-th primary capsule is represented as p(l)j , where

p(l)j ∈ RL×dh .

3.4.3. Routing for Graph Capsules

After the primary capsule is generated, the obtained primary capsule generates the
graph capsule through the graph routing mechanism. To iteratively generate the graph
capsules, in each iteration, there are

e(l+1)
i = squash(∑

i
c(l)i,j p(l)j|i ) (11)

where c(l)i,j ≥ 0, and ∑L
i=1 c(l)i,j = 1. q(l+1)

j is the j-th graph capsule in layer l + 1, representing
the close voting cluster from the primary capsules in layer l + 1, and c(l+1)

i,j is the routing
coefficient used to calculate the voting of each primary capsule for the graph capsule, which
represents the primary capsule p(l)j relative to the graph capsule e(l+1).Here, consider the

importance of c(l)i,j , which is iteratively updated using a graph routing mechanism.

The vote of each capsule in the primary capsules p(l) is routed to a capsule in the
graph capsule e(l+1), and each graph capsule has the participation of the primary capsule.
Formally, the vote routing coefficient c(l)i,j is defined by softmax:

c(l)i,j = exp(b(l)i,j )/ ∑
s

exp(b(l)i,s ) (12)
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where the initial value of b(l)i,j is defined as 0. We perform R iterations of the graph-routing

mechanism at each iteration, and b(l)i,j is also updated as follows:

b(l)i,j = b(l)i,j + a(l)i,j ,

a(l)i,j = p(l)j|i q̇(l+1)
j

(13)

where a(l)i,j indicates the agreement between each vote and vote cluster. After R iterations,

we obtain higher-level graph capsules e(l+1). Figure 2b shows that we add a residual
connection to each pair of consecutive graph capsule layers to provide richer information
for higher-level graph capsules.

To reduce the number of trainable parameters in KHGCN, we set dh = d in our experi-
ments. It has been proven that such a reduction does not affect the final recommendation
performance. Formally, the output of the graph capsule in layer (l + 1) is defined as
e(l+1) ← e(l+1) + GA(e(l)), where GA indicates the global average operation.

3.5. Model Prediction

After hierarchical graph capsules perform L-order information propagation, we obtain
all representations of user node u at the L-level in the graph, namely {e(1)u , . . . , e(L)

u }.
Likewise, we obtain the representation of item node v, namely{e(1)v , . . . , e(L)

v }. Therefore,
we adopt the general layer-aggregation method to concatenate the representations of each
layer into a vector to represent the target node via

e>u = [e(0)u || . . . ||e(L)
u ], e>v = [e(0)v || . . . ||e(L)

v ] (14)

where || is the concatenate mechanism for vectors.
We enrich the initial embedding by the embedding propagation operation and control

the strength of information propagation by adjusting the parameter L simultaneously. In
the prediction layer, we use an inner product operation on the vector of the user and item
to predict the interaction probability between them via

ŷ(u, v) = e>T
u e>v (15)

3.6. Loss Function and Model Training

Training for TransR considers the relative order of positive and negative triples pair-
wise and trains with the pairwise ranking loss for overall ordering via

LKG = ∑
h,r,t,t′∈F

−lnσ(g(h, r, t′)− g(h, r, t)) (16)

whereF = (h, r, t, t′)|(h, r, t) ∈ G, (h, r, t′) /∈ G, and (h, r, t′) is the negative triple constructed
by randomly replacing one entity in the positive triple, and σ(·) is the
sigmoid function.

This layer models the entities and relationships through the graph triples. The knowl-
edge graph loss function LKG is used as a regularization item for the auxiliary recom-
mendation to train together with the recommendation model, thereby improving the
generalization ability of the recommendation model.

Likewise, our training construct for the recommendation part comes after obtaining
the output ŷuv of the prediction layer. In the prediction layer, the likelihood of user u
and item v is estimated by feeding their final representations into the prediction function.
We also use pairwise BPR loss to optimize the recommended partial model parameters
Θ = {u, v|u ∈ U, v ∈ V}. Specifically, since generated user–item interactions are identified
user preferences, it is assumed that identified interactions should be assigned higher
predictive values than unidentified interactions:
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LRec = ∑
u,v,w∈O

−lnσ(ŷ(u, v)− ŷ(u, w)) (17)

where O = {(u, v, w)|(u, v) ∈ R+, (u, w) ∈ R−} denotes the training set, R+ denotes
the observed (positive) interaction between the user u and item v, andR− is the sampled
unobserved (negative) interactions set. σ(·) is the sigmoid function.

Finally, we have the objective function to learn Equation (16) and Equation (17) jointly,
as follows:

LKHGCN = LKG + LRec + λΘ‖Θ‖2
2 (18)

where Θ = {E, Wr, ∀l ∈ R,W(l)
1 , W(l)

2 , ∀l ∈ {1, . . . , L}} is the model parameter set, E is the
embedding representation of all entities and relations, and L2 regularization is performed
on λΘ to prevent overfitting, where Θ is a parameter for controlling the regularization.

The whole training process is detailed in Algorithm 1. We optimize LKG and LRec
alternatively, and mini-batch Adam [57] is used to optimize the loss function LKHGCN of the
collaborative knowledge graph recommendation model. Adam can adaptively control the
absolute value of the learning rate with respect to the gradient and is an ordinary universal
optimizer in deep learning.

Algorithm 1 Procedure of KHGCN.

Input: users u; items v; Interaction matrix Y; knowledge graph G
Output: recommend the top@N item list

1: initialize all parameters, shuffle (u,v,Y,G);

2: for i = 1 to |U|+ |V|+ |E| do

3: apply TransR to obtain the embedding of the graph G
4: for k = 1 to K do

5: zi,k = σ(WT
k ẋi) + bk

6: end for

7: end for

8: obtain the LKGs loss of the TransR from Equation (16);

9: u(1)
i = squash(zi)

10: for l = 1 to L do

11: b(l)i,j = 0

12: for j = 1 to |N(l+1)
i | do

13: p(l)j = TGATj(e
(l)
i , e(l)Ni

)

14: end for

15: for r = 1 to R do

16: c(l)i,j = exp(b(l)i,j )/ ∑s exp(b(l)i,s )

17: e(l+1)
j = squash(∑i c(l)i,j p(l)j|i )

18: b(l)i,j = b(l)i,j + p(l)j|i · e
(l+1)
j

19: end for

20: e(l+1)
i =GA(e(l+1)

1 ||,. . . ,||e(l+1)
j ||,. . . ,||e(l+1)

|N(l+1)
i |

)

21: e(l+1)
i = e(l+1)

i + GA(e(l)i )

22: end for
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Algorithm 1 Cont.

23: Concatenate (e(1)u , . . . , e(L)
u ),Concatenate (e(1)v , . . . , e(L)

v )
24: from prediction layer to calculate predicted probability ŷuv;
25: compute the cross-entropy loss of LRec from Equation (17);
26: compute the total-loss LKHGCN from Equations (18);
27: Apply Equations (16)–(18) to obtain the back-propagated loss error and update param-

eters through the entire network;
28: update weights by the optimizer and update the learning rate a; return top@N item list;

4. Experiment

In this section, to evaluate the effectiveness of our model, we carry out experiments
on three real-world benchmark datasets, Amazon-Book, Last-FM, and Yelp2018, which
are publicly accessible. Furthermore, the three datasets are different in application fields,
and there are some differences in data size and terms of data sparsity as shown in Table 1.

Table 1. Details of the three datasets.

Datasets Amazon-Book Last-FM Yelp2018

User–Item
Interaction

#Users 70,679 23,566 45,919
#Items 24,915 48,123 45,538

#Interactions 847,733 3,034,796 1,185,068
#Density 0.000481 0.002676 0.0005667

Knowledge
Graph

#Entities 88,572 58,266 90,961
#Relations 39 9 42
#Triplets 2,557,746 464,567 1,853,704

4.1. Dataset Description

• Amazon-Book: Amazon-review is a widely used product recommendation
dataset [58]. Amazon product data include some user–item data provided by Amazon.
These data contain various Amazon products, such as books, electronics, movies
and TV, home kitchens, outdoor sports, digital music, musical instruments, etc. This
dataset includes reviews (ratings, text, and help votes), product metadata (description,
category information, price, branding, and image features), and links (see/also buy
charts). We choose Amazon-Book from Amazon for model performance evaluation,
and we keep users and items with at least ten interactions (10-core).

• Last-FM: This is a dataset that provides music recommendations. Listening records of
92,800 singers from 1892 users; each user in the dataset contains a list of their most
popular artists and the number of plays. It also includes user-applied labels that can be
used to construct content vectors from the music listening dataset collected from the
Last-FM online music system. Among them, tracks are considered items. In particular,
we take a subset of the dataset with timestamps from January 2015 to June 2015. We
utilize the same 10-core setup to ensure data quality.

• Yelp2018: This dataset was adopted from the 2018 edition of the Yelp challenge.
This dataset covers business, review, and user data, and can be used for personal,
educational, and academic purposes. Here, we consider local businesses such as
restaurants and hotels as projects. Again, we use a 10-core setting to ensure at least
ten interactions per user and item.
To build a collaborative knowledge graph for recommendations, we introduce a
knowledge graph based on the original user–item interactions in each dataset. As
shown in Figure 1, the knowledge graph is introduced through the item side in
our model. We first traverse each item in the Amazon book and LastFM datasets.
If the mapping between the item and the knowledge graph is available (there is an
intersection), we map the item to the Freebase entity through the title-matching method
used in KGAT [19]. For Yelp2018, we extract item knowledge from local business
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information networks as KG data. To guarantee the integrity of the constructed
knowledge-aware dataset, we consider all triples directly related to item-aligned
entities. The statistics of the three knowledge-aware datasets are shown in Table 1
When constructing knowledge graph data, to guarantee the quality of the constructed
knowledge graph, we filter the uncommon entities (that is, fewer than 10 in the
intersection of both datasets) and retain at least 50 relations that appear in triples
to preprocess the knowledge graph part of the three datasets. We randomly select
80% of each user’s interaction history for each dataset to form the training set to
train the model parameters and the remaining 20% as the test set to verify the model
performance. We randomly select 10% of each user’s interactions from the training set
as the validation set to tune the model’s hyperparameters. We take each of its observed
user–item interactions as a positive example and then pair it with a negative example
with which the user has not interacted before through a negative sampling strategy.

4.2. Baseline Methods

• FM [2]: FMs model all interactions between the inputs variables using factorized
parameters. Here, we take the ids of the constructed collaborative knowledge graph
as input features for FM.

• NFM [59]: This method is a state-of-the-art decomposition model that uses the prop-
erties of neural networks to fit arbitrary functions to highlight generalized NFMs,
treating FMs as a particular case of NFMs.

• BPRMF [60]: Most algorithms are based on user predictions of product ratings for
implicit feedback data. From the perspective of sorting, BPRMF sorts according to
each user’s preference, in which the top-ranked items have higher priority.

• CKE [33]: Collaborative knowledge-base embedding (CKE) leverages the additional
information in the knowledge base to improve the quality of recommendation systems
and learns latent representations of entities related to items in collaborative filtering
from the knowledge base.

• ECFKG [37]: The ECFKG model applies TransE [16] to the unified graph to embed
relevant entities in the knowledge graph to enhance recommendations. Furthermore,
a soft-matching KGE-based method is proposed to generate interpretable personalized
recommendation lists for users.

• KGAT [19]: This model studies the utility of knowledge graphs, which breaks the inde-
pendent interactions assumption by associating items with their attributes, and builds
an end-to-end graph attention neural network approach to model higher-order con-
nections in KG.

• DGCF [43]: Disentangled graph collaborative filtering (DGCF) models enhance user
intent to disentangle these factors and yield disentangled representations. The spe-
cific method is to split the user’s embedding into several segments, each segment
representing a specific intent of a user.

4.3. Evaluation Metrics

To better examine that the proposed model works under real-world datasets, we
evaluate the model by Precision@N, Recall@N, F1@N, and NDCG@N. R̂N is a list of
the top@N predicted for target user u, N is the length of the recommendation list from
candidate items, and R is the test set.

Precision@N: Indicates the proportion of the predicted positive samples that are
positive samples.

Precision@N =
|R ⋂

R̂N |
N

(19)
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Recall@N: Indicates that the predicted result is the proportion of the actual positive
samples in the positive samples to the positive samples in the full sample.

Recall@N =
|R ⋂

R̂N |
|R| (20)

F1@N: The F1 score is a weighted average of precision and recall. The higher the F1
score, the more robust the model.

F1@N = 2 · Precision@N · Recall@N
Precision@N + Recall@N

(21)

NDCG (Normalized Discounted Cumulative Gain): The score of NDCG represents
the correlation between the recommendation list and the target user.

NDCG@N = nu
∑j 2r(z)

log(1 + z)
(22)

In the above equation, nu is a normalization constant. r(z) is the correlation coefficient of
the z-th item in the recommended list, which is generally set to an integer.

4.4. Experiment Settings

We implement our model in the Pytorch deep-learning framework. The embedding
size is fixed to 64 for all models. All models are optimized by the optimizer Adam, which
fixes the batch size to 4096. Model parameters are initialized using the default Xavier
initializers [61]. We employ a generic grid search to determine model hyperparameters:
the learning rate is adjusted in {0.05, 0.01, 0.005, 0.001}, L2 normalization coefficients are
searched in { 10−5, 10−4, . . . , 10, 102}, and the dropout ratio is uniformly fixed to 0.1.

Furthermore, we employ an early-stopping mechanism during the validation process
of model training, i.e., if the Recall@20 on the validation set does not increase in 100 con-
secutive epochs, the training is stopped early. To model the higher-order connectivity, we
set the depth L of the model KHGCN to 3 and the hidden layer dimension (64, 32, 16).
In Section 4.6.2, the effects of different layer depths L on the performance of the model
KHGCN are analyzed experimentally. We adopt a bi-interaction strategy for each layer
propagation in KHGCN to aggregate the input vectors.

To evaluate the model’s performance for the target user, we take the 10 most recent in-
teractions as the test set and use the rest of the data for training. The model performance is
judged by the generated recommendation list and the four evaluation metrics: Precision@20,
Recall@20, F1@20, and NDCG@20. We randomly divide each dataset into a training set,
validation set, and test set, and average the results using 10-fold cross-validation for our
model. Table 2 shows the hyperparameters set in different datasets, where d represents
the latent dimension, L represents the depth of the KHGCN propagation, K represents the
number of node-unwrapped latent subspaces, Rrepresents the number of routing iterations
of the graph capsule, and λΘ represents the weight for L2 regularization.

For fairness, we set the parameters of other comparison algorithms to the same settings
as those in Table 2, and other hyperparameters, except those in Table 2, are selected by
grid search.

Table 2. Hyperparameters.

Datasets Amazon-Book Last-FM Yelp2018

d 64 64 64
L 3 3 3
K 4 4 4
R 3 3 3

λΘ 0.0001 0.0001 0.00001
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4.5. Performance Comparison

To verify the effectiveness of KHGCN for CKG-based recommendation tasks, we
compare the results of KHGCN with other contrasting algorithms on three datasets and
four evaluation metrics and show the result of the top@20 in Table 3.

• Three algorithms are first analyzed without considering the node embeddings: FM,
NFM, and BRPMF. BPRMF outperforms FM and NFM because BPRMF benefits from
sampling positive and negative samples (triples). Then, we train the model with
BPR loss.

• Three algorithms are first analyzed without considering the node embeddings: neural
network methods, such as CKE and CFKG, are significantly better than the above
three methods, which verifies the effectiveness of the knowledge-graph embedding in
the recommendation system. The results are shown in Table 3, which may reflect the
contribution of deep learning methods to some extent.

• Table 3 shows that our model performs better and is more competitive than CKE and
CFKG under the evaluation criteria. It verifies the superiority of the graph neural
network structure in the case of graph-structure-based recommendations. To a certain
extent, it reflects that our graph neural network model can provide target users with
more accurate item recommendations.

• Compared with the representative graph-based recommendation method KGAT,
Table 3 shows that KHGCN outperforms the KGAT method under four evaluation
metrics of the three datasets. Specifically, KHGCN achieves a 5.4% average improve-
ment. Because KGAT only builds a simple graph attention mechanism, it also shows
the importance of utilizing the decoupling mechanism and the capsule graph net-
work. We attribute the significant improvement to the expressiveness of graph neural
networks in modeling multiple capsule propagation layers.

• DGCF achieves the best performance in the baseline, suggesting that the disentangled
structure is beneficial for enhancing representation learning in the recommendation.

Finally, we analyze and summarize the experimental results of the proposed KHGCN.
Our model, built with a decoupling mechanism and a capsule graph neural network,
yields better performance than all contrasting algorithms. Experimental results validate
the ability of KHGCN to model higher-order connections and learn user–item interactions
in collaborative knowledge graphs. KHGCN consistently outperforms other comparison
algorithms in all indicators in the performance comparison, which verifies the effectiveness
of KHGCN enhanced representation learning to a certain extent.

Table 3. Performance of different methods for the top@20 recommendation.

Amazon-Book Last-FM Yelp2018

Precision Recall F1 NDCG Precision Recall F1 NDCG Precision Recall F1 NDCG

FM 0.0144 0.1449 0.0262 0.0722 0.0306 0.0791 0.0442 0.0647 0.0157 0.0657 0.0253 0.0415
NFM 0.0139 0.1383 0.0252 0.0725 0.0293 0.0768 0.0424 0.0610 0.0144 0.0623 0.0235 0.0397

BPRMF 0.0142 0.1336 0.0256 0.0694 0.0316 0.0757 0.0446 0.0649 0.0163 0.0670 0.0262 0.0432
ECFKG 0.0130 0.1225 0.0236 0.0612 0.0293 0.0744 0.0420 0.0617 0.0147 0.0600 0.0236 0.0386

CKE 0.0145 0.1384 0.0263 0.0723 0.0315 0.0756 0.0445 0.0648 0.0165 0.0676 0.0265 0.0438
KGAT 0.0149 0.1416 0.0270 0.0756 0.0329 0.0802 0.0466 0.0688 0.0163 0.0670 0.0262 0.0429
DGCF 0.0151 0.1524 0.0277 0.0756 0.0320 0.0825 0.0463 0.0682 0.0164 0.0693 0.0263 0.0431

KHGCN 0.0170 0.1638 0.0308 0.0934 0.0374 0.0886 0.0526 0.0795 0.0184 0.0748 0.0294 0.0477

4.6. Analysis of Our Model

In this section, to further deepen the understanding of the KHGCN model, we analyze
the more essential hyperparameters and components in the KHGCN model. Firstly, we
experimentally verify the input dimension of the knowledge graph matching our model.
Next, we investigate the sensitivity of KHGCN to the subspace number of disentanglement
K and the iterations number of graph routing R. Third, we examine how changes in
different hyperparameters during training affect the model performance. Moreover, we
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investigate how to select the aggregation mechanism that is most suitable for information
dissemination in graph neural networks. Furthermore, we explore the effect of varying the
number of layers L in graph neural networks on model performance. Lastly, we study how
versions are affected by an additional component in our model.

4.6.1. Sensituvity Studies

In this section, we analyze the sensitivity of KHGCN to the subspace number of latent
factors K = 2, 8 and the number of routing iterations R = 1, 2, 4, 5, where our method
has the setting K = 4 and R = 3. As shown in Figure 3 and Table 4, the results show
that KHGCN is not very sensitive to the two hyperparameters. Although the model’s
performance improves when K = 8 compared to when K = 4, the computational complexity
of the unwrapping part also doubles. Similarly, although the evaluation index Recall@20 on
the dataset Yelp2018 has slightly improved vehicle ability, the model requires more routing
iterations when R = 4.
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Figure 3. Sensitivity studies for the top@20 recommendation. (a) Amazon-Book. (b) Last-Fm.
(c) Yelp2018.

Table 4. Sensitivity studies for the top@20 recommendation.

Amazon-Book Last-FM Yelp2018

Precision Recall F1 NDCG Precision Recall F1 NDCG Precision Recall F1 NDCG

K 2 0.0167 0.1630 0.0303 0.0933 0.0370 0.0880 0.0520 0.0774 0.0185 0.0749 0.0297 0.0467
8 0.0170 0.1633 0.0308 0.0924 0.0363 0.0884 0.0515 0.0785 0.0185 0.0750 0.0296 0.0463

R

1 0.0166 0.1608 0.0301 0.0918 0.0367 0.0878 0.0517 0.0767 0.0181 0.0745 0.0291 0.0460
2 0.0168 0.1621 0.0304 0.0927 0.0369 0.0884 0.0521 0.0778 0.0183 0.0744 0.0294 0.0462
4 0.0169 0.1626 0.0307 0.0921 0.0374 0.0874 0.0524 0.0767 0.0184 0.0750 0.0295 0.0461
5 0.0168 0.1631 0.0305 0.0924 0.0372 0.0878 0.0523 0.0781 0.0183 0.0746 0.0293 0.0460

K = 4, R = 3 0.0170 0.1638 0.0308 0.0934 0.0374 0.0886 0.0526 0.0795 0.0184 0.0748 0.0294 0.0477

4.6.2. Effect of Embedding Propagation Layer Numbers

We test if the more propagation layers KHGCN is embedded with, the better the
model performance.In particular, we set the embedding propagation layer L in [1, 2, 3, 4, 5].
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Figure 4 and Table 5 show the performance of our model under different embedding
propagation layers. Figure 4 straightforwardly shows that an appropriate increasing of the
depth of the model can improve the performance of our model to a certain extent.

Notably, KHGCN-2 and KHGCN-3 significantly outperform KHGCN-1. Experiments
show that KHGCN can effectively model higher-order relationships among the nodes
in collaborative knowledge graphs, benefiting from the higher-order connectivity of the
second- and third-order embedding layers relative to the first-order one. Further stacking
too many layers in KHGCN, the performance drops, like with KHGCN-4 and KHGCN-5.
The results show that KHGCN may be too profoundly degraded by the influence of noisy
nodes embedded in the propagation layer. An excessively deep embedded propagation
layer can lead to overfitting and reduce the model’s performance.
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Figure 4. Effect of embedding propagation layer numbers for the top@20 recommendation.
(a) Amazon-Book. (b) Last-Fm. (c) Yelp2018.

Table 5. Effect of embedding propagation layer numbers for the top@20 recommendation.

Amazon-Book Last-FM Yelp2018

Precision Recall F1 NDCG Precision Recall F1 NDCG Precision Recall F1 NDCG

L = 1 0.0158 0.1515 0.0286 0.0907 0.0350 0.0860 0.0498 0.0747 0.0168 0.0694 0.0270 0.0438
L = 2 0.0167 0.1596 0.0303 0.0910 0.0367 0.0877 0.0517 0.0779 0.0183 0.0734 0.0293 0.0478
L = 3 0.0170 0.1638 0.03088 0.0934 0.0374 0.0886 0.0526 0.0795 0.0184 0.0748 0.0294 0.0477
L = 4 0.0167 0.1581 0.0302 0.0903 0.0361 0.0878 0.0511 0.0765 0.0181 0.0720 0.0289 0.0473
L = 5 0.0145 0.1352 0.0262 0.0891 0.0306 0.0751 0.0435 0.0731 0.0152 0.0737 0.0252 0.0438

4.6.3. Aggregators Analysis

To investigate how different aggregators for ego representations and neighbor rep-
resentations will affect the performance of KHGCN, we perform experiments for four
variants of KHGCN. Note that two single aggregators (GCN and GraphSage) and two
Bi-interaction aggregators (Concatenate and Sum) are four variants of KHGCN. Table 6
show that Bi-interaction (Sum) outperforms GCN, GraphSage, and Bi-interaction (Con-
catenate) on both metrics. We attribute the improvement to feature interactions, which
model affinities between the ego representation and neighbor representations. The result
justifies the effectiveness and rationality of the Bi-interaction (Sum) aggregator to capture
the heterogeneity of these four representations.
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Table 6. Aggregators analysis for the top@20 recommendation.

Aggregators
Amazon-Book Last-FM Yelp2018

Precision Recall F1 NDCG Precision Recall F1 NDCG Precision Recall F1 NDCG

GCN 0.0165 0.1568 0.0298 0.0904 0.0361 0.0857 0.0508 0.07697 0.0177 0.0720 0.0285 0.0461
GraphSage 0.0168 0.1605 0.0304 0.0921 0.0359 0.0868 0.0508 0.07707 0.0178 0.0734 0.0286 0.0462

Concatenate 0.0167 0.1615 0.0303 0.0918 0.0367 0.0872 0.0517 0.0782 0.0181 0.0735 0.0291 0.0469
Sum 0.0170 0.1638 0.0308 0.0934 0.0374 0.0886 0.0526 0.0795 0.0184 0.0748 0.0294 0.0477

Comprehensive ablation studies are carried out in this section to understand the
contribution of each component (i.e., disentangled graph capsules, attention layer, and
capsule layers) in our method. We perform the ablation experiments on the component of
the KHGCN to analyze their influence on the model performance. Here, we would like
to examine how each factor contributes to the final performance. The results evaluated
by evaluations are shown in Table 7 and Figures 5–7. To see this, we prepare five variants
for comparison:

• w/o KGE: We disable the TransR embedding component of KHGCN. The variant
removes the KG entities and their links from HKG but keeps the other nodes and links.

• w/o Att: We disable the attention mechanism and set π(h, r, t) as 1/|Nh|. The variant
replaces the TGAT in the primary capsules with an average pool GNN component.

• w/o K&A: We obtain the variant by removing both components (w/o KGE and
w/o Att).

• w/o Dis: Directly use the input node representation to serve as graph capsules,
without considering the disentanglement factors. The variant removes the nodes
disentangled from KHGCN but retains the KG entities and their links.

• w/o Res: remove the residual connection among the adjacent capsule layers.
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Figure 5. Ablation analysis on Amazon-Book for the top@20 recommendation. (a) Precision@20.
(b) Recall@20. (c) F1@20. (d) NDCG@20.
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Figure 6. Ablation analysis on Last-Fm for the top@20 recommendation. (a) Precision@20. (b) Re-
call@20. (c) F1@20. (d) NDCG@20.
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Figure 7. Ablation analysis on Yelp2018 for the top@20 recommendation. (a) Precision@20. (b) Re-
call@20. (c) F1@20. (d) NDCG@20.
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Table 7. Ablation analysis for the top@20 recommendation.

Amazon-Book Last-FM Yelp2018

Precision Recall F1 NDCG Precision Recall F1 NDCG Precision Recall F1 NDCG

w/o K&A 0.0156 0.1540 0.0283 0.0861 0.0352 0.0826 0.0493 0.0751 0.0169 0.0693 0.0272 0.0444
w/o KGE 0.0158 0.1529 0.0286 0.0866 0.0355 0.0823 0.0496 0.0764 0.0172 0.0717 0.0277 0.0453
w/o Att 0.0157 0.1552 0.0286 0.0863 0.0355 0.0840 0.0499 0.0762 0.0170 0.0706 0.0274 0.0448
w/o Dis 0.0167 0.1548 0.0302 0.0903 0.0335 0.0847 0.0480 0.0781 0.0155 0.0723 0.0255 0.0468
w/o Res 0.0168 0.1645 0.0305 0.0930 0.0369 0.0855 0.0515 0.0789 0.0179 0.0706 0.0285 0.0476
KHGCN 0.0170 0.1638 0.0308 0.0934 0.0374 0.0886 0.0526 0.0795 0.0184 0.0748 0.0294 0.0477

Table 7 and Figures 5–7 show the performance comparison between the complete
model and the five variants. We summarize the experimental results in Table 7, and the
results illustrated reveal the following:

• Removing knowledge-graph embedding and attention components degrade the
model’s performance. w/o K&A consistently underperforms compared to w/o KGE
and w/o Att. It makes sense since w/o K&A fails to explicitly model the repre-
sentation relatedness on the granularity of triplets. We can see that removing KG
data significantly affects the performance of our model, which further verifies the
usefulness of KG data.

• Compared with w/o Att, w/o KGE performs better in most cases. One possible
reason is that treating all neighbors equally might introduce noises and mislead
the embedding propagation process. It verifies the substantial influence of graph
attention mechanisms.

• The variant w/o Dis removing nodes disentanglement gives a worse result than the
complete model, which shows that disentangling node representation allows us to
characterize the latent factors underlying each node and, in turn, more accurately
preserve the node/graph properties and capture the part–whole relationship.

• Furthermore, the w/o variant Residual dropping the residual component is worse
than the complete model, which indicates that combining fine, low-layer information
with coarse, high-layer information gives us the ability to enhance the final graph-level
representation.

Thus, we conclude that each component in our method is necessary and contributes
to performance improvement.

5. Conclusions and Future Work

This work argues that there are complex and valuable relationships in the collabo-
rative knowledge graph, and the knowledge-graph-based recommendation is essential.
With this in mind, we propose a recommendation model with a knowledge-graph capsule
network that employs a disentanglement mechanism to handle input node embeddings
and a hierarchical capsule graph neural network layer to model higher-order connections
and enhance representation learning for collaborative knowledge graphs. Extensive com-
parative experiments on three large-scale real-world datasets validate the rationality and
effectiveness of KHGCN for modeling user and item representations in CKGs. Furthermore,
an in-depth analysis of KHGCN demonstrates the usefulness and necessity of the individ-
ual components that make up the model KHGCN. This work focuses on the accuracy of
recommendations, while ignoring other supplemental inaccuracy metrics of recommen-
dations, such as diversity, novelty, coverage, etc. This work only explores information
from entities, relationships, and users, while ignoring information other than user–item
interactions and knowledge graphs, which may result in inaccurate recommendations. In
addition, most of the existing knowledge-aware recommendations focus on the strong
connection between entities, but the user’s fine-grained preference for the item is not easy
to capture. Next, we plan to introduce more fine-grained recommendations through the
introduction of multimodal aware information.
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In the future, we will continue to conduct research in the following directions based
on the current research results:

1. Diversify input information and increase advanced representation learning models;
2. Furthermore, to build a more comprehensive knowledge graph, we will explore

extracting entity-related information from other sources, such as text, images, etc.
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