
Citation: Eberle, V.; Frank, P.; Stadler,

J.; Streit, S.; Enßlin, T. Butterfly

Transforms for Efficient

Representation of Spatially Variant

Point Spread Functions in Bayesian

Imaging. Entropy 2023, 25, 652.

https://doi.org/10.3390/e25040652

Academic Editors: Carlos Alberto De

Bragança Pereira, Frédéric

Barbaresco, Ali Mohammad-Djafari,

Frank Nielsen and Martino

Trassinelli

Received: 19 January 2023

Revised: 17 March 2023

Accepted: 30 March 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Butterfly Transforms for Efficient Representation of Spatially
Variant Point Spread Functions in Bayesian Imaging
Vincent Eberle 1,2,* , Philipp Frank 1 , Julia Stadler 1, Silvan Streit 3 and Torsten Enßlin 1,2

1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany
2 Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Geschwister-Scholl-Platz 1,

80539 München, Germany
3 Fraunhofer Institute for Applied and Integrated Security AISEC, Lichtenbergstraße 11,

85748 Garching, Germany
* Correspondence: veberle@mpa-garching.mpg.de

Abstract: Bayesian imaging algorithms are becoming increasingly important in, e.g., astronomy,
medicine and biology. Given that many of these algorithms compute iterative solutions to high-
dimensional inverse problems, the efficiency and accuracy of the instrument response representation
are of high importance for the imaging process. For efficiency reasons, point spread functions, which
make up a large fraction of the response functions of telescopes and microscopes, are usually assumed
to be spatially invariant in a given field of view and can thus be represented by a convolution. For
many instruments, this assumption does not hold and degrades the accuracy of the instrument
representation. Here, we discuss the application of butterfly transforms, which are linear neural
network structures whose sizes scale sub-quadratically with the number of data points. Butterfly
transforms are efficient by design, since they are inspired by the structure of the Cooley–Tukey fast
Fourier transform. In this work, we combine them in several ways into butterfly networks, compare
the different architectures with respect to their performance and identify a representation that is
suitable for the efficient representation of a synthetic spatially variant point spread function up to a
1% error. Furthermore, we show its application in a short synthetic example.

Keywords: response functions; spatially variant point spread functions; convolution; Bayesian
imaging; butterfly matrices; Toeplitz matrices; sparse representations; neural networks

1. Introduction

Images of astronomical objects are the result of measurements by physical instruments
and intricate post-processing. In this procedure, instrument responses play an important
role as they build the connection between the signal, i.e., the quantity of interest, and the
observables.

Unfortunately, instrument responses are often non-trivial and hard to model in a
simple and numerically efficient form. Examples for such instruments are the X-ray
observatories eROSITA (extended ROentgen Survey with an Imaging Telescope Array) [1]
and Chandra [2]. Both are challenging to compute due to their inhomogeneous behaviour
in terms of space and energy. In order to efficiently perform statistical field inference, for
example, by using NIFTy (Numerical Information Field Theory) [3–5], a Python software
package for the numerical application of information field theory [6–9], these responses
must be represented numerically in a way that is fast and differentiable. One promising
candidate for the efficient representation of instrument responses are butterfly transforms,
a linear neural network structure inspired by the structure of the fast Fourier transform
(FFT) algorithm, whose size scales with O (N logN), where N is the number of pixels.

In many cases, the measurement equation for some data d, taken with an instrument
response R of the signal s assuming additive noise n, can be formulated as d = R(s) + n.
Regarding photographic instruments this response R is a linear map that can be separated

Entropy 2023, 25, 652. https://doi.org/10.3390/e25040652 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5713-3475
https://orcid.org/0000-0001-5610-3779
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5246-1624
https://doi.org/10.3390/e25040652
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040652?type=check_update&version=1

Entropy 2023, 25, 652 2 of 18

into two operations, D and O. Here, D describes the measurement process of the detector,
while O represents the optical properties of the instrument. The latter is also referred to as
point spread function (PSF). Since computers are used for the analysis of the experiments
performed, the continuous signal space is approximated by a discrete pixelation and thus
all operators can be represented as matrices.

If O can be approximated by a circulant matrix, a matrix consisting of cyclic permu-
tations of the same row vector a, its matrix multiplication with any vector simplifies to
a discrete convolution with a, meaning that it is spatially invariant and homogeneous,
respectively. In many physically relevant cases, this homogeneity can approximately be
assumed for a given observed area of the instrument. Additionally, the convolution theo-
rem states that a convolution corresponds to a point-wise multiplication in Fourier space.
Consequently, convolutional responses can be represented in an efficient way, due to the
fact that one only has to store one N -entry vector instead of a N 2 matrix, as well as due to
the efficiency one gains by replacing a discrete Fourier transformation by the fast Fourier
transformation (FFT). Often the homogeneity assumption only holds up to a certain degree
and in a limited field of view. For spatially variant PSFs, and thus non-circulant responses,
efficient representations are urgently needed.

In this paper, we propose using butterfly transforms to represent spatially variant
PSFs in order to build likelihoods for instruments such as eROSITA, Chandra, and many
more. In particular, we present a way to parameterize butterfly transforms, combine them
into networks, and compare different network architectures in terms of their efficiency
and accuracy.

Section 2 summarizes the implementation and application of butterfly factorizations
and transforms in previous works. Section 3 describes how butterfly transforms are
parameterized in this work and how they are inspired by the structure of the Cooley–
Tukey–FFT algorithm. Section 4 gives a short introduction to information field theory and
Section 5 describes different designs of likelihoods. In Section 6, we define a metric in
order to compare different butterfly network architectures with respect to their capability
to represent the synthetic response defined in Section 7. The results, which consider
a comparison of different architectures, a comparison of execution times, and a mock
application of a butterfly network, can be found in Section 8.

2. Related Work

Butterfly factorizations and transformations are becoming increasingly popular in
the machine learning community for a variety of applications. Polcari describes in [10]
how the generalization of the butterfly structure known from the FFT algorithm can be
used for multi-layer decomposition of unitary matrices. In [11], Dao et al. proposed a way
to learn fast linear transformation algorithms using butterfly factorizations. They were
able to learn several fast linear transformations, e.g., FFT, discrete sine transform, etc., and
showed that their approach can be used as an efficient replacement for generic matrices
in machine learning pipelines. Alizadeh et al. [12] proposed butterfly transformations
as a replacement for pointwise convolutions in depth-wise separable convolutions in
convolutional neural networks. This is particularly important for architectures such as
MobileNets [13–15] that are designed to run on mobile devices. Singhal et al. [16] used
complex-valued butterfly transforms for hyperspectral image processing. The combination
of complex-valued multi-scale feature representation with data-driven feature learning
results in lighter, yet accurate classification models. Lin et al. [17] also proposed a new form
of butterfly transform, called deformable butterflies, as a replacement for convolutional
or fully connected layers in neural networks. Song et al. [18] instead used the butterfly
algorithm to encrypt optical images.

Our contribution to the field demonstrates the application of butterfly transforms
to efficiently represent spatially varying point spread functions, necessary for accurate
Bayesian imaging. A proceeding paper presented an early stage of this work [19]. In
this article, however, we go more into the details of the method, theoretically address

Entropy 2023, 25, 652 3 of 18

the scaling of the networks, and introduce error maps as a new visualisation method.
We also perform a comparison of the execution time between a butterfly network Python
implementation and a full matrix-vector multiplication. In addition, we show the behaviour
of the response approximation at a higher resolution and use butterfly networks as a
response representation for a synthetic Bayesian imaging task.

3. Methods
3.1. Fast Fourier Transformation

Due to the convolution theorem, Fourier transformation is one of the key elements of
convolutional processes and thus the algorithm of FFT is highly relevant for the representa-
tion of instrument responses on regular grids. The main idea of the FFT is to split the sum
in the discrete Fourier transform (DFT),

f̂k =
1√
N

N−1

∑
x=0

fx · e−2πi· kx
N , (1)

into two sums, over even and odd indices [20]. By using the mathematical properties of the
N -th primitive root ωN = e

−2πi
N , it can be shown that

f̂k =
1√
N

N/2−1

∑
ξ=0

ω
k(2ξ)
N f2ξ +

1√
N

N/2−1

∑
ξ=0

ω
k(2ξ+1)
N f2ξ+1

=
1√
2

[
1√
N
2

N/2−1

∑
ξ=0

ω
kξ
N
2

f2ξ

]
+

1√
2

ωk
N

[
1√
N
2

N/2−1

∑
ξ=0

ω
kξ
N
2

f2ξ+1

]

=
1√
2

f̂ even
k +

1√
2

ωk
N f̂ odd

k .

(2)

Taking a closer look at the Fourier component f̂k+N2
shows that one can reuse the same

two components, f̂ even
k and f̂ odd

k , which were already calculated:

f̂k+N2
=

1√
N

N/2−1

∑
ξ=0

ω
(k+N2)(2ξ)
N f2ξ +

1√
N

N/2−1

∑
ξ=0

ω
(k+N2)(2ξ+1)
N f2ξ+1

=
1√
2

[
1√
N
2

N/2−1

∑
ξ=0

ω
N ξ
N ω

kξ
N
2

f2ξ

]
+

1√
2

ω
k+N2
N

[
1√
N
2

N/2−1

∑
ξ=0

ω
N ξ
N ω

kξ
N
2

f2ξ+1

]

=
1√
2

f̂ even
k +

1√
2

ω
k+N2
N f̂ odd

k

=
1√
2

f̂ even
k +

1√
2

ω
N
2
N ωk

N f̂ odd
k

=
1√
2

f̂ even
k − 1√

2
ωk
N f̂ odd

k .

(3)

This means that an N -sized Fourier transform can be separated into two N/2-sized
Fourier transforms along the even and odd indices, also called the Danielson–Lanczos
Lemma found in 1942 [21]. The components f̂ even

k and f̂ odd
k can then be used to calculate

fk and fk+N2
. Putting together the relations in Equations (2) and (3) yields(

f̂k
f̂k+N/2

)
=

1√
2

(
1 1
1 −1

)(
f̂ even
k

ωk
N f̂ odd

k

)
. (4)

The two smaller Fourier transforms can be separated in the same way, resulting in
a divide and conquer algorithm. Assuming that the initial value of N is a power of 2,
this splitting can be applied log2(N) times. Inspired by machine learning language, these

Entropy 2023, 25, 652 4 of 18

iterations are called layers in the following. With N additions in each of these layers,
the total computational complexity is about O(N log2N). Comparing this to a regular
DFT with its computational complexity of O(N 2) (N components with N summands) the
amount of saved time in the FFT algorithm is significant.

Due to the layer-wise splitting into even and odd indices one has to spend some
additional effort on renumbering and book-keeping in order to combine the correct indices.
In 1965, Cooley and Tukey discovered that this iterative splitting into even and odd
indices can be represented as a bit reversal of the indices (reading backwards in binary
representation) [21]. Therefore, one does not have to take additional care of the right input
ordering. Besides the “decimation in time algorithm” by Cooley and Tukey, there are other
FFT algorithms that are not further considered in this work.

3.2. Butterfly Transform and Convolution

The data-flow diagram illustrating the algorithm of Equation (4) is often called a
butterfly diagram because of its resemblance to a butterfly (see Figure 1). Here, the direction
and color of the arrows pointing to a node describe the mathematical operations being
performed. Since the abstraction of the FFT algorithm results in a similar data flow diagram,
it will be called the butterfly transform in the following. As the butterfly diagrams always
connect to two components, most of the descriptions used in the following, concerning
their parameterization, are two-dimensional to keep the notation simple.

f̂k

f̂k+N2

f̂ even
k

ωk
N f̂ odd

k

(a) Butterfly diagram (b) Butterfly pictogram

Figure 1. Comparison of: (a) a butterfly diagram—blue lines indicate an addition, the orange line
indicates subtraction; (b) pictogram of a butterfly with similar appearance.

In order to generalize the FFT while preserving its efficient structure, we decompose
the operations in Equation (4) into a diagonal operator Φ and a mixing operator Θ, as given
in the following.

Φ =

(
1 0
0 ωN

)
, Θ =

1√
2

(
1 1
1 −1

)
, (5)

and thus (
f̂k

f̂k+N/2

)
= Θ Φ

(
f̂ even
k
f̂ odd
k

)
. (6)

For each component, we introduce free parameters that control how the operation
deviates from an ordinary FFT. A general representation of Θ is obtained by parameterizing
it by the sine and cosine of an angle θ,

Θθ =

(
cos θ sin θ
sin θ − cos θ

)
. (7)

To preserve the generality of the transformation within one layer, the θs for different
connected pairs, denoted by the index k in Equation (6), are independent. This means that
for an N -size transformation there are N/2 θs, in each layer, regulating the interaction
between two connected data points. Considering this parameterization, we obtain the
Θ from Equation (5), i.e., the one for an FFT, by inserting θ = π

4 . The operator Φ is
parameterized as

Entropy 2023, 25, 652 5 of 18

Φφ =

(
eiφ1 0
0 eiφ2

)
, φj ∈ R . (8)

This parameterization makes it possible to recover the correct phases for an FFT, but
also to change them in an arbitrary way. The combination of Θ and Φ is sufficient to
represent an entire FFT transform. To obtain an even more general transformation, the
diagonal operator Γ,

Γγ =

(
eγ1 0
0 eγ2

)
, γj ∈ R , (9)

is introduced, which accounts for the real-valued amplitudes. This leads to a loss of
unitarity for γ1, γ2 6= 0 in the combined transformation of Γ, Φ and Θ.

Now, we can build a generic butterfly-structured transformation B, using the layered
structure of an FFT as a guiding example. The subscript of the operators refers to the layer
in the FFT algorithm and thus implies that the correct components are connected.

B = Γ0Φ0Θ0 . . . ΓjΦjΘj . . . Γn−1Φn−1Θn−1 . (10)

Given this butterfly transformation and the structure of a convolution operation, based
on the convolution theorem, a butterfly convolution-like operator O can be formulated as

O = B†ΛB . (11)

In this equation the Λ operator corresponds to the Fourier transformed PSF. Usually,
physically reasonable PSFs are real-valued in position space and thus complex-valued
in harmonic space. Therefore, the Λ operator is defined as a diagonal operator, with
complex values,

Λλ =

(
eλ1 0
0 eλ2

)
, λj ∈ C . (12)

B†, in Equation (11), denotes the adjoint of B. For some experiments, the parameters
of B and B† were strictly coupled, called mirrored architecture in the following. For
others, the parameters were independent, denoted by different indices, resulting in a
non-mirrored architecture:

O = B†
1ΛB2 . (13)

3.3. Multidimensional Butterfly Transformation

Since the butterfly structure is strongly related to the FFT, it would make sense to treat
multidimensional butterfly transformations in the same way as multidimensional Fourier
transformations. Therefore, butterfly transformations can be applied to each dimension
separately. However, in this work the 2D application is slightly modified, in a way that
the mixing operator Θ is applied to each axis separately (for the first axis all columns are
transformed with the same θs, whereas for the second axis all row transformations share
the same θs), but after this axis-wise Θ-transformation the operators Φ and Γ are applied as
diagonal operators. Applying a 2D butterfly transform on a m× l 2D grid with m > l results
in log2 m layers for the first axis transformation and log2 l layers for the second axis. The
number of θs in one Θi operator is then m

2 and l
2 , respectively. The operators Φ and Γ are

then applied in log2 m layers. Here, the number of φs and γs in one Φi or Γi operator is ml.
Another approach, next to the 2D application, is to reduce the number of dimensions

to one (in this case, as we are dealing with images, from 2D to 1D) and just perform
one butterfly transform to this one dimension. For the case of two-dimensional inputs
the dimensionality reduction can be easily performed by concatenating all the column
vectors to one long vector, which will be called flattening from now on. These two different
approaches differ in the number of layers needed by the butterfly algorithm as well as in
the number of parameters per layer. For a one-dimensional transform of a ml 1D grid, one

Entropy 2023, 25, 652 6 of 18

obtains log2 ml layers. Here, the number of parameters behaves differently as there are ml
2

in each Θi. The number of parameters in one Φi or Γi is again ml.
Since in the latter case this results in a larger number of parameters, the 1D flattened

transform is expected to be more flexible than the 2D transform. A more detailed listing of
the number of parameters for each approach is shown in Table 1.

Table 1. Comparison of the number of parameters needed for a 2D and 1D butterfly transform.

Name #θ #φ #γ

2D (m× l grid) m
2 log2 m + l

2 log2 l ml log2 m ml log2 m
flat (ml) ml

2 log2 ml ml log2 ml ml log2 ml

Their different scaling behaviour can be easily compared by setting m = l. Then
the total number of parameters is [l log2 l + 2l2 log2 l] for the 2D and [5l2 log2 l] for the
1D flattened case. Figure 2 shows the different scaling behaviours of these two butterfly
applications and of a full matrix representation as a function of the axis length l.

20 22 24 26 28 210

l

102

104

106

108

1010

1012

#
pa

ra
m

et
er

s

parameter scaling of transforms

l4

5l2 log2 l

l log2 l + 2l2 log2 l

Figure 2. Scaling behaviour of a 2D transform represented by a full matrix representation (blue line),
a 2D butterfly transform (orange line), and a 1D butterfly transform with flattened input (green line).

4. Information Field Theory

To reach a better understanding for the area of use for the efficient responses, a brief
introduction to information field theory (IFT) [9] will be given. Information field theory
is the application of information theory to physical fields. Probably the most important
relation within information theory is Bayes’ theorem,

P(s|d) = P(d, s)
P(d) =

P(d|s)P(s)
P(d) , (14)

which connects a posterior with the likelihood, the prior, and the evidence. Here, the
likelihood P(d|s) describes how likely it is to record specific data for a given signal, which
incorporates knowledge about the instrument and the measurement process. The prior
P(s) is chosen with respect to the physical knowledge one has about the observed quantity
or situation. The evidence P(d) =

∫
dsP(d|s)P(s) is needed for the proper normalization

of the posterior P(s|d). Another important quantity is the information Hamiltonian that

Entropy 2023, 25, 652 7 of 18

is defined as the negative logarithm of the probability, H(d, s) = − ln[P(d, s)]. Due
to the properties of the logarithm and the product rule of probabilities the information
Hamiltonian,H is an additive quantityH(d, s) = H(d|s) +H(s).

The likelihood can be computed from the noise statistic P(n|s) and the measurement
equation, here in the form P(d|s, n) = δ(d− R(s)− n). Thus, the likelihood is

P(d|s) =
∫

dnP(d|s, n)P(n|s)

=
∫

dn δ(d− R(s)− n)P(n|s) = P(n = d− R(s)|s) .
(15)

Assuming Gaussian priors for signal, G(s, S), and noise, G(n, N), and using Equation (15)
the Hamiltonians simplify to

H(s) = − ln[G(s, S)] = − ln
[

1√
2πS

exp
(
−1

2
s†S−1s

)]
=

1
2

ln |2πS|+ 1
2

s†S−1s ,

H(d|s) = − ln[G(n, N)]

=
1
2

ln |2πN|+ 1
2
(d− R(s))†N−1(d− R(s)) .

(16)

However, if the measurement process follows Poisson statistics, which is the case
for realistic photographic measurements, a Poissonian likelihood model has to be used.
For this, we define the event density field s at a sky coordinate x as sx and the density of
observed events in a detector bin i as µi. The connection between the event density and the
observed event density is described by the instrument response Ri

x in the equation

µi = Ri
xsx . (17)

R thus describes the optical properties of the instrument and the detector. For the case
that all measured events are independent of each other, the likelihood P(d|µ) follows a
Poisson distribution

P(d|µ) =
N

∏
i=1

(µi)di
e−µi

di!
(18)

and thus, following the definition of the information Hamiltonian, the likelihood Hamilto-
nian is

H(d|µ) =
N

∑
i=1

[µi − di ln µi + ln(di!)] . (19)

For a Poisson distribution the density s has to be strictly positive. Thus, the prior
P(s) can no longer be Gaussian, but must follow a strictly positive distribution, e.g., a
log-normal distribution or an inverse gamma distribution. Dropping all the constant terms,
symbolized by =̂ meaning “up to constants in any here relevant quantity”, the likelihood
Hamiltonian can be formulated as

H(d|s) =̂
N

∑
i=1

[Ri
xsx − di ln(Ri

xsx)] (20)

One way to find an estimate for the signal s is to maximize the probability P(s|d) by
minimizing the joint HamiltonianH(d, s), with respect to the signal s. This is the maximum
a posteriori (MAP) approximation. Other inference methods including an uncertainty quan-
tification are metric Gaussian variational inference (MGVI) [22] or geometric variational
inference (geoVI) [23]. As a minimization algorithm, Newton-CG [24] was used throughout
all experiments.

Entropy 2023, 25, 652 8 of 18

5. Parallel and Serial Likelihoods

Models for inference processes in NIFTy are built in a forward way, as so-called
generative models. This means that a model of the physical signal is created first, followed
by the instrument response. Applying the IFT formalism, described in Section 4, to a
generative model with a butterfly convolution operator as a response yields a likelihood
with dependencies on the signal s and the response parameters θ, φ, γ, and λ.

In addition to being able to use butterfly convolution operators with mirrored, non-
mirrored, flat, and 2D configurations, they can be combined into a network built in parallel
or in series. In the case where n multiple butterfly convolution operators are connected
in series, the response operator representation in Equation (16) or (20) arises from the
sequential application of multiple butterfly convolution operators,

R(s, θ, φ, γ, λ) = O1 . . . Ons . (21)

In contrast, with n butterfly convolution operators arranged in a parallel architecture, each
butterfly convolution operator is applied to the signal, and the results are summed. The
corresponding instrument response representation is then

R(s, θ, φ, γ, λ) = (O1 + · · ·+ On)s . (22)

Before using a particular butterfly network as an instrument response function in an
imaging application, it is trained on signal-data pairs of the instrument. For many instru-
ments, specific knowledge of the PSFs is available in the form of signal-data pairs, either
from an expensive one-time simulation or from extrapolation of calibration measurements.
Using these signal-data pairs, the joint Hamiltonian H(d, s, θ, φ, γ, λ) is minimized with
respect to the response parameters θ, φ, γ, and λ, resulting in a MAP approximation of the
instrument. The initial values for these parameters, θ̃, φ̃, γ̃, and λ̃, are chosen such that all
Oi correspond to a convolution with a delta peak (θ̃ = π/4 , γ̃ = 0, λ̃ = 1, and φ̃ according
to the needed phases, see Section 3.1). The prior distribution of the parameters is assumed
to be Gaussian, with means at the initial values and unit variance. The final goal of the
minimization is to obtain an efficient digital twin of the real physical instrument.

Once a butterfly response is trained, it can be used for imaging with the corresponding
instrument. For this, the response parameters are fixed to the inferred values θ, φ, γ, and
λ, resulting in a response operator, which is linear in the signal s. The selection of a
suitable generative model for s depends on the observation of interest. In order to obtain
an uncertainty estimate for the physical signal s, the inference algorithms MGVI or geoVI
can be used.

6. Evaluation of the Response Approximation

Before using a trained butterfly response in an inference algorithm, it must be certi-
fied that the mapping performed by the response representation is sufficiently accurate.
Therefore, we compare the action caused by a signal, here a point source at position z,
s(x) = δ(x− z), of the to-be-learned or simulated response with the butterfly response by
their difference. This will be called the response approximation error

E(s) = R sim.(s)− R but.(s) . (23)

To keep the evaluation simple, unit brightness point sources at all signal domain
locations z ∈ Ω are considered. In the next step, the 2-norm (‖s‖2 =

√
∑x∈Ω |sx|2) of

E(s) is calculated for all these sources individually and normalized by the 2-norm of the
corresponding true signal response:

ε̂z =
‖E[δ(x− z)]‖2

‖Rsim.[δ(x− z)]‖2
=
‖R sim.[δ(x− z)]− R but.[δ(x− z)]‖2

‖Rsim.[δ(x− z)]‖2
, (24)

Entropy 2023, 25, 652 9 of 18

where ε̂z defines a relative error for each pixel z and thus results in an image, called the
error map, in the following. This error map depicts the errors introduced by the butterfly
response in total and shows which areas are more reliable and in which areas the mapping
deviates significantly from the approximated response.

In order to quantify the total error with respect to all mapping errors, we calculate
the 2-norm of the 4D matrix Ez = E[δ(x− z)], containing the error images for all possible
z-values and normalize it by dividing with the 2-norm of the matrix Rz = Rsim.[δ(x− z)],
containing all true simulated responses resulting in the the total error ζ̂:

ζ̂ =
‖E‖2

‖Rsim.‖2
. (25)

7. Synthetic Response

In order to investigate whether and to what degree butterfly networks are capable
of approximating spatially variant PSFs, they were trained to approximate a synthetic
response. This synthetic response can be regarded as the convolution of the signal s, which
is a point source located at the position z, s(x) = δ(x− z), with a rotational symmetric PSF
with a position-dependent shape,

(Rs)y =
∫

Ω
PSF(y− x, x)s(x) dx . (26)

For the PSF a zero-centred Gaussian was chosen,

PSF(x, z) = G(ρ, σ2) =
1√

2πσ2
exp

(
− ρ2

2σ2(z)
)

, (27)

with ρ = ‖x‖2, where x is the coordinate vector of the image plane and ‖x‖2 =
√

x2
1 + x2

2 is
its length. The dependence on the position z of the point source is encoded in the variance
σ2(z) of the Gaussian. To keep this spatial dependency simple, only the distance from the
centre of the image c to the point source z, r = ‖c− z‖2, influences the shape of the PSF. As
this absolute value depends on the image resolution, r will be normalized by the maximal
distance within the image, r̂ = r/rmax, to obtain a relative measure for the distance being
in the interval [0, 1]. As indicated, the variance σ2 is a function of this relative distance r̂
between the point source at z and the image centre c,

σ2(r̂) = β · r̂2 + η . (28)

The two parameters are set to β = 0.01 and η = 10−5. Following Equation (28),
larger distances r̂ lead to larger values of the variance σ2. This means that point sources
with smaller values of r̂ are convolved with a sharper Gaussian, while point sources at
further distances from the centre are convolved with broader Gaussians (see Figure 3). This
results in an spatially variant PSF, which can be used to examine the expressiveness of the
butterfly architecture.

Entropy 2023, 25, 652 10 of 18

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0
x 2

0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.00.0 0.5 1.0
x1

0.0 0.5 1.00.0 0.5 1.0
10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Brightness

Figure 3. 25 signal responses R(s) for point sources at different positions. For simplicity we used
periodic boundaries for the kernels, which will be properly addressed in the future. The colours show
the resulting brightness values.

8. Results
8.1. Comparison of Architectures

In search of a butterfly network capable of representing spatially variant point spread
functions, various architectures were compared, in terms of their ability to represent the
synthetic response, differing in their number of butterfly convolution operators (BCOs),
mirrored (mr) or non-mirrored (nmr) architecture, flat or 2D network design, and serial or
parallel built likelihood (see Table 2). All of these networks were trained to approximate
the synthetic response described in Section 7 by maximizing the posterior (MAP) until the
optimization was sufficiently converged (300 Newton steps). As training data, a set of all
possible PSFs within the given pixelation of 16× 16 was used. The signals were fixed to
be point sources with brightness values of 40 at the corresponding positions. A Gaussian
likelihood was used and the noise covariance N was set to be diagonal with entries of 10−6.
In order to gain a better understanding of the influence of some of these properties on the
total approximation behaviour, the networks are regarded separately and with respect to
their final total approximation error ζ̂ in Table 2.

Table 2. Parameters and results for all seven network architectures. The density is here defined
as the ratio of the number of parameters and the number of entries in a full matrix representation
(164 = 65,536). A lower density indicates a higher efficiency of the representation.

Network Name Net1 Net2 Net3 Net4 Net5 Net6 Net7

Number of BCOs 1 2 3 3 3 3 3
Architecture mr mr mr nmr mr nmr nmr

Design flat flat flat flat 2D 2D flat
Likelihood serial serial serial serial serial serial parallel

ζ̂ in % 7.96 3.14 2.00 1.04 2.45 1.50 6.86
Number of parameters 5632 11,264 16,896 32,256 7872 14,208 32,256

Density in % 8.59 17.19 25.78 49.22 12.01 21.68 49.22

The comparison of the ζ̂ value of Net1, Net2, and Net3 with 1, 2, and 3 BCOs, but
otherwise the same properties, shows that a higher number of BCOs lowers the total error
and thus increases the approximation capability. The second property of interest is the
kind of architecture used, mirrored or non-mirrored. Therefore the ζ̂ value of Net3, with its
mirrored architecture, is compared to the one of Net4, with its non-mirrored architecture,

Entropy 2023, 25, 652 11 of 18

while their other properties are equivalent. This shows that the non-mirrored architecture
performs better than the mirrored one. The same conclusion can be drawn by comparing ζ̂
of Net5 and Net6, which also only differ in their state of mirroring. In a similar way the
flattened and 2D applications can be examined. Since Net3 and Net5 only differ in this
property, their error values suggest that the flat application is superior to the 2D application
with respect to the reconstruction capability. This is confirmed regarding the error of Net4
and Net6, which are in a similar relationship.

Since more BCOs, flattening, and a non-mirrored architecture increase the number of
parameters and thus lead to more degrees of freedom, it is assumed that these architectures
are more flexible and can approximate the true response in a better way.

For the overall efficiency of the various networks it is not only important to approxi-
mate the synthetic response in a optimal way, but also to keep the number of parameters,
and thus the network density (network density is defined here as the ratio of network
parameters and number of entries in a full matrix representation), as low as possible (see
Figure 4). In the examined cases, sparser architectures tend to perform worse in comparison
to architectures with more parameters. Overall Net4 approximates the synthetic response
best with an 1% error. Net6, however, has only 44% of the parameters of Net4 and is
therefore less dense. This goes hand in hand with a slightly increased approximation error
by an absolute value of 0.46% (see Table 2). In the end, the number of parameters of the
butterfly networks still scales with O(N logN). This means that they become less dense
with increasing resolution.

0.5 1.0 1.5 2.0 2.5 3.0
parameters ×104

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

ζ̂
in

%

Dependence of the total approximation error on the number of free parameters

Net1 [1 layer, mirrored, flat]
Net2 [2 layer, mirrored, flat]
Net3 [3 layer, mirrored, flat]
Net4 [3 layer, non-mirrored, flat]
Net5 [3 layer, mirrored, 2D]
Net6 [3 layer, non-mirrored, 2D]
Net7 [3 layer, non-mirrored, flat parallel]

Figure 4. Total approximation error ζ̂ with respect to the number of parameters in the network.
A combination of low error and a low number of parameters is important for a good efficiency of the
corresponding network.

8.2. Performance at Increased Resolution

Although the performance of the much sparser network Net6 is only decreased by
0.46% in absolute error, Net4 is still chosen as the best performing architecture for further
discussion. In the following, we will investigate how the performance of the network
depends on the resolution. Therefore, a Net4 architecture was again trained on a complete
set of signal responses of all possible point source positions with an increased resolution of
32× 32. The noise covariance was not changed.

The results for 16× 16 and 32× 32 for the otherwise same butterfly network architec-
ture are collected in Table 3. One can see that the approximation capability does not suffer,
while the density decreases with increasing resolution. The density decreases because
the number of butterfly network parameters scales with about N logN whereas a full

Entropy 2023, 25, 652 12 of 18

matrix representation would scale with N 2. This is the expected behaviour described
in Section 3.3.

Table 3. Comparison of the same network structure applied to different resolutions. The percentage
error is on the same scale while the density decreases with higher resolution.

Network Name Resolution Number of
Parameters Density in % ζ̂ in %

Net4(16, 16) 16× 16 32,256 49.22 1.04
Net4(32, 32) 32× 32 159,744 15.23 1.00

In order to further validate the approximation of the mapping, one can compare the
synthetic signal responses (see Figure 3) and the approximated butterfly response (see
Figure 5) for the same 25 different point sources. One can see that the main features, the
position, the size and the magnitude of the Gaussian are picked up by the network, but also
that there are not defined areas in the logarithmic plot. This is due to negative regions in
the butterfly signal response caused by lack of constraints on positivity in the non-mirrored
architecture. For a closer investigation we also plotted the difference between the two
signal responses (see Figure 6). As presumed, the peaks of the error pictures E(s) are
on the same magnitude as the total error ζ̂. Since these are just a few samples for the
mapping, which are not representative for the overall approximation, we also consider the
error maps ε̂, described in Section 6, for further investigation of the errors made by the
butterfly networks.

Figure 7 shows that the relative error ε̂z is not constant over the image domain, but
smaller in the centre than at its borders. Since the only property changing with the relative
distance r̂ from the image centre is the shape and size of the synthetic response, it appears
that wider PSFs are more difficult to approximate than smaller ones. This is also visualized
by showing the relationship between r̂z and ε̂z for each pixel of the error map in a 2D
histogram (see right plot Figure 7).

8.3. Comparison of Execution Times and Memory Consumption

In addition to measuring the ability to represent the true inhomogeneous point spread
function, we want to test the speed of the butterfly network implementation in an appli-
cation. Therefore, we use the Python package timeit to measure the execution time of a
forward pass in seconds. Here, we compare the execution time of a butterfly convolution
with fixed θ, φ, γ, and λ against a full matrix-vector product performed by numpy.matmul.
Since the numpy.matmul implementation runs on multiple cores and the butterfly net-
work implementation is not parallelized, we force the code to run on a single core to
make the numbers more comparable. [OMP_NUM_THREADS = 1, OPENBLAS_NUM_THREADS = 1,
MKL_NUM_THREADS = 1]

Figure 8 and Table 4 show that for small N the butterfly convolution implementation
is slower than full matrix-vector multiplication. The reason for this behaviour is that the
butterfly convolution is mostly written in Python and thus has a huge overhead, whereas
the matrix-vector multiplication is written in C and is highly optimised. Implementing the
butterfly convolution in C should increase its speed significantly. However, this changes
at higher resolution, where the butterfly convolution is considerably faster than the full
matrix-vector mutliplication, despite being implemented in a slower language. This is due
to the different scaling of the number of operations involved and their parameters. Since
the number of parameters in a full matrix multiplication scales withN 2, it was not possible
to store the matrix on a laptop for N > (256× 256). This memory consumption further
illustrates the importance of this method for high resolution imaging with spatially varying
point spread functions.

Entropy 2023, 25, 652 13 of 18

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

x
2

0.0

0.5

1.0

0.0 0.5 1.0

0.0

0.5

1.0

0.0 0.5 1.0 0.0 0.5 1.0

x1

0.0 0.5 1.0 0.0 0.5 1.0

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

B
rightness

Figure 5. Approximated signal responses of the 25 point sources. The brightness values are shown in
colour. The colourbar corresponds to the one in Figure 3.

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

x
2

0.0

0.5

1.0

0.0 0.5 1.0

0.0

0.5

1.0

0.0 0.5 1.0 0.0 0.5 1.0

x1

0.0 0.5 1.0 0.0 0.5 1.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

B
rightness

Figure 6. Error pictures E(s(x) = δ(x− z)) for 25 different point source positions at various positions
z. The differences between the simulated and approximated signal responses, are shown in colour.

Entropy 2023, 25, 652 14 of 18

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Error map ε̂

0.0 0.2 0.4 0.6 0.8 1.0

r̂z

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

ε̂ z
in

%

Relative distance r̂z and pixel error ε̂z

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ε̂z

0

2

4

6

8

10

Figure 7. (left): Error map resulting from the relative error ε̂z for each pixel. This figure shows which
areas of the butterfly response representation are more reliable than others. (right): 2D histogram of
the relative distance r̂z from the centre of the image versus the pixel error ε̂z.

24 27 210 213 216 219

10 6

10 5

10 4

10 3

10 2

10 1

100

ru
nt

im
e[

s]

Butterfly Convolution
Full Matrix

Figure 8. Number of pixels versus execution time in [s]. Tested on the following hardware: AMD
Ryzen 7 4800H (CPU-Model), 1400 MHz (Clocking Speed), 1 Core, 64 GB (RAM).

Table 4. Comparison execution times of one butterfly convolution and a matrix-vector multiplication.

Butterfly Convolution Matrix-Vector Multiplication
Resolution

Time Memory Time Memory

2× 2 0.564 ms± 4.8 µs 1.84 kB 2.23 µs± 1.05 µs 248 B
4× 4 1.063 ms± 5.7 µs 5.5 kB 1.99 µs± 0.66 µs 2.17 kB
8× 8 1.59 ms± 16 µs 20.3 kB 2.76 µs± 0.80 µs 32.9 kB

16× 16 2.23 ms± 5.58 µs 91.2 kB 12.5 µs± 1.6 µs 524 kB
32× 32 3.22 ms± 142 µs 432.4 kB 298 µs± 19 µs 8.4 MB
64× 64 5.74 ms± 12.27 µs 2.0 MB 3.94 ms± 133 µs 134 MB

128× 128 16.1 ms± 33.0 µs 9.4 MB 0.101 s± 36.5 µs 2.14 GB
256× 256 73.0 ms± 92.4 µs 43.0 MB 1.63 s± 0.90 ms 34.4 GB
512× 512 315.6 ms± 581 µs 193.0 MB n.a. 550 GB

1024× 1024 1.69 s± 2.32 ms 855.6 MB n.a. 8.8 TB

Entropy 2023, 25, 652 15 of 18

8.4. Imaging with a Butterfly Response

Since the previous sections show that the efficient representation of instrument re-
sponses using butterfly networks is indeed possible up to a certain representation error,
this section presents a small imaging application with a trained butterfly network and a
synthetic generated data set.

As already explained in Section 5, a forward model is built in order to infer a signal
from collected data. To keep the validation simple, a synthetic signal consisting of 15 point
sources with random positions in the signal domain and brightness values between 900 and
1000 is generated, also called ground truth (see Figure 9a) in the following. The correspond-
ing observed event density is then calculated from this ground truth using the synthetic
response from Section 7 (see Figure 9b). From this observed event density the synthetic
data is generated by drawing from Poisson distributions with the respective rates.

As a model for the prior distribution P(s) of the point sources an inverse gamma
distribution, f (x; q, α) = qα

Γ(α) x−α−1 exp (− q
x), is chosen with α = 1 and q = 1. For the

response operator in our Poissonian likelihood we use the butterfly network Net4(32x32)
that was previously trained on the synthetic response, as described in Section 8.2. In
order to ensure positivity in the signal response domain, we clip the signal response at a
minimum of 10−8. Positivity is a necessary property here for the Poisson likelihood to be
well-defined. Applying the IFT formalism, the joint Hamiltonian H(s, d) is constructed
using these prior statistics and the Poissonian likelihood. For the inference we use the
geoVI algorithm [23] with four mirrored samples. After inference with geoVI, we obtain a
set of samples that represent the posterior distribution of the quantity of interest, in this
case the signal. From these samples, we can calculate the posterior mean and standard
deviation of the signal and the signal response. Comparing the posterior mean of the
signal (see Figure 9c) to the ground truth (see Figure 9a), one can see that most of the
signal is sufficiently reconstructed. The positions and brightness values in the centre are
reconstructed very well, whereas there are some errors in the outer parts of the image. Most
areas with larger errors also appear to have high signal posterior standard deviation values
(see Figure 9e) and therefore should not be considered as reliable derived estimates. Thus,
these reconstruction errors are not only caused by the response approximation error, which
happened in the training process discussed earlier, but also due to the fact that the extreme
blurring by the synthetic response at the image borders in combination with the Poisson
shot noise causes reconstruction ambiguities in the signal space. These ambiguities lead to
a larger error and higher standard deviation of the posterior.

In order to see that the algorithm has converged and is working correctly, one can
also compare the data (not shown) with the reconstructed signal response (see Figure 9d)
by looking at their difference (see Figure 9f). In summary, it can be seen that the efficient
response representation can be successfully applied in imaging algorithms.

Entropy 2023, 25, 652 16 of 18

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Signal

100

101

102

103

B
rightness

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Event Density

100

101

102

103

B
rightness

(b)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Posterior Mean Signal

100

101

102

103

B
rightness

(c)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Posterior Mean Signal Response

100

101

102

103

B
rightness

(d)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Posterior SD Signal

10−1

100

101

102

B
rightness

(e)

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Data Residuals

100

101

102

103

B
rightness

(f)

Figure 9. Imaging with a trained butterfly response representation: (a) synthetic signal, also called
ground truth; (b) simulated observed event density; (c) posterior mean signal; (d) posterior mean
signal response; (e) posterior standard deviation signal (f) the absolute difference between the data
and the posterior mean signal response, called data residuals.

9. Discussion

The need for efficient response representations in imaging led to the development of
the models presented in this work, which were inspired by earlier research on butterfly
matrices [11]. The efficient structure of butterfly matrices, inherited of fast Fourier trans-
forms (FFT), results in a sub-quadratic algorithm scaling with O(N logN) that is capable
of representing an expensively simulated synthetic response up to 1% error. To this end,
Net4, a butterfly convolutional network with three butterfly convolution operators (BCOs)
in series, non-mirrored architecture, and flat application is used, which is differentiable
and thus suitable for the application as a response in generative models for measurement

Entropy 2023, 25, 652 17 of 18

data. Furthermore, we could show that by upscaling the network to a higher resolution
the accuracy does not suffer while the representation becomes, as expected, sparser com-
pared to a full matrix representation. This network is also successfully used as a response
representation for a spatially variant point spread function (PSF) in an imaging example
with synthetic generated photon count data following Poisson statistics. We expect the
butterfly network representation to give comparably good results for spatially varying
PSFs of real instruments such as Chandra or eROSITA. Although these are more complex,
and radially asymmetric, this can be argued because the radial symmetry of the synthetic
example is not part of the butterfly transform parameterization. In addition, typical PSFs
from real instrument are smaller and therefore sparser than the synthetic PSFs in this work
and therefore require fewer degrees of freedom. We also see in our example that most of
the approximation error is made in the outer regions of the PSFs, indicating that the error
also becomes smaller for smaller PSFs.

To improve the computational performance through GPU support and parallelization,
more advanced machine learning platforms such as TensorFlow [25] or PyTorch [26] could
be considered. After sufficient training, the corresponding butterfly network can be used to
perform high-fidelity imaging using information field theory and NIFTy. Additionally, other
fields of application with a connection to slightly inhomogeneous processes are imaginable.
These also include time- or energy-dependant processes with variable correlations. All
in all, the method to represent instrument response functions introduced in this work is
promising to improve imaging with complex photographic instruments and thus should
be considered in further research.

Author Contributions: Conceptualization, V.E., P.F., J.S., S.S. and T.E.; methodology, V.E., S.S. and
P.F.; software, V.E. and S.S.; validation, V.E. and S.S.; formal analysis, V.E. and T.E.; investigation,
V.E.; resources, V.E.; data curation, V.E.; writing—original draft preparation, V.E.; writing—review
and editing, V.E.; visualization, V.E.; supervision, T.E. and P.F.; project administration, T.E.; funding
acquisition, T.E. All authors have read and agreed to the published version of the manuscript.

Funding: Vincent Eberle was supported by the German Aerospace Center and the Federal Ministry
of Education and Research through the project “Universal Bayesian Imaging Kit—Information Field
Theory for Space Instrumentation” (Förderkennzeichen 50OO2103). Julia Stadler was supported
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC-2094—390783311.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Philipp Arras for detailed feedback on the manuscript. We also thank
Martin Reinecke for his help in benchmarking our implementation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.;

et al. The eROSITA X-ray telescope on SRG. arXiv 2020, arXiv:2010.03477.
2. Weisskopf, M.C.; Tananbaum, H.D.; Van Speybroeck, L.P.; O’Dell, S.L. Chandra X-ray Observatory (CXO): Overview. In

Proceedings of the X-Ray Optics, Instruments, and Missions III. International Society for Optics and Photonics, Munich, Germany,
27–29 March 2000; Volume 4012, pp. 2–16.

3. Selig, M.; Bell, M.R.; Junklewitz, H.; Oppermann, N.; Reinecke, M.; Greiner, M.; Pachajoa, C.; Enßlin, T.A. NIFTY–Numerical
Information Field Theory-A versatile PYTHON library for signal inference. Astron. Astrophys. 2013, 554, A26. [CrossRef]

4. Steininger, T.; Dixit, J.; Frank, P.; Greiner, M.; Hutschenreuter, S.; Knollmüller, J.; Leike, R.; Porqueres, N.; Pumpe, D.; Reinecke,
M.; et al. NIFTy 3–Numerical Information Field Theory: A Python Framework for Multicomponent Signal Inference on HPC
Clusters. Ann. Phys. 2019, 531, 1800290. [CrossRef]

5. Arras, P.; Baltac, M.; Ensslin, T.A.; Frank, P.; Hutschenreuter, S.; Knollmueller, J.; Leike, R.; Newrzella, M.N.; Platz, L.; Reinecke,
M.; et al. Nifty5: Numerical Information Field Theory v5; Astrophysics Source Code Library: Houghton, MI, USA, 2019.

http://doi.org/10.1051/0004-6361/201321236
http://dx.doi.org/10.1002/andp.201800290

Entropy 2023, 25, 652 18 of 18

6. Enßlin, T.A.; Frommert, M.; Kitaura, F.S. Information field theory for cosmological perturbation reconstruction and nonlinear
signal analysis. Phys. Rev. D 2009, 80, 105005. [CrossRef]

7. Enßlin, T. Astrophysical data analysis with information field theory. In Proceedings of the AIP Conference Proceedings, Canberra,
ACT, Australia, 15–20 December 2013; American Institute of Physics: College Park, MD, USA, 2014; Volume 1636, pp. 49–54.

8. Enßlin, T. Information field theory. In Proceedings of the AIP Conference Proceedings, Garching, Germany, 15–20 July 2012;
American Institute of Physics: College Park, MD, USA, 2013; Volume 1553, pp. 184–191.

9. Enßlin, T.A. Information theory for fields. Ann. Phys. 2019, 531, 1800127. [CrossRef]
10. Polcari, J. Generalizing the Butterfly Structure of the FFT. In Advanced Research in Naval Engineering; Ruffa, A., Toni, B., Eds.;

STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health; Springer: Cham, Switzerland, 2018; pp. 35–52.
11. Dao, T.; Gu, A.; Eichhorn, M.; Rudra, A.; Ré, C. Learning fast algorithms for linear transforms using butterfly factorizations. In

Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1517–1527.
12. Alizadeh, K.; Farhadi, A.; Rastegari, M. Butterfly Transform: An Efficient FFT Based Neural Architecture Design. arXiv 2019,

arXiv:1906.02256.
13. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
14. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520.
15. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

16. Singhal, U.; Stella, X.Y. Complex-valued Butterfly Transform for Efficient Hyperspectral Image Processing. In Proceedings of the
2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8.

17. Lin, R.; Ran, J.; Chiu, K.H.; Chesi, G.; Wong, N. Deformable butterfly: A highly structured and sparse linear transform. Adv.
Neural Inf. Process. Syst. 2021, 34, 16145–16157.

18. Song, J.; Lee, Y.H. Optical image encryption using different twiddle factors in the butterfly algorithm of fast Fourier transform.
Opt. Commun. 2021, 485, 126707. [CrossRef]

19. Eberle, V.; Frank, P.; Stadler, J.; Streit, S.; Enßlin, T. Efficient Representations of Spatially Variant Point Spread Functions with
Butterfly Transforms in Bayesian Imaging Algorithms. Phys. Sci. Forum 2022, 5, 33. [CrossRef]

20. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301.
[CrossRef]

21. Wolberg, G. Fast Fourier Transforms: A Review; Columbia University: New York, NY, USA, 1988.
22. Knollmüller, J.; Enßlin, T.A. Metric Gaussian Variational Inference. arXiv 2019, arXiv:1901.11033.
23. Frank, P.; Leike, R.; Enßlin, T.A. Geometric variational inference. Entropy 2021, 23, 853. [CrossRef] [PubMed]
24. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; pp. 168–170.
25. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 8 December 2022).
26. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Vancouver, BC, Canada,
2019; pp. 8024–8035.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.80.105005
http://dx.doi.org/10.1002/andp.201800127
http://dx.doi.org/10.1016/j.optcom.2020.126707
http://dx.doi.org/10.3390/psf2022005033
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.3390/e23070853
http://www.ncbi.nlm.nih.gov/pubmed/34356394
tensorflow.org

	Introduction
	Related Work
	Methods
	Fast Fourier Transformation
	Butterfly Transform and Convolution
	Multidimensional Butterfly Transformation

	Information Field Theory
	Parallel and Serial Likelihoods
	Evaluation of the Response Approximation
	Synthetic Response
	Results
	Comparison of Architectures
	Performance at Increased Resolution
	Comparison of Execution Times and Memory Consumption
	Imaging with a Butterfly Response

	Discussion
	References

