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Abstract: Battlefield information is generally incomplete, uncertain, or deceptive. To realize enemy
intention recognition in an uncertain and incomplete air combat information environment, a novel
intention recognition method is proposed. After repairing the missing state data of an enemy fighter,
the gated recurrent unit (GRU) network, supplemented by the highest frequency method (HFM),
is used to predict the future state of enemy fighter. An intention decision tree is constructed to
extract the intention classification rules from the incomplete a priori knowledge, where the decision
support degree of attributes is introduced to determine the node-splitting sequence according to the
information entropy of partitioning (IEP). Subsequently, the enemy fighter intention is recognized
based on the established intention decision tree and the predicted state data. Furthermore, a target
maneuver tendency function is proposed to screen out the possible deceptive attack intention. The
one-to-one air combat simulation shows that the proposed method has advantages in both accuracy
and efficiency of state prediction and intention recognition, and is suitable for enemy fighter intention
recognition in small air combat situations.
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1. Introduction

Enemy intention recognition is important in battlefield situation prediction and is
a core component of a war decision support system. The prediction of target combat
intention is an indispensable link in war and is the basis for understanding battlefield
situation and making battlefield decision. As an important means of decision-making, target
combat intention prediction or recognition methods have attracted increasing attention from
researchers. The recognition of target combat intention refers to the process of recognizing
enemy combat intention through reasoning and judgment using relevant methods and
comprehensively considering the motion of enemy target, possible combat mission, combat
means, and historical combat conditions in a complex and changeable confrontational
environment [1]. With the development of informatization technology for weapons and
equipment, the battlefield environment has become increasingly complex [2], and battlefield
decision-making tends to be intelligent [3]. Compared with ground and sea warfare, it
is more difficult to identify enemy intention in air combat owing to its characteristics of
strong mobility, wide range of combat, and rapid situational change. The focus of modern
war has been shifted from the ground to the air, and the air supremacy determines the
outcome of the war to a great extent.

Knowing the enemy intention helps us prepare in advance, which improves the
accuracy of decision-making, enhances the operational efficiency of the weapons system,
saves war resources, and reduces waste. In this context, many scholars have carried
out research on enemy intention recognition and achieved results [4], among which the
recognition of air combat intention has become a research focus [5,6]. In particular, with
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the development of computer and artificial intelligence technologies, air combat intention
recognition methods based on intelligent models have been continuously developed and
studied [7–11].

In recent years, with the application of an early air warning system, radar stealth
composite material and artificial intelligence technology, as well as the uncertainty, incom-
pleteness and immediate change of air combat environment, the research on air combat
intention recognition is deepening. In an incomplete information environment, some intel-
ligent systems have difficulty in accurately judging enemy intention. Moreover, due to the
complexity and falsity of the battlefield itself, the simple data-driven intelligent models
cannot reproduce the battlefield situation and are difficult to make accurate judgments
in the complex battlefield environment. This is particularly the case when the enemy
deliberately misleads by carrying out false actions; the data-driven intelligent models have
obvious obstacle in recognition which can lead to wrong decisions and even falling into
enemy traps.

At present, the research on intelligent intention recognition under uncertain and in-
complete information in specific air combat scenario is still lacking. The gated recurrent
unit (GRU) network was developed based on the improvement of long short-term mem-
ory (LSTM) network. Compared with LSTM network, GRU network reduces one gate
function while preserving important features through gate control [12]. As a result, GRU
network uses fewer parameters. GRU network not only retains the fitting accuracy of
LSTM network, but also speeds up the overall training process, which provides it with
significant advantages in some scenarios. In recent years, GRU network has been widely
used in time series prediction. Because GRU network adopts a simpler architecture than
LSTM network, it requires simpler hardware conditions and fewer algorithm components,
while greatly improving fitting speed. Shahid et al. [13] used ARIMA, GRU, LSTM, SVR,
and other prediction models to predict the time series of confirmed cases, deaths, and
recoveries in 10 major countries affected by COVID-19, and compared the advantages
and disadvantages of these models. Gao et al. [14] used LSTM, GRU networks, and ANN
to simulate the runoff in Fujian Yutan station control catchment from 2000 to 2014. The
results show that the prediction accuracy of LSTM and GRU is higher than that of ANN,
and the training time of GRU network is the shortest, which has caused GRU network to
become the preferred method for short-term runoff prediction. Evidently, battlefield state
data are also time-series data. In order to allow the efficiency and accuracy advantages of
GRU network in time-series data prediction to reach their full potential, this study adopts
a combination of the GRU network and the highest frequency method (HFM) to predict
the future state of the enemy fighter in the presence of incomplete air battlefield data.
Decision tree is a graphical method that visually uses probabilistic analysis. As a decision
support tool, decision tree can effectively assist in formulating optimal strategies [15–17].
In addition, as a common tool of machine learning, decision tree has been widely used in
all walks of life [18–21]. To recognize enemy fighter intention, we adopt decision tree to
extract intention classification rules from incomplete and uncertain historical data, and then
match the predicted enemy state data with the intention classification rules to recognize
enemy intention.

The objective of this study is to propose a novel enemy intention recognition method
in uncertain and incomplete air combat information environment based on decision tree
and GRU network. In particular, we consider the repair of missing data and the detection of
deception intention to make up for the shortcomings of existing research. The contributions
of this paper include:

(1) GRU network and HFM are used to predict the numerical and non-numerical state
data of the enemy fighter, and the missing numerical and non-numerical state data are
repaired using cubic spline interpolation and mean completer method, respectively.

(2) An intention decision tree of enemy fighter is constructed to extract intention classifica-
tion rules from incomplete and uncertain historical data, where the uncertain data are
represented by interval numbers. The index of decision support degree is introduced
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to judge the node splitting sequence of the decision tree, and the information entropy
of partitioning (IEP) is applied to the node splitting criterion. Subsequently, the enemy
fighter intention is recognized based on the intention decision tree and the predicted
enemy fighter state.

(3) The expert experience is integrated into intention recognition, and a target maneuver
tendency function is proposed to filter out the deceptive attack intention.

The rest of this paper is organized as follows. Section 2 reviews the literature on
battlefield intention recognition. Section 3 describes the problem of air combat intention
recognition. Section 4 presents data repair methods for missing state data. Section 5
presents the GRU network model and the modeling process of state prediction. Section 6
constructs the intention decision tree of enemy fighter from incomplete a priori knowledge
and presents the intention recognition method based on decision tree. In Section 7, the
proposed method is applied and verified in a simulated one-to-one air combat scenario
and compared with other methods. Finally, Section 8 summarizes the main conclusions
and details future research directions.

2. Literature Review

Battlefield situation awareness, situation assessment, and intention recognition are
persistent topics in military operations research. The management of data imprecision and
uncertainty is becoming increasingly important, especially in battlefield situation awareness
and assessment applications, where the reliability of decision-making processes is critical.
Rohitha et al. [22] used Dempster–Shafer belief-theoretic relational database (DS-DB) to
represent a broader category of data defects, proposed a classification algorithm based
on association rule mining, and validated it in a simplified situation assessment scenario.
On the other hand, the incompleteness and uncertainty of battlefield situations challenge
the efficiency, stability, and reliability of traditional intention recognition methods. The
quick and accurate recognition of target tactical intention on the battlefield is a prerequisite
for victory in war. Chen et al. [23] proposed a deep learning architecture consisting of
a contrastive predictive coding model, a variable length LSTM network model and an
attention weight allocator for online intention recognition with incomplete information
in war games. They examined the influence of different lengths of intelligence data on
recognition performance. As the most common combat mode in modern warfare, the
situation assessment, trajectory prediction, intention recognition or behavior prediction of
air combat have received extensive attention. Uncertain information exist in every link of
air combat situation assessment. Zhou et al. [6] proposed an improved D-S evidence theory
framework for the fusion of uncertain information in air combat situation assessment to
provide decision-making bases for intention prediction. Bayesian networks have also been
used in situation assessment, for example, Xu et al. [5] proposed an improved algorithm
for the situation classification of air combat data based on data classification confidence by
using semi-supervised naive Bayes classifier.

Target maneuver trajectory prediction is an important prerequisite for air combat
situation awareness and threat assessment. Xi et al. [24] proposed a prediction model of
target maneuver trajectory based on chaos theory and an improved genetic algorithm-
Volterra neural network (IGA-VNN) model, where the chaotic time-series IGA-VNN model
was applied to target maneuver trajectory time series prediction. In close-range air combat,
highly reliable trajectory prediction can greatly help the pilot win a battle. Zhang et al. [25]
proposed an attention-based convolution LSTM memory network to calculate the arrival
probability of each space in the reachable region of the target aircraft, which has a higher
accuracy than other existing algorithms. Xi et al. [26] developed a target maneuver trajectory
prediction model based on phase space reconstruction-radial basis function neural network.

Predicting target intention is helpful to understand the target behavior in advance,
thus laying the foundation for air combat decision-making. Zhou et al. [9] proposed an
intention prediction method combining LSTM network and decision tree. The future state
information of target was predicted from real-time series data based on LSTM network. The
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decision tree technique was used to extract rules from uncertain and incomplete a priori
knowledge. Then, the constructed decision tree was used to obtain the target intention
from the predicted data. In addition to LSTM network and decision tree, GRU network and
attention mechanism were introduced in air combat intention recognition. Teng et al. [27]
and Teng et al. [28] built an air combat intention recognition method based on GRU
network, which combined the bidirectional propagation mechanism and the attention
mechanism. This method used bidirectional GRU network to carry out the deep learning of
air combat features and used the attention mechanism to assign feature weights adaptively.
Teng et al. [29] designed a deep learning method attention mechanism based on temporal
convolutional network and bidirectional GRU (Attention-TCN-BiGRU) to improve the
combat intention recognition of air targets. Comparison with other methods and ablation
experiments showed that Attention-TCN-BiGRU outperforms existing methods in terms of
recognition accuracy. Addressing the drawbacks of existing air target intention recognition
methods, such as timeliness, interpretability, and back-and-forth dependency of intention,
Wang et al. [30] proposed STABC-IR method based on bidirectional GRU and conditional
random field with space-time attention mechanism. The purpose of intention recognition is
to predict the next action or behavior of the opponent. Effectively predicting the behavior of
the enemy fighter is crucial to air combat. Yin et al. [31] proposed three patterns to predict
fighter behavior. Through the design and implementation of relevant mining/processing
algorithms and systems, they found some behavioral experience patterns of fighters and
made certain effective predictions of fighter behavior.

Automation and intelligentization have become inevitable trends in modern warfare.
Zhang et al. [4] combined the advantages of deep learning and D-S evidence theory to
develop an information fusion method for the intention recognition of multi-target forma-
tion in sea battlefield. Wang et al. [32] proposed a warship human–machine intelligent
interaction model based on the fusion of target intention and operator emotion. Some
scholars have applied intelligent model-based air combat intention recognition methods
to the battlefield. Xue et al. [8] designed a deep learning method, where a panoramic
convolutional LSTM network was proposed in view of the limitation that traditional air
target combat intention recognition methods cannot effectively capture the essential char-
acteristics of intelligence information. Ahmed and Mohammed [11] improved the neural
network and proposed an attack intention recognition method based on fuzzy min–max
neural network.

In recent years, unmanned aerial vehicles (UAVs) or unmanned combat aerial vehicles
(UCAVs) are playing an important role in high-tech local wars, where decisions relying on
unmanned systems are extremely challenging, as we have seen from the Russia–Ukraine
war that broke out in February 2022. Lu et al. [10] proposed an intelligent air combat learn-
ing system based on brain learning mechanism, exhibiting greater flexibility in situation
assessment and adversary action prediction. When addressing the problem that maneuver
trajectory prediction is difficult to maintain high prediction accuracy and short prediction
time, Xie et al. [33] proposed a maneuver trajectory prediction method for UAVs based
on a layered strategy by combining long-term maneuver unit prediction with short-term
maneuver trajectory prediction. Wang et al. [7] presented a robust maneuver decision
method with self-adaptive target intention prediction for UAVs, where the reachable set
theory and the adaptive adjustment mechanism of target state weights were used to target
intention prediction, thus improving the real-time prediction ability. Dong et al. [34] built a
motion prediction framework for UAVs, where the target’s future position was inferred
according to the current position and estimated direction.

Due to the high complexity of the air battlefield, there is a large space for enemy
intention recognition research. However, owing to the uncertainty and incompleteness
of information in the actual air combat environment, some intelligent models are not
applicable. Moreover, when the enemy deliberately feigns combat moves, the data-driven
or model-driven intelligent methods have shortcomings in intention recognition. In the
air combat environment with uncertain and incomplete information, intelligent intention
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recognition is an important issue worth exploring, and false intention recognition cannot be
ignored. At present, in the field of air target intention recognition, GRU network is highly
valued in target state prediction because of its advantages compared with LSTM network
and other methods. At the same time, only a few of the literature related to air combat
intention recognition consider missing historical data, and there is currently no existing
study on how to detect intentional deception in air combat. In view of this, this study
integrates GRU network and decision tree to recognize enemy fighter intention, especially
considering the repair of missing data and detection of deception intention, to make up for
the shortcomings of existing research.

3. Air Combat Intention Recognition Problem

Enemy target intention recognition refers to the process of inferring enemy’s next
combat intention by analyzing battlefield information and combining military knowledge
and operational basis under dynamic confrontation environment. Enemy target intention
recognition is typically accomplished by combining the future state of the enemy target
with a priori knowledge.

The current state is represented by real-time data captured by sensors, such as the
position, speed, movement direction, radar signal, and maneuver type of the enemy
fighter, while the future state is generally obtained by analyzing the current state trend
and air combat situation of the enemy. A priori knowledge includes the characteristics
and rules of enemy combat state summarized according to historical combat information
and empirical laws. The enemy tactical intention usually represents the enemy combat
plan and reflects the enemy’s mindset on the battlefield, which cannot be directly observed.
However, to achieve a particular tactical purpose, an enemy target must conform to certain
laws regarding position, speed, radar signals, maneuver types, and other characteristics.
Therefore, by predicting the future state through the collected current state data and then
matching the future state with the intention recognition rules based on a priori knowledge,
it is expected to recognize the enemy fighter’s intention.

In general, the intention of the enemy fighter in air combat is related to its heading
angle, azimuth angle, speed, acceleration, distance, and altitude difference with our fighter,
as well as air-to-air radar, air-to-surface radar, electromagnetic interference, and interfered
state [9,29,30]. Heading angle, azimuth angle, speed, acceleration, distance, and altitude
difference are numerical indicators, that is, the state of these indicators can be represented by
specific numerical values. Air-to-air radar, air-to-surface radar, electromagnetic interference
and interfered state are all non-numerical indicators and cannot be represented by specific
numerical values. In general, these non-numerical indicators have only two typical states:
on and off.

Depending on the specific battle type, battle scene, and research objective, there are
different ways to describe the battlefield situation graphically. For example, Teng et al. [29]
and Wang et al. [30] presented the graphic description of battlefield situation of air-to-
ground strike, while Zhou et al. [9] and Teng et al. [27,28] presented the graphic description
of one-to-one air combat situation. Considering the combat scene targeted in this study,
we present the one-to-one air combat situation as shown in Figure 1, where red represents
our side and blue represents the enemy. Unlike other studies, the information transmission
and signal interference are also shown in Figure 1 to highlight the information chain under
real air combat environment. In Figure 1, S is the speed of the enemy fighter. The direction
of acceleration is always the same as the speed. D is the distance and Ad is the altitude
difference between the two fighters. The line between the two fighters is the target line of
sight, and A is the included angle between the target line of sight and due north, known as
the target azimuth. Ha is the angle between the speed of movement of the enemy fighter
and the target line of sight.
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Figure 1. Air combat situation.

To accurately identify the tactical intention of incoming air targets, it is necessary
to provide a reasonable tactical intention set of the enemy target. Aerial targets may be
fighters, helicopters, UAVs, or missiles. Intention setting often varies greatly depending on
ideological background, combat scenario, and target entity. Therefore, the target intention
set must be defined according to the corresponding operational context, as well as the
basic attributes and possible operational mission of the enemy target. In the context of the
enemy air target striking military buildings near shore, Teng et al. [29] established a tactical
intention set of enemy air targets, including seven intention types {attack, penetration,
surveillance, reconnaissance, feint, retreat, and electronic interference}. Addressing the
problem of air target intention recognition, Wang et al. [30] combined the operational
context with the attributes and missions of enemy targets to establish a tactical intention
set of air targets as {attack, reconnaissance, surveillance, cover, electronic interference,
retreat}. Zhou et al. [9] classified air target intention into attack, surveillance, penetration,
feint, defense, reconnaissance, cover, and electronic interference for an air combat decision-
making system of UCAV. This study is devoted to exploring the intention recognition of
an enemy fighter in the operational context of small-scale air combat. Referring to Teng
et al. [29], Wang et al. [30], and Zhou et al. [9], based on typical air combat mission types,
we establish the tactical intention set of an enemy fighter as {attack, defense, surveillance,
penetration, feint, reconnaissance, electromagnetic interference}.

However, in actual air combat, due to the wide application of electromagnetic interfer-
ence technology and the limitation of sensor transmission capability, as well as the rapid
change of operational state itself, it is difficult to completely capture the state data of the
enemy fighter, thereby resulting in data loss. To address this problem, we use interval
numbers to represent state data that are difficult to obtain accurately, and fix missing data.

In this paper, the intention recognition of the enemy fighter is divided into two
parts: state prediction and intention recognition, as illustrated in Figure 2. In the state
prediction portion, the state data collected by sensors and other devices are firstly sorted
out and the missing data are repaired. The numerical state data are fixed by cubic spline
interpolation method, while the non-numerical state data are fixed by mean completer
method. Subsequently, GRU network is used to predict the numerical state data, while
HFM is used to predict the non-numerical state data. In the intention recognition part,
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an intention classification decision tree is constructed based on the a priori knowledge
of air combat in which the uncertain data are represented by interval numbers. Using
the predicted state data as input, the decision tree is retrieved to identify enemy fighter
intention. If the intention is identified as attack, the intention is further verified.
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4. Data Repair

Although information technology is becoming more and more mature, owing to the
high complexity of the battlefield, a lot of noise is interspersed in information transmis-
sion, resulting in information distortion. At the same time, due to the limitation of the
interaction between airborne information and ground sensors, as well as the application of
anti-reconnaissance information system, battlefield information acquisition will be intermit-
tently lost, resulting in incomplete information acquisition by sensors. Therefore, to apply
the prediction model to the incomplete battlefield information environment, it is necessary
to repair the collected data in advance. As mentioned above, the state data of the enemy
fighter can be divided into numerical and non-numerical types. The numerical state data
mainly refer to the information related to the movement state of enemy fighter. This kind
of information is considered time-series data, and the preceding and following data have
a certain correlation. The non-numerical state data mainly refer to the state information
related to enemy radar with a weak correlation between the preceding and following data.
To determine a fast and reasonably accurate data repair method, we compare the applica-
bility conditions of B-spline interpolation [35], Fourier interpolation [36] and cubic spline
interpolation [37,38]. According to the characteristics of missing data and the application
environment of data repair, we choose the cubic spline interpolation method to fix missing
numerical data. For non-numerical data, the correlation is weak due to its small change
frequency, so we adopt mean completer method to repair the missing data.

4.1. Cubic Spline Interpolation

Cubic spline interpolation is a smooth curve that passes through a series of sample
points. Mathematically, the curve-function group can be obtained by solving a three-
moment system of equations.

Definition 1 [37,38]. Divide the interval [a, b] into n sub-intervals [(x0, x1), (x1, x2), . . . , (xn−1,
xn)] with n + 1 points, including two endpoints, x0 = a and xn = b. Let the function values on
these points be f (xi) = yi (i = 0, 1, . . . , n). If S(x) satisfies:
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(a) S(x) = yi (i = 0, 1, . . . , n),
(b) S(x) is a cubic equation for each subinterval [xi, xx+1] (i = 0, 1, . . . , n− 1),

(c) S(x), the first derivative of
.
S(x), and the second derivative of

..
S(x) are continuous on the

interval [a, b].

The function S(x) can then be constructed as y = a + bx + cx2 + dx3. S(x) is called the
cubic spline interpolation function of f (x) with respect to points x0, x1, . . . , xn.

4.2. Mean Completer

For the repair of non-numerical data, according to the mode principle in statistics,
the value with the highest frequency at several moments before and after the missing
characteristic value is taken as the repair result. If each state appears at the same frequency
at several moments before and after the missing characteristic value, we choose the state
that poses the greatest threat to our side as the repair result, so as to avoid underestimating
the enemy threat due to incomplete information in air combat, thus strengthening the
vigilance against unknown information.

5. State Prediction Based on GRU Network

In a fierce battlefield confrontation, a quick response from both sides is crucial. Because
GRU network has a similar performance and a faster data processing speed to LSTM
network, we choose GRU network to predict the future state of the enemy fighter. GRU
network fully retains the advantages of LSTM network in dealing with long-distance
dependence, overcoming the problems of gradient explosion and gradient disappearance
in training recurrent neural network, and in having a simpler network structure. GRU
network integrates three gates of LSTM network into two gates, namely update gate
and reset gate, with fewer parameters, thus reducing requirement on training data and
improving training speed while ensuring prediction accuracy [13,14]. The typical structure
of GRU network is shown in Figure 3 [27–29].
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In Figure 3, h(t−1) and ht represent the state information at the previous moment and
the current moment, respectively, and xt represents the input information at the current
moment. Similar to LSTM network, GRU network can add or remove information through
gate control. zt and rt represent the update gate and the reset gate, respectively. Update
gate zt is used to control the extent to which the state information at the previous moment
is input into the current state. The larger the value zt, the more the state information of the
previous moment is input. The formula for zt is:

zt = σsig(Wz × [ht−1, xt]) (1)
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Reset gate rt controls the information amount input into the current candidate infor-
mation h̃t at the previous moment. The smaller the value rt, the less information at the
previous state is input. The formula for rt is:

rt = σsig(Wr × [ht−1, xt]) (2)

In Equations (1) and (2), the sigmoid activation function is σsig(x) = 1
1+e−x ; Wz and Wr

are input weight parameters of update and reset gates, respectively. Candidate information
h̃t is obtained using the following activation function tanh.

h̃t = tanh(Wh̃ × [rt × ht−1, xt]). (3)

In Equation (3), tanhx = ex−e−x

ex+e−x , Wh̃ is the input weight parameter of candidate
information.

Finally, through the update gate, based on the state information at the previous
moment ht−1 and the candidate information at the current moment h̃t, the state information
at the current moment ht is obtained as:

ht = (1− zt)× ht−1 + zt × h̃t (4)

It can be seen from Equations (3) and (4) that when both update gate zt and reset gate
rt are 1, the information at the previous moment has been completely input into the current
information, and the GRU network becomes an ordinary cyclic neural network.

In general, the real-time data of a target in the course of action is a set of time-series
data. To overcome the battlefield data deficiency and improve the prediction accuracy,
we use a GRU network with p input nodes and 1 output node. The first p data are used
to predict the next data and perform recursive data training. Figure 4 shows the basic
framework of the state prediction model.
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The framework for predicting enemy fighter state using GRU network consists of the
following five steps:

(1) Use battlefield satellites, radars, sensors, and other information acquisition equipment
to collect time-varying state data of enemy fighter;
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(2) Repair the missing data in the collected original data;
(3) Encode the repaired state data with feature vectors;
(4) Input the encoded data into the GRU network for training and obtain the state

prediction model;
(5) Use the prediction model to predict the state of the enemy fighter at the next moment.

Suppose that the time-series dataset of the target in the course of action is X =
(x1, x2, . . . , xn) and n > p. In model training, the input of the first training dataset is
X1 = (x1, x2, . . . , xp) and the output is xp+1; the input of the second training dataset is
X2 = (x2, x3, . . . , xp+1) and the output is xp+2; the last training dataset is X(n−p−1) =
(x(n−p−1), x(n−p), . . . , xn−1) and the output is xn. The total training data consist of n− p
datasets. After training, the trained model can be used to predict the enemy fighter state at
the next moment. The input of the prediction is X(n−p) = (x(n−p), x(n−p+1), . . . , xn), and
the output xn+1 is the predicted state at the next moment.

6. Intention Recognition Based on Decision Tree

A decision tree is a structure that represents a mapping relationship between object
attributes and object values, where each internal node represents a test for an attribute, each
branch represents a test output, and each leaf node represents a classification. Decision tree
is a kind of supervised learning, which has been widely used in data mining, classification,
information retrieval, and prediction. The advantage of decision tree is that it is easy to
understand and implement, can handle both data and general attributes, and can produce
feasible and satisfactory outputs to large data sources in a relatively short time. The key
of the decision tree is the sequence of node splitting and the selection of optimal node
splitting criteria. With the rise in decision tree research, fuzzy decision tree [39] and Monte
Carlo tree [40] have been proposed successively. Since the calculation of Monte Carlo
tree is relatively complicated and time-consuming, and this paper does not involve fuzzy
operations, we choose to use the traditional decision tree model.

We use a decision tree to recognize target intention. However, a decision tree con-
taining uncertain or incomplete data is difficult to extract rules from. Therefore, we use
interval numbers to represent uncertain data and null values to supplement missing data,
thereby matching the uncertainty and incompleteness characteristics of battlefield data.
We introduce the index of decision support degree to judge the node splitting sequence
in the decision tree and apply the information entropy of partitioning (IEP) to the node
splitting criterion.

Suppose that the a priori knowledge of air combat is S = (U, C ∪ D), where U is the
finite non-empty set of statistical objects in the historical data, C is the finite non-empty
set of conditional attributes (that is, the state indicators of the target in the historical data),
and D is the finite non-empty set of decision attributes (that is, the intention set of the
target in the historical data). The a priori knowledge system of air combat is an incomplete
information system. We use the symbol ∗ to represent unknown information and use
interval numbers to represent uncertain information.

6.1. Processing of Incomplete Information

When dealing with incomplete information, this study relies on the concept of similar-
ity relation.

Definition 2. Similarity relation [41]: Let S = (U, C ∪ D) be an incomplete system based on
interval-valued attributes, where C is the set of conditional attributes, D is the set of decision
attributes, and the symbol ∗ denotes unknown information, which only exists in conditional
attributes; that is, ∗ ∈ C, ∗ /∈ D. Then, the similarity relation of the conditional attributes
SIM(A) (A ∈ C) defined on U is:

SIM(A) = {(p, q) ∈ U ×U|∀c ∈ C, fc(p) = fc(q) or fc(p) = ∗ or fc(q) = ∗}, (5)
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where fc represents the domain of conditional attribute c.

By the definition of SIM(A), if (p, q) ∈ U ×U is an SIM(A), then p and q are similar,
indicating that they have the same property with respect to A.

6.2. Decision Support Degree Based on Conditional Attribute

The generation of a decision tree depends on the decision support degree, which
depends on the conditional attribute and the optimal split point of attribute interval.

Definition 3. Decision support degree based on conditional attribute [9]: Let S = (U, C ∪ D) be
an incomplete system based on interval-valued attributes, U be the finite non-empty set of statistical
objects in historical data, C be the finite non-empty set of conditional attributes, and D be the
finite non-empty set of decision attributes. ∗ ∈ C, ∗ /∈ D, A ∈ C, U/A = {A1, A2, . . . , Am},
U/D = {D1, D2, . . . , Dn}, |U/A| =

m
∑

i=1
|Ai|. Then, the decision support degree DSD(A, D)

of conditional attribute A for decision attribute D is:

DSD(A, D) = 1−

m
∑

i=1

n
∑

j=1

∣∣Ai ∩ Dj
∣∣× ∣∣Ai − Dj

∣∣
|U/A| × (|U| − 1)−

n
∑

l=1
(|Dl | × (|Dl | − 1))

, (6)

where symbol |•| represents the number of elements in the set.

Decision support degree DSD(A, D) indicates the support strength of partition U/A
to partition U/D. The larger the value of DSD(A, D), the closer U/A is to U/D, indicating
that the attribute subset A contributes more to classification, and the greater the certainty
of selecting A for classification.

Decision support degree has the following properties:

Property 1: 0 ≤ DSD(A, D) ≤ 1.
Property 2: When U/A = U/D, DSD(A, D) = 1.
Property 3: When U/A = {U} and U/D 6= {U}, DSD(A, D) = 0.

In the air combat scenario, the conditional attribute set is:

C = {s, d, Ad, Ha, Az, a, Aar, Asr, Ei, Eid}

where s, d, Ad, Ha, Az, a, Aar, Asr, Ei, and Eid are the enemy fighter’s speed, distance,
altitude difference, heading angle, azimuth, acceleration, air-to-air radar state, air-to-surface
radar state, electromagnetic interference state, and electromagnetic interfered state, respec-
tively.

The decision attribute set, which is the intention set, is:

D = {Att, Def, Sur, Pen, Fei, Rec, Ele}

where Att, Def, Sur, Pen, Fei, Rec and Ele represent “attack”, “defense”, “surveillance”,
“penetration”, “feint”, “reconnaissance”, and “electromagnetic interference”, respectively.

6.3. Optimal Split Point of Attribute Interval

Definition 4. Split point [9]: If the interval of a finite conditional attribute is a = [aL, aU ], then
the split point P (aL ≤ P ≤ aU) is the point that divides the interval conditional attribute into two
branches, a1 = [aL, P] and a2 = [P, aU ].
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Definition 5. Information entropy of conditional attribute [42]: Let the decision attribute of
conditional attribute A be DA = {D1, D2, . . . , Dk}, where k is the number of decision attribute
types. Then, the information entropy of conditional attribute A is:

I(A) = −
k

∑
j=1

∣∣Dj
∣∣

|DA|
log

∣∣Dj
∣∣

|DA|
(7)

where the symbol |•| is the number of elements in the set.

Definition 6. Information entropy of partitioning: When the conditional attribute A is divided
into A1 and A2 by split point P, the information entropy of partitioning IEP(A, P) is:

IEP(A, P) =
|A1|
|A| · I(A1) +

|A2|
|A| · I(A2) (8)

where the symbol |•| is the number of elements in the set.

Definition 7. Optimal split point. When split point P divides the conditional attribute A and its
information entropy of partitioning IEP(A, P) is the smallest among all the split points, then point
P is the optimal split point of the conditional attribute A.

6.4. Target Maneuver Tendency Function

On the battlefield, the enemy often makes some false actions consistent with other
intentions, deliberately misleading our judgment to achieve other tactical goals. These false
actions are highly similar to other intentions in terms of data metrics. Judging only by data
metrics, it is easy to fall into enemy trap. Therefore, to further verify the authenticity of
enemy fighter intention, we propose a target maneuver tendency function to qualitatively
judge the enemy fighter’s action trend. This function comprehensively considers the current
battlefield situation, pilot’s operational preference, combat motivation, and kinematics
information of the enemy fighter to predict the most likely maneuvering type of the enemy
fighter at the next moment. The target maneuver tendency function Pro is defined as:

Pro = Sit ·Mot · Pre · s
smax

· amax

|a|+ amax
+ KPro (9)

The greater the value of Pro, the more likely the enemy fighter is to launch an offensive
tactical maneuver. The reverse indicates that the enemy fighter is more likely to launch
a tactical escape maneuver. When Pro exceeds a certain threshold, the enemy fighter
is considered to launch an attack at the next moment. When Pro is less than a certain
threshold, it is believed that the enemy fighter is to perform an escape action at the next
moment. When Pro is between these two thresholds, it is assumed that the enemy fighter
is to maintain tactical motivation. Sit represents the current battlefield situation, which is
calculated as:

Sit =

n
∑

i=1
Eei

m
∑

j=1
E f i

(10)

In Equation (10), n represents the number of enemy fighters, m represents the number
of our fighters, Eei represents the combat effectiveness of enemy fighter numbered i under
the current situation, and E f i represents the combat effectiveness of our fighter numbered j
under the current situation.

In Equation (9), Mot is the combat motivation of the enemy fighter represented by
a dimensionless number in [0, 1]. A large Mot indicates that the enemy fighter is more
aggressive, whereas a small Mot indicates that the enemy fighter is more defensive. Pre is
the enemy pilot’s operational preference, represented by a dimensionless number in [0, 1].
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A large Pre indicates that the pilot is aggressive and likely to make offensive moves, while
a small Pre indicates that the pilot is cautious and likely to make defensive or escape moves.
s represents the current flight speed of the enemy fighter, and smax represents the maximum
available flight speed. |a| represents the absolute value of the current acceleration, and
amax represents the maximum available acceleration. KPro is the correction coefficient of
maneuver tendency, which is used to correct systematic errors in the calculation.

6.5. Intention Recognition Procedure Based on Decision Tree

The procedure of enemy fighter intention recognition based on decision tree comprises
the following seven steps:

(1) Determine the interval divisions of conditional attributes by using the a priori knowl-
edge of air combat.

(2) Calculate the decision support degree of all conditional attributes, then select the
conditional attribute with the highest decision-support degree as the split point.

(3) Count all the split points of the conditional attribute, calculate IEP of each split point,
and then select the point with the minimum IEP as the optimal split point.

(4) Divide the decision information into two parts through the split point, and then divide
the other attributes one by one through the above steps until all attributes are divided.

(5) Construct decision tree.
(6) Based on the predicted state data, the established decision tree is used to judge the

enemy fighter intention.
(7) If the intention is to attack, the target maneuver tendency function is used to verify

the accuracy of the judgment.

7. Simulation Study
7.1. State Prediction

Since the 1940s, the development of jet fighters is generally thought to have undergone
five generations of upgrades. The air combat simulation in this study is aimed at third-
generation fighters since they are in service with the largest number of and relatively mature
technology. The third generation of fighters entered service in the mid-1960s, represented
by F-15, F-16, F-18, Mig-29, Cy-27, and Cy-37 fighters. The third-generation fighters usually
adopt a high maneuverability layout and fly at altitudes below 20 km with a maximum
flight speed of Mach 2–2.35 (about 650–750 m/s) and cruising speed of Mach 0.9 (about
300 m/s). The maximum available acceleration can reach 70 m/s2. However, due to the
limitation of the human body’s bearing capacity, the maximum acceleration is generally
controlled at 40 m/s2. The weapons of the third-generation fighters are mainly medium-
range semi-active missiles and combat bombs, and the combat mode is beyond-visual-range
attack and close-combat with an effective attack range of up to 120 km.

To demonstrate the effectiveness of the proposed method, we conduct a simulated
one-to-one small air combat, in which each side has only one fighter against the other, for
example, one F16 fighter against one Cy-27 fighter. We select six numerical indicators,
including speed, distance, altitude difference, heading angle, azimuth angle, and accel-
eration, and four non-numerical indicators, including air-to-air radar state, air-to-surface
radar state, electromagnetic interference state, and interfered state, to depict the state of
the enemy fighter at different moments. In the simulation, some state information of the
enemy fighter is missing, in accordance with the actual battlefield information environment.
Assuming that the numerical and non-numerical state data of the enemy fighter at the
previous 30 moments have been collected, as shown in Tables 1 and 2, among which some
data are missing. It should be noted that these simulation data are not set arbitrarily, but
are based on the aforementioned flight performance and on-board device capabilities of
a typical third-generation fighter. The programming language used for calculation and
simulation study is Python 3.7.0.
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Table 1. Numerical state data.

Moment Speed (m/s) Distance (km) Altitude Difference (km) Heading Angle (◦) Azimuth (mil) Acceleration (m/s2)

1 420 395 14.6 35 755 4
2 415 392 14.3 34 750 2
3 412 386 14.4 30 * 1
4 415 382 14.6 * 765 −5
5 * 375 * 30 760 2
6 400 371 13.8 28 765 2
7 398 366 14 25 770 *
8 395 * 13.5 20 780 4
9 400 348 13.2 * * 1

10 387 340 13 18 785 0
11 382 328 12.5 14.0 805 2
12 376 314 12.2 14.0 920 2
13 365 310 11 13.5 1020 -5
14 370 306 10.3 12.0 1005 3
15 345 301 10.5 13.0 1230 *
16 343 291 10.1 * * 2
17 338 284 9.6 8.0 1400 3
18 336 267 * 10.0 1390 8
19 335 245 8.3 8.0 1380 5
20 * 230 7.6 7.0 1450 *
21 320 * 7.2 * 1560 5
22 321 195 6.3 9.0 1600 8
23 318 178 5.9 6.0 1750 10
24 314 169 5.2 5.0 1800 *
25 309 158 4.9 5.0 1850 -8
26 302 145 4.7 4.0 1930 10
27 289 132 4.2 1.0 * -5
28 286 123 3.4 3.0 2050 9
29 280 115 2.6 1.0 2080 8
30 279 101 2.2 2.0 2110 8

Note: * indicates missing data.

Table 2. Non-numerical state data.

Moment Air-to-Air Radar State Air-to-Surface Radar State Electromagnetic Interference State Interfered State

1 1 1 0 0
2 1 1 0 0
3 0 1 0 0
4 1 * 1 1
5 0 0 1 1
6 * 1 1 1
7 1 1 * 0
8 1 1 1 1
9 1 * * 1
10 * 0 1 1
11 1 1 * *
12 1 1 0 0
13 1 1 * 0
14 1 0 0 0
15 * 1 1 0
16 1 1 1 0
17 1 1 1 *
18 1 0 0 1
19 0 1 1 0
20 1 1 1 1
21 1 1 1 1
22 0 1 0 *
23 1 1 1 1
24 1 0 1 1
25 * 1 * 1
26 1 0 1 0
27 1 * 1 *
28 * 1 1 1
29 1 1 1 0
30 1 1 1 1

Note: * indicates missing data, 0 indicates state “off”, 1 indicates state “on”.
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Because the battlefield environment changes quickly, so does data repair, allowing for
rapid predictions. We adopt the cubic spline interpolation method to repair the missing
numerical state data. Taking the missing data of the speed indicator at moment 5 (node 5)
as an example, the speed at node 5 is fitted and repaired according to the speed at the first
two nodes and the last two nodes. Through data repair, we obtain the speed at node 5 as
415.4 m/s, as shown in Figure 5, where the smooth fitting curve across the four sample
points (nodes 3, 4, 6, and 7) is the cubic spline interpolation curve. It should be noted that
the cubic spline interpolation curve is not invariable, but depends on the sample points on
which the curve is constructed for particular missing data. Similarly, all missing numerical
data are repaired. For the non-numerical data, the mean completer method is used to repair
the missing data.
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After data restoration, the GRU network is used to predict numerical indicators.
Considering the specification of the data volume, we adopt the network structure with
three input nodes and one output node. The data at moments 1–24 are taken as the training
set, and the data at moments 25–30 as the test set. First, the data are normalized, and then
Adam algorithm is used to train the network. This algorithm combines the advantages of
momentum algorithm and root mean square prop algorithm, and can adjust the learning
rate updating strategy adaptively, thus improving the training speed and accuracy [43]. The
mean squared error (MSE) is used to calculate the loss. The number of training iterations
is set to 50. The dropout rate, learning rate, and weight decay are set to 0.3, 0.02, and 0.2,
respectively. For the non-numerical indicator, the state at the next moment is predicted
using HFM; that is, the state with the highest occurrence frequency at the last five moments
is taken as the next state.

Once again, taking the speed prediction as an example, Figure 6 shows the training and
validation losses of the GRU model, and Figure 7 shows the fitting and prediction results.

As shown in Figure 6, with the increase in training times, both training loss and
verification loss decrease rapidly, indicating that GRU network is constantly learning and
has good learning effect. After the tenth training, both training loss and verification loss
tend to be stable and close to zero, indicating that the model is well fitted on the whole. In
Figure 7, because the GRU network has three input nodes and one output node, the fitting
curve starts from moment 4, and moment 27 is the predicted moment. As can be seen
from Figure 7, the fitting results of the model are in good agreement with the actual speed
variation trend. In the training dataset, the maximum fitting error of the model is 5.83%,
the minimum fitting error is only 0.01%, and the average fitting error is 2.12%. Table 3
shows the comparison between the predicted speed and the actual speed at moments 25–30
for the test set.
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Table 3. Test results of GRU network for speed.

Moment 25 26 27 28 29 30

Actual speed 309 302 289 286 280 275
Predicted speed 306.21 302.06 296.54 288.01 279.70 271.77

Relative error −1.01% +0.02% +2.61% +0.69% −0.11% −1.41%

As shown in Table 3, for the test set of the speed indicator, the maximum relative
prediction error is 2.61% and the minimum relative prediction error is only 0.02%, indicating
that the GRU model has a high fitting accuracy.

To further demonstrate the advantages of GRU network, LSTM network and recurrent
neural network (RNN) are applied to the same sample for comparison, and the results are
shown in Table 4. The comparative study is performed on the same computer, and the
optimal parameters of each model are configured through repeated experiments.
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Table 4. Network comparisons: GRU, LSTM, and RNN.

Computing Time (s)

Model Speed (m/s) Distance
(km)

Altitude Difference
(km)

Heading Angle
(◦)

Azimuth
(mil)

Acceleration
(m/s2)

GRU 5.2 5.5 5.4 4.9 5.1 5.3
LSTM 7.1 8.1 6.7 6.8 7.5 7.8
RNN 7.8 7.9 6.7 7.2 7.3 7.3

Root Mean Square Error

Model Speed (m/s) Distance
(km)

Altitude Difference
(km)

Heading Angle
(◦)

Azimuth
(mil)

Acceleration
(m/s2)

GRU 2.204 1.883 0.574 0.789 50.37 4.60
LSTM 3.068 2.898 0.571 0.879 62.53 4.72
RNN 7.868 5.367 0.927 1.2 103.25 6.65

Compared with LSTM network and RNN, GRU network has the advantage in model
training time, which is approximately 5 s. In model validation, the root mean square
errors (RMSEs) of GRU and LSTM networks are close, while RMSE of RNN is larger. In
general, GRU network has better performance in terms of training efficiency and prediction
accuracy, and is more suitable for use in the battlefield environment featured with high
confrontation and fast response.

In this study, the prediction of each numerical indicator has its own GRU network.
Therefore, a total of six GRU networks have been established corresponding to indicators
speed, distance, altitude difference, heading angle, azimuth, and acceleration. In fact, each
GRU network has only one input parameter and one output parameter of the same type,
similar to speed. The prediction performance of GRU network depends on the network
training effect. In the case of only one input parameter, the network training effect will
depend on the size of the training sample when the network structure is given. Theoretically,
there is an optimal sample size for network training. A small sample size that is too small
will lead to underfitting and thus reduce the generalization ability of the model, namely
the prediction performance, while a sample size that is too large will lead to overfitting
and also reduce the prediction performance of the model. In practice, the optimal training
sample size of GRU network is closely related to the inherent correlation characteristics
of the time series data carried by the network and can be determined through repeated
tuning. In this study, according to the training and validation simulation results as well as
the comparison analysis, when the training sample size is set to 20–30, the training effect
and prediction performance of GRU networks for the six indicators are quite good.

Similar to the prediction of the speed indicator, we use GRU network to complete the
training and prediction for the other five numerical indicators. We apply the trained GRU
network model to predict the numerical state of the enemy fighter at the next moment
beyond the sample. Table 5 shows the predicted state data at moment 31 of the numerical
indicators. Table 6 shows the predicted state data at moment 31 of the non-numerical
indicators by HFM.

Table 5. Numerical state data predicted by GRU network.

Moment Speed (m/s) Distance
(km)

Altitude Difference
(km)

Heading Angle
(◦)

Azimuth
(mil)

Acceleration
(m/s2)

31 266.87 92.31 2.06 1.43 2216.15 5.83
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Table 6. Non-numerical state data predicted by HFM.

Moment Air-to-Air
Radar State

Air-to-Surface
Radar State

Electromagnetic
Interference State Interfered State

31 1 1 1 1

7.2. Intention Recognition

We use the historical data to establish the intention decision tree. The 24 sets of
simulated historical data containing the state and intention information are given in
Tables 7 and 8.

Table 7. Intentions vs. numerical states.

No. Speed
(s)

Distance
(d)

Altitude Difference
(Ad)

Heading Angle
(Ha)

Azimuth
(Az)

Acceleration
(a)

Intention
(I)

1 [200, 260] [50, 80] [5, 6] [20, 30] [800, 1000] [5, 10] Att
2 [220, 270] * [2, 3] [25, 40] * * Att
3 [290, 320] [70, 90] * [35, 45] [2000, 2200] [−5, 0] Att
4 * [40, 60] [2.5, 3.5] [330, 350] [4000, 4100] [7, 14] Att
5 [340, 360] [100, 110] [3, 5] [320, 330] [4500, 4700] [5, 8] Att
6 [360, 380] [300, 330] [12, 13] [100, 120] * [6, 10] Def
7 [270, 300] [270, 290] [10, 11] * [2350, 2500] [0, 3] Def
8 [300, 320] [270, 280] [9, 10] * [5500, 5700] [−10, −5] Def
9 [360, 380] [200, 220] * [210, 230] [3900, 4150] [5, 7] Def

10 [355, 375] [300, 330] [7, 8] * [2300, 2500] [−2, 2] Sur
11 [280, 310] * [9, 10] * [3800, 4000] [5, 8] Sur
12 [370, 400] [310, 350] [10, 11] [280, 300] * [0, 2] Sur
13 [430, 450] [80, 90] [4, 5] [100, 120] [5300, 5400] [12, 16] Pen
14 * [60, 70] [2, 3] [170, 190] [2400, 2550] * Pen
15 [390, 410] [50, 60] [3, 4] [280, 290] [2350, 2500] [15, 20] Pen
16 [360, 370] [90, 100] [6, 7] [30, 40] * [0, 2] Fei
17 [350, 370] [80, 90] [7, 8] [330, 350] [4150, 4300] [5, 9] Fei
18 [150, 170] [255, 270] [6, 8] [70, 80] [5300, 5400] [−1, 1] Rec
19 [120, 140] [200, 210] [9, 10] * [1000, 1200] [−8, −5] Rec
20 [180, 190] [150, 180] * [80, 90] [2300, 2500] [0, 2] Rec
21 [220, 230] [210, 220] [7, 9] [270, 290] [4100, 4300] [−10, −5] Rec
22 [120, 140] [180, 200] [6, 7] [20, 25] [2300, 2400] [0, 1] Ele
23 [210, 230] [120, 130] [4, 5] [30, 40] [1050, 1200] * Ele
24 [230, 240] * [3, 4] [320, 330] * [0, 2] Ele

Note: * indicates missing data.

Table 8. Intentions vs. non-numerical states.

No. Air-to-Air Radar State
(Aar)

Air-to-Surface Radar State
(Asr)

Electromagnetic
Interference State

(Ei)

Interfered State
(Eid)

Intention
(I)

1 1 0 1 0 Att
2 1 1 1 0 Att
3 1 * 1 1 Att
4 1 0 * 1 Att
5 * 1 * 0 Att
6 0 1 0 0 Def
7 0 1 1 * Def
8 0 0 0 0 Def
9 0 1 1 0 Def
10 1 1 1 1 Sur
11 1 1 1 0 Sur
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Table 8. Cont.

No. Air-to-Air Radar State
(Aar)

Air-to-Surface Radar State
(Asr)

Electromagnetic
Interference State

(Ei)

Interfered State
(Eid)

Intention
(I)

12 1 1 0 * Sur
13 1 1 1 1 Pen
14 1 0 1 1 Pen
15 * 1 * 1 Pen
16 1 0 1 0 Fei
17 1 1 1 1 Fei
18 1 0 0 0 Rec
19 1 1 0 0 Rec
20 1 1 0 1 Rec
21 1 1 0 0 Rec
22 1 1 1 0 Ele
23 1 1 1 0 Ele
24 1 1 1 1 Ele

Note: * indicates missing data, 0 indicates state “off”, 1 indicates state “on”.

The numerical state data are then graded according to the historical information. The
grading criteria are defined as follows:

Speed: fast [340, 600], medium [200, 340], slow [100, 200];
Distance: long [250, 400], medium [100, 250], short [0, 100];
Altitude difference: high [11, 20], medium [6, 11], low [0, 6];
Acceleration: positive [5, 40], constant [−5, 5], negative [−5, −20];
Heading angle: small [0, 45] and [315, 360], medium [45, 90] and [270, 315], large [90, 270];
Azimuth: north [0, 750] and [5250, 6000], east [750, 2250], south [2250, 3750], west

[3750, 5250].
Table 9 lists the grading results.

Table 9. Grading of numerical state vs. intention.

No. Speed
(s)

Distance
(d)

Altitude Difference
(Ad)

Heading Angle
(Ha)

Azimuth
(Az)

Acceleration
(a)

Intention
(I)

1 Medium Short Low Small East Positive Att
2 Medium * Low Small * * Att
3 Medium Short * Small East Constant Att
4 * Short Low Small West Positive Att
5 Fast Medium Low Small West Positive Att
6 Fast Long High Large * Positive Def
7 Medium Long Medium * South Constant Def
8 Medium Long Medium * North Negative Def
9 Fast Medium * Large West Positive Def

10 Fast Long Medium * South Constant Sur
11 Medium * Medium * West Positive Sur
12 Fast Long Medium Medium * Constant Sur
13 Fast Short Low Large North Positive Pen
14 * Short Low Large South * Pen
15 Fast Short Low Medium South Positive Pen
16 Fast Short Medium Small * Constant Fei
17 Fast Short Low Small West Positive Fei
18 Slow Long Medium Medium North Constant Rec
19 Slow Medium Medium * East Negative Rec
20 Slow Medium * Medium South Constant Rec
21 Medium Medium Medium Medium West Negative Rec
22 Slow Medium Medium Small South Constant Ele
23 Medium Medium Low Small East * Ele
24 Medium * Low Small * Constant Ele

Note: * indicates missing data.
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According to the definition of similarity relation, the incomplete information is pro-
cessed and the following statistics are obtained.

sF = {4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17},
sM = {1, 2, 3, 4, 7, 8, 11, 14, 21, 23, 24},
sS = {4, 14, 18, 19, 20, 22},

where subscripts F, M, and S denote fast, medium, and slow, respectively.

dL= {2, 6, 7, 8, 10, 11, 12, 18, 24},
dM = {2, 5, 9, 11, 19, 20, 21, 22, 23, 24},
dS = {1, 2, 3, 4, 11, 13, 14, 15, 16, 17, 24},

where subscripts L, M, and S denote long, medium, and short, respectively.

AdL = {1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 20, 23, 24},
AdM = {3, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 22},
AdH = {3, 6, 9, 20},

where subscripts L, M, and H denote low, medium, and high, respectively.

HaS = {1, 2, 3, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 24},
HaM = {7, 8, 10, 11, 12, 15, 18, 19, 20, 21},
HaL = {7, 8, 9, 10, 11, 13, 14, 19},

where subscripts S, M, and L denote small, medium, and large, respectively.

AzE = {1, 2, 3, 6, 12, 16, 19, 23, 24},
AzW = {2,4,5,6,9,11,12,16,17,21,24},
AzS = {2, 6, 7, 10, 12, 14, 15, 16, 20, 22, 24},
AzN = {2, 6, 8, 12, 13, 16, 18, 24},

where subscripts E, W, S, and N denote east, west, south, and north, respectively.

aP = {1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 17, 23},
aC = {2, 3, 7, 10, 12, 14, 16, 18, 20, 22, 23, 24},
aN = {2, 8, 14, 19, 21, 23},

where subscripts P, C, and N denote positive, constant, and negative values, respectively.
Then, according to Equation (6), the decision support degree of each conditional

attribute to the decision attribute is calculated. We have:

DSD(s, I) = 0.6310,
DSD(d, I) = 0.6389,
DSD(Ad, I) = 0.5686,
DSD(Ha, I) = 0.5961,
DSD(Az, I) = 0.6182,
DSD(a, I) = 0.5846,
DSD(Aar, I) = 0.3521,
DSD(Asr, I) = 0.3503,
DSD(Ei, I) = 0.4470,
DSD(Eid, I) = 0.4719.

Evidently, the distance indicator has the highest decision support degree. Therefore,
we partition the decision tree starting from “distance”. Firstly, the split points of distance
indicator are counted, and then IEP values are calculated using Equation (8). As shown in
Table 7, by aggregating the endpoints of all distance intervals with the repeated endpoints
removed, we obtain the following ascending sequence: 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 150, 180, 200, 210, 220, 255, 270, 280, 290, 300, 310, 330, 350. Then, the optional split
points include 45, 55, 65, 75, 85, 95, 105, 115, 125, 140, 165, 190, 205, 215, 237.5, 262.5, 275,
285, 295, 305, 320, 340. Table 10 lists the IEP values corresponding to the split points.
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Table 10. Split points and IEPs.

Split point 45 55 65 75 85 95 105 115 125
IEP 3.007 3.378 3.188 3.089 2.837 2.491 2.548 2.406 2.535

Split point 140 165 190 205 215 237.5 262.5 275 285
IEP 2.429 2.645 2.669 2.912 2.937 2.758 2.859 2.952 2.886

Split point 295 305 320 340
IEP 2.797 2.906 3.205 3.007

The split point with the minimum IEP is 115. Therefore, it is the optimal split point
under the distance indicator. The historical information is then partitioned with split point
115. This procedure is repeated until the final decision tree is generated, as shown in
Figure 8. Based on the existing historical statistical information, the established intention
decision tree of the enemy fighter consists of 29 nodes, consisting of 1 root node and 14
leaf nodes associated with intention. Each node is represented by a multivariate array,
with each number representing a set of historical data. The number in each node circle in
Figure 8 represents the serial number of the node, where node 1 represents the root node.
The decision tree covers all 24 known historical datasets.
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Then, the state data predicted in Tables 5 and 6 are input into the decision tree to
judge the enemy fighter intention. As can be seen from Table 5, the distance to the enemy
fighter is 92.31 km, hence the intention judgement goes to node 2. Since the speed is 266.87
m/s, the intention judgment goes to node 5. Again, the heading angle is 1.43◦ and the
intention judgment progresses to node 11. Finally, the azimuth is 2216.15 mil, and the
intention judgment terminates at leaf node 20. At this point, the intention to attack has
been recognized.
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7.3. Intention Verification

When the enemy fighter intention is recognized as attack, the recognition accuracy
needs to be further tested. In this simulation study, we set the target maneuver tendency
threshold as 0.5. When Pro > 0.5, the enemy fighter tends to attack; the higher the Pro
value, the more obvious the enemy tendency to attack. When Pro < 0.5, the enemy fighter
tends to escape; the smaller the Pro value, the more obvious the enemy tendency to escape.

Assuming that the enemy pilot’s operational preference Pre and the combat motiva-
tion of the enemy fighter Mot are unknown, their values are then set to 0.5. Through expert
estimation, the current battlefield situation Sit = 0.35. The maximum available flight speed
of the enemy fighter smax = 600 m/s, the maximum available acceleration amax = 40 m/s2,
and the correction coefficient of maneuver tendency KPro = 0.375. In addition, according
to the prediction in Table 5, at moment 31, the current flight speed of the enemy fighter
s = 266.87 m/s, and the absolute value of the current acceleration |a| = 5.83 m/s2. Substi-
tuting the above parameters into Equation (9), we obtain the target maneuver tendency
function Pro = 0.41. This indicates that the enemy fighter has no obvious tendency to attack.
Eventually, we correct the enemy fighter intention from attack to feint.

As can be seen from the above results, the enemy fighter intention is identified as
“attack” without intention verification. After verification through the target maneuver
tendency function, the enemy fighter intention is corrected to “feint”. These two kinds
of intentional actions are so similar that it is difficult to distinguish them using only
traditional data-driven prediction models, especially when training data are limited and
model learning is insufficient. Evidently, these two kinds of intention recognition would
result in the subsequent battlefield decisions being completely different. The proposed
method of intention recognition in uncertain information environment can effectively
predict enemy fighter intention and correct possible misjudgment through secondary
recognition, thus further improving the practicality and accuracy of intention recognition,
which is critical to correct real-time battlefield decision-making.

8. Conclusions

Recognizing the enemy intention is an important prerequisite for making correct and
timely battlefield decisions. However, because battlefield information is often incomplete,
uncertain, or deceptive, it is difficult to accurately recognize enemy intentions. Especially
in air combat, where the information environment is highly complex and rapidly changing,
recognizing enemy intentions is even more challenging.

This paper explores an intelligent recognition method of enemy fighter intention in
small air combat under uncertain and incomplete information environment. In the presence
of incomplete information, GRU network supplemented by HFM is used to predict the
future state of an enemy fighter. A decision tree of enemy fighter intention is constructed
to extract the intention classification rules from incomplete a priori knowledge. The node
splitting sequence of decision tree is determined according to the decision support degree
of attributes following the criteria of IEP. Then, the established intention decision tree and
predicted state data are exploited to recognize the enemy fighter intention. In particular, to
identify the possible deceptive attack, a target maneuver tendency function is proposed
to rejudge the attack intention, thus improving the accuracy of intention recognition. In
addition, we propose practical data repair methods to solve the unavoidable data missing
problem in the air combat information environment. The simulation study shows that
the proposed method is suitable for uncertain and incomplete air battlefield information
environment, and can screen false attack intention. This method has advantages in both the
accuracy and efficiency of state prediction and intention recognition, resulting in potential
application value for intention recognition in small air combat situations.

In actual air combat, enemy state prediction, enemy intention recognition, our response
action, and enemy state change are mutually influenced, tightly coupled, and alternate.
For the specific application of the proposed method, the method can be programmed
and embedded in ground or airborne equipment as a module of C3I (command, control,
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communication, and intelligence) system. The intention decision tree is relatively fixed,
which can be constructed according to a priori knowledge of air combat summarized from
actual air combat or exercise, and updated regularly with the accumulation of a priori
knowledge. State data acquisition is enabled when the enemy fighter is detected. After
a certain amount of state data is accumulated, the state prediction model can be built to
predict the future state of the enemy fighter. Different from the decision tree used for
intention recognition, the state prediction model needs constant iterations and real-time
updates. For example, the state prediction model can be set as to always be trained by
the state data of the latest n moments. To this end, the proposed methods must also be
supported by advanced information and communication technologies if they are to be
practical in actual air war.

Generally, to reduce the burden of data collection, the selected enemy fighter state
indicators should be independent from each other as far as possible, and their own state
prediction models should be established, respectively. One advantage of the proposed
intention recognition framework brought about by modularity is that it is not necessary
to make extensive adjustments to the entire prediction model system due to indicator
increase or decrease, but only to make an addition or deletion to the independent state
prediction model.

Our study can be extended from the following aspects. First, at present, we use
relatively simple interval numbers to represent uncertain state data when constructing the
intention decision tree. In the future, we will introduce a fuzzy set theory or probability
theory to represent uncertain state data, thus constructing a fuzzy or probabilistic intention
decision tree. Second, modern war has evolved into an all-round systematic confrontation.
Our study only focuses on the most basic antagonistic unit in air combat, namely the
one-to-one air combat scenario. In the future, we will explore enemy fighter intention
recognition in large air combat under systematic confrontation.
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