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Abstract: We exploit the properties of complex time to obtain an analytical relationship based on con-
siderations of causality between the two Noether-conserved quantities of a system: its Hamiltonian
and its entropy production. In natural units, when complexified, the one is simply the Wick-rotated
complex conjugate of the other. A Hilbert transform relation is constructed in the formalism of quan-
titative geometrical thermodynamics, which enables system irreversibility to be handled analytically
within a framework that unifies both the microscopic and macroscopic scales, and which also unifies
the treatment of both reversibility and irreversibility as complementary parts of a single physical de-
scription. In particular, the thermodynamics of two unitary entities are considered: the alpha particle,
which is absolutely stable (that is, trivially reversible with zero entropy production), and a black hole
whose unconditional irreversibility is characterized by a non-zero entropy production, for which
we show an alternate derivation, confirming our previous one. The thermodynamics of a canonical
decaying harmonic oscillator are also considered. In this treatment, the complexification of time also
enables a meaningful physical interpretation of both “imaginary time” and “imaginary energy”.

Keywords: QGT; entropic Hamiltonian; Bekenstein–Hawking relation; analytical continuation;
Loschmidt Paradox; Riemannian geometry; Kramers–Kronig relations; arrow of time

1. Introduction

The physical interpretation of time, and the peculiar characteristics of the arrow of
time, have long excited scientific curiosity and generated perplexing puzzles. Alexander
Klimenko [1] recently summarized the issues (with extensive references) in the context
of a deep discussion of quantum decoherence as an indicator of irreversibility. We will
approach the issues from a rather different point of view, accepting the standard treatments
of causality.

The Second Law of Thermodynamics has a problematical status: is it fundamental
or emergent? Is irreversibility an emergent property determined at the microscopic level?
(We could also ask, again related to the intrinsic nature of time, is the universe essentially
non-local?) Currently, the fundamental equations of quantum mechanics (QM) are time
reversibility, and the elusiveness of an emergent irreversibility (generating the Second Law)
is known as the Loschmidt Paradox. On the other hand, most physicists assert that the
Second Law is fundamental. How is this state of affairs to be squared? It transcends the
other well-known problem: the inherent incompatibility between the realms of QM (the
physics of the very small) and general relativity (GR, the physics of the very large). Here,
we show how complexifying time may help resolve both of these problems.

We should remark that the Loschmidt Paradox has recently been resolved by Tes-
sarotto et al. [2] for the case of (dilute) ideal gases. Their result is actually remarkable
because they prove (under certain conditions) that Boltzmann’s H-theorem is time-reversible,
and thus that the resulting increase in entropy is also time-reversible. However, there
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remain a number of caveats for this result, the main one being that the continuous limit
appears to be an intrinsic requirement but introduces unresolvable inconsistency. It should
also be mentioned that ideal gases are not the only systems of interest. Our treatment here
is of the general case.

Imaginary time is invoked in discussions of quantum mechanical tunnelling times
(see, for example, McGlynn and Simenel 2020 [3]), although its physical interpretation
remains obscure. However, it is surprising that the concept of a complex temporal plane
has not been suggested until very recently [4], perhaps because it seems intuitive that time
is essentially uni-dimensional, in contrast to the obvious multi-dimensionality of space
with its rich geometry. It should be noted that the complexification of time is well-known;
that is, Minkowksi found that a complex description for spacetime elegantly satisfies the
geometrical requirements of special relativity; he defined time as imaginary, in contrast to
real space (with unit vectors it ≡ ix0/c, x1, x2, x3, where, as usual, c is the speed of light and
i ≡
√
− 1, such that the squares of the unit vectors are −1, +1, +1, and +1, respectively, or

simply “−+++”). However, the inverse metric for spacetime (real time and imaginary space:
“+−−−”) is also valid, and we will show where each metric is physically appropriate.

We also note the clear isomorphism between the Hamiltonian H of a system and its
entropy production P. The Hamiltonian of a system describes its energy content and, on the
assumption of a lossless (reversible) physical process, the First Law of Thermodynamics
trivially applies and the Hamiltonian is conserved. This is in accordance with Noether’s
theorem based on the Euler–Lagrange equation for the Principle of Least Action, exploiting
time as the key symmetry. In the same way, we have previously shown [5] that entropy
production must also be a conserved quantity by Noether’s theorem, this time applied to
the entropic Euler–Lagrange equation associated with the isomorphic Principle of Least
Exertion [6] (again using the time symmetry). Thus, it is clear that the Hamiltonian and
entropy production are isomorphic to each other, both being Noether-conserved quantities.
We will show here that they are also directly related, physically.

The paper will treat alpha particles and black holes, because, in quantitative geomet-
rical thermodynamics (QGT; Parker & Jeynes 2019 [6]), they have a similar description:
both have an entropy determined by the Bekenstein–Hawking relation, a relation that is
a necessary (holographic) consequence of the entropic Liouville theorem (see Parker and
Jeynes 2021a [7]). Both are unitary entities in QGT, that is, there exist no simpler entities
at that scale. Curiously, although both are maximum entropy entities (being unitary), the
one has zero entropy production and the other has positive (non-zero) entropy production.
However, even though the black hole necessarily grows, it still remains the same unitary
entity. The entropy production of black holes was calculated previously (Parker and Jeynes
2021b [5]); here, we present an alternate derivation of the same result. It turns out that the
matter radius of the alpha (and other nuclei) is readily calculated by QGT (Parker et al.
2022 [8]), thus it is helpful to show that these complex time methods are also valid for what
might have been thought a trivial case.

2. Complex Time Descriptions for Reversibility and Irreversibility

The fundamental kinematic equations,

∂

∂t
Φ = 2kBD∇2Φ and (1a)

−i
∂

∂τ
Ψ =

h
4πm

∇2Ψ (1b)

are the diffusion equation (describing the irreversible evolution of the probability amplitude
F, and involving Boltzmann’s constant kB and the diffusion coefficient D) and Schrödinger’s
equation (describing the reversible evolution of the quantum wave function Ψ, and in-
volving Planck’s constant h and the mass m of the particle, respectively); note that both
equations are temporal in character, but we employ different symbols for their respective
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time variables, because Equation (1a) is essentially real in nature, whereas Equation (1b) is
imaginary. Although different, using the diffusion coefficient definitions of Mita [9] and
Nelson [10], the above two equations are related by the following:

t↔ iτ (2a)

and
h

4πm
↔ 2kBD ≡ γ (2b)

suggesting that, owing to the isomorphism between Schrödinger’s equation and the dif-
fusion equation (Equation (1)), the real time t is isomorphic to the imaginary time τ.
Equivalently, in Equation (2a), the factor i (≡

√
−1) looks like a Wick rotation (see O’Brien’s

helpful discussion [11]), while Equation (2b) reinterprets the diffusion coefficient D as
being like an inverse mass, D ↔ 1/2m (interpreting the 4π as the appropriate solid an-
gle of the full sphere). The factor 2 that appears in Equations (1a) and (2b) in front of
the Boltzmann constant kB is a reflection of an explicitly entropic version of the partition
function, being composed of probabilities that are analogous to the modulus-squared of
Schrödinger’s equation (see Parker and Jeynes 2021 [7], Equation (14d)), as is also described
by Córdoba et al. 2013 [12] (see their Equations (29) and (30)).

The Wick rotation was implicitly described (in terms of Hodge duals) in Appendix A of
Parker and Jeynes 2019 [6], while the notation η̂ = 2kB∇ was employed by Velazquez [13]
to provide a commutator-like derivation of the thermodynamics uncertainty relations
(again, notice the presence of the factor of 2 in Velazquez’s expression for η̂). This example
illustrates the Wick rotation appearing to map a reversible dynamics into an irreversible
one, as already emphasized by Córdoba et al. [12].

Thus, the Schrödinger equation can be considered either as a non-dissipative wave
equation (reversible) or as a diffusion equation (irreversible). The key distinction between
whether the Schrödinger equation describes a reversible or irreversible process lies in
whether the associated diffusion coefficient γ ≡ h̄/2m (inversely related to the friction
coefficient, and now using the reduced Planck constant h̄ ≡ h/2π for convenience) is real
or imaginary. In a conventional diffusion process (such as involving Brownian motion),
the diffusion coefficient is a real quantity, as described by Nelson [10], for example (see
also Fritsche and Haugk [14]). However, Nelson shows that, if the diffusion constant
were to be imaginary, then the average diffusion velocity would become imaginary, and
a Brownian motion with zero friction is described. As a phenomenological description,
the diffusion coefficient is conventionally described using the reduced Planck constant.
However, exploiting the isomorphism between Equations (1) and (2) (where the Planck
and Boltzmann constants are related to each other via a Wick rotation, −ih̄⇔2kB), it is clear
that an imaginary diffusion coefficient can also be described: γ = ikB/m. Of course, this
begs the question of what determines whether the “diffusion coefficient” is real (describing
an irreversible process) or imaginary (reversible).

We are thus encouraged to define physical time as a complex dynamical variable; that is
to say, rather than considering the (imaginary) parameter τ simply as isomorphic to the real
time variable t, we now define τ as the analytic continuation of real time t into the complex
plane. As it is convenient (following Minkowski) to assume that conventional (reversible)
time t is imaginary, we also rotate the complex time plane by a factor i:

z ≡ i(t + iτ) = −τ + it (3)

In this definition of complex time z, we have thus analytically continued time t into an
overall complex time measure (using the time parameter τ) followed by an overall rotation
by a factor i ≡

√
−1. Whereas in Equation (2a), we suggested the isomorphism t↔ iτ, in

Equation (3), we now explicitly distinguish the real and imaginary components of complex
time z, such that t and τ appear essentially independent of each other.
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To avoid confusion, we should comment, parenthetically, that whether τ is regarded
as real (or imaginary) and t is regarded as imaginary (or real) depends on which of the
two metrics, (+−−−) or (−+++), is being used. Both are valid: the application determines
which is more convenient.

Equation (15) of Velazquez et al. 2022 [4] specifies an effective equivalence between
the normal Hamiltonian (representing the energy of the system) and the “entropic Hamilto-
nian”, both of them complex valued. It is tempting to identify the “entropic Hamiltonian”
with entropy production, but there is some subtlety because an unconditionally stable
system (such as an alpha particle, for which the entropy production is identically zero)
would appear to be a counter example, as the Hamiltonian of the alpha is non-zero.

Nevertheless, we will show in what way the (complexified) entropic Hamiltonian of
the previous treatment of [4] can be identified with (complexified) entropy production, and
in what way the (energy) Hamiltonian can be identified with entropy production. This
demonstration depends on the properties of analytical continuation, and is thus a conse-
quence of the systematic complexification of the formalism. It is a deeply surprising result,
intimately related to the fact that these properties are built on a holomorphic representation
of the maximum entropy state. Analytical continuation is a powerful technique used in
conjunction with Riemannian geometry and holomorphic functions, both of which are
essential to the quantitative geometrical thermodynamics formalism (QGT; Parker and
Jeynes 2019 [6]).

We will also show that an unconditionally unstable system far from equilibrium (such
as a black hole, for which the entropy production is non-zero and positive) is related. QGT
treatments are available for both the alpha particle (Parker et al. 2022 [8]) and the black
hole (Parker and Jeynes 2021 [5]); both are unitary entities (in QGT terms), being specified
by only four numbers (mass, spin, charge, and a length scale factor). We will also show
that the real (dissipative) harmonic oscillator is also easily represented in this formalism.

Following Velazquez et al. [4] (q.v. for a wider discussion of the physical motivation),
we define the quantity actio-entropy S as a holomorphic function of the classical action Scl
and the thermodynamic entropy Sth across complex time z ≡ −τ + it (Equation (3)), which
explicitly combines action and entropy. It is the unifying idea of complex time that allows the
application of complex function theory across the complex temporal plane to coherently
define the (dimensionless) analytic function S (see Equation (7) of [4]):

S =
Sth
2kB

+ i
Scl
} (4)

The fact that the actio-entropy S is holomorphic is shown by the validity of the
corresponding Cauchy–Riemann equations, which in turn allows analytical continuation
between the classical action Scl and the thermodynamic entropy Sth (see Equation (14)
of [4]):

1
2kB

∂Sth
∂τ

= − 1
}

∂Scl
∂t

(5a)

1
2kB

∂Sth
∂t

=
1
}

∂Scl
∂τ

(5b)

Equations (5) imply the (conventional) fundamental definitions of the system’s energy-
based (kinematic) Hamiltonian H as a function of the classical action, as well as the entropy
production Π (rate of increase of entropy), as defined using the respective reversible (t) and
irreversible (τ) temporal axes (see Equation (4) of [4]):

H = −∂Scl
∂t
↔ Π =

∂Sth
∂τ

(6)
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Exploiting the symmetries associated with the Wirtinger operator [15], the definition
of differentiating across the complex plane z is given by the following (see Equation (A56)
of [4]):

∂

∂z
≡ 1

2

(
∂

∂τ
+ i

∂

∂t

)
(7)

We see that the (energy) Hamiltonian and entropy production are each associated with
both real and imaginary components, according to the respective temporal domains of the
complex time plane (z ≡ −τ + it; see Equations (A57) and (A58) of [4]) and considering the
complex differential of the actio-entropy ∂S/∂z:

Hz = 2i
∂Scl
∂z

= −∂Scl
∂t

+ i
∂Scl
∂τ
≡ H + iHτ (8a)

Πz = 2
∂Sth
∂z

=
∂Sth
∂τ

+ i
∂Sth
∂t
≡ Π + iΠt (8b)

We emphasise that the symbol H represents the real (reversible) part of the complex
Hamiltonian Hz (where the subscript z indicates its relation to the complex temporal plane
z) and Π is the real (irreversible) part of the complex entropy production Πz. Note that,
where Velazquez et al. [4] use the term “entropic Hamiltonian”, we use instead the term
“entropy production” as a synonym for “rate of entropy increase”.

The role of the (complex) Hamiltonian Hz and (complex) entropy production Πz in
any physical process must be understood from the trajectory across complex time taken
by the physical phenomenon. That is, whether the process is reversible or irreversible (or
a mixture) will be determined by how the real and imaginary components are combined
at each point in time. We point out parenthetically that the representations we use seem
ambiguous at this stage as to whether reversibility is indicated by the real or by the
imaginary components. However, the usual convention is to regard the imaginary temporal
t-axis as the reversible one, in the context of a complex temporal plane providing the
comprehensive framework in which both reversible and irreversible processes can be
consistently and completely described.

In Equation (8), the complex expressions for Hz and Πz are comparable to the expres-
sions used in signal processing for analytic quantities (in particular, photons). QGT [6]
shows how meromorphic functions are used to express information and how holomorphic
functions express maximum entropy systems. John Toll [16] explicitly gives a rigorous proof
that strict causality is logically equivalent to the existence of the “dispersion relations”,
which are best known as practical constraints in signal processing, so that, in optics (for
example), the refractive index has an imaginary component in the presence of absorption.
However, as any particle can be represented as a wave, any scattering process must have
a representation in terms of a “frequency distribution”, with the corresponding “group”
and “phase” velocities. Toll has shown how the real and imaginary properties of the
dispersion are mutually related via the Kramers–Kronig relations, using the properties of
the Hilbert transform. Toll further points out that exactly the same formalism is applicable
generally; not only to optics but also to (for example) high-energy particle scattering (citing
the “excellent discussion” of the so-called “R-matrix” representation by Wigner [17]).

In the optics example, the real dielectric component is associated with zero absorption
(a thermodynamically reversible phenomenon) and the imaginary component (absorption,
or indeed amplification) is associated with thermodynamic irreversibility. To be more
specific, we note that Fourier theory requires the association of the complex time plane z ≡
−(τ − it) = i(t + iτ) with its counterpart (complex-conjugated) complex frequency plane
ω̂ = −i(ω− iυ) = −(υ + iω).
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3. Fourier and Hilbert Transform Relations

We define the conjugate frequencies of the respective real and imaginary temporal
components consistently using the Fourier transform definition:

F(ω) =

∞∫
−∞

f (t)eiω·tdt→ F(ω̂) =

∞∫
−∞

f (z)eiω̂·zdz (9)

That is, both the time t and frequency ω are respectively analytically continued into
their appropriate complex planes, with the complex time z and complex frequency ω̂
representing the appropriate conjugate pair, ω̂ � z , with the consistent Fourier transform
relation given above.

For the case when the function H(t) is causal (that is, H(t) = 0 for t < t0, where t0
is chosen as a convenient point in time to express the causality of the system) and is a
physically realisable (square-integrable) function, then Cauchy’s theorem applies, and
the Hamiltonian is holomorphic in the required (upper, as appropriate) half-plane, such
that it obeys the dispersion relations. Following Toll [16] Equation (2.5), we can write the
dispersion of the complex Hamiltonian (using the terms of Equation (8a) above) in terms of
the component ω of the complex frequency ω̂:

H(ω) = +
1
π

P
∞∫
−∞

Hτ(ω′)

ω′ −ω
dω′ (10a)

Hτ(ω) = − 1
π

P
∞∫
−∞

H(ω′)

ω′ −ω
dω′ (10b)

where “P” is the principal part to be taken at the point ω′ = ω. Note that Toll explicitly
emphasises that, because the real and imaginary parts of Hz (see (Equation (8a)) are Hilbert
transforms of each other (Equation (10)), they are indeed causal. The corollary is that
Equation (10a) implies Equation (10b), and vice versa. The integration is performed parallel
to the ω-axis and the analytical continuation into the upper half-plane exists.

The Cauchy–Riemann relations, Equation (5), written as functions on complex time,
clearly imply complementary relations in terms of the complex frequency. Because fre-
quency is essentially inverse time, there is a very close relationship between the entropy
production and (energy) Hamiltonian, where the entropy production (being most closely
associated with non-reversible, dissipative processes) is aligned with the irreversible (real)
temporal τ-axis, and the Hamiltonian (being most closely associated with reversible, non-
dissipative processes) is aligned with the reversible (imaginary) temporal t-axis. Equiva-
lently, for the conjugate frequency axes, the entropy production is intrinsically associated
with the real frequency υ-axis, while the Hamiltonian is intrinsically associated with the
imaginary frequency ω-axis.

When we analytically continue the entropy production or the Hamiltonian from
one axis across the complex plane to the orthogonal axis, we exploit the symmetries that
manifest in the mathematics. The key measurables are the real part of the energy (associated
with the reversible axis) and the real part of the entropy production (associated with the
irreversible axis). From this perspective, when transforming a quantity from one axis to
the other, that is, finding the Hilbert transforms of the entropy production and the (energy)
Hamiltonian (such transforms can also be regarded as a kind of Wick rotation), the result
is particularly useful for interpreting what might be considered as the ‘cross-axial’ terms
(Πt and Hτ, see Equations (8), and we shall see that Parseval’s Theorem, as applied to
the respective Hilbert transform components, also provides additional useful insight into
their physical properties). Thus, exploiting the mathematical properties associated with
the process of analytical continuation, we may write two symmetrical pairs of expressions
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for how the complex entropy production function and the complex Hamiltonian function
relate along the two conjugate frequency axes forming the complex frequency plane:

Πt(ω) = −iΠ(υ) (11a)

Π(ω) = iΠt(υ) (11b)

Hτ(υ) = −iH(ω) (11c)

H(υ) = iHτ(ω) (11d)

Using the Cauchy–Riemann relations of Equation (5), we can now relate the entropy
production values on the real frequency υ-axis to the appropriate energy Hamiltonian
values on the imaginary frequency ω-axis:

1
}H(ω) = −i

1
2kB

Π(υ) (12a)

1
}H(υ) = i

1
2kB

Π(ω) (12b)

1
}Hτ(ω) = i

1
2kB

Πt(υ) (12c)

1
}Hτ(υ) = −i

1
2kB

Πt(ω) (12d)

Applying Equations (12c) and (11b) to Equation (10b) immediately shows that the
entropy production component, as observed on the (reversible time) t-axis, is the Hilbert
transform of the corresponding Hamiltonian:

1
2kB

Π(ω) = − 1
}

1
π

P
∞∫
−∞

H(ω′)

ω′ −ω
dω′ (13)

Further, using Equations (8a), (10b), and (13) allows us to express the complex Hamil-
tonian Hz(ω) along the same reversible time axis:

1
}Hz(ω) =

1
}H(ω) + i

1
2kB

Π(ω) (14)

Hz(ω) = H(ω)− i
1
π

P
∞∫
−∞

H(ω′)

ω′ −ω
dω′ (15)

That is to say, the components of the Hamiltonian and entropy production quanti-
ties along the (reversible time) t-axis represent the real and imaginary components, re-
spectively, of an overall causal expression (with both components representing Noether-
conserved quantities).

An exactly similar treatment, comparing Equations (10) to Equations (16), and Equa-
tions (13)–(15) to Equations (17)–(19), applies along the (irreversible time) τ-axis (although
noting that its ‘causal’ properties are now in the negative temporal direction, as per Equa-
tion (3)), so that the signs of Equations (16) are inverse to that of Equations (10) using the
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associated (conjugate) real frequency component, υ, of the complex frequency plane (where
“P” is the principal part to be taken at the point υ′= υ):

Π(υ) = − 1
π

P
∞∫
−∞

Πt(υ′)

υ′ − υ
dυ′ (16a)

Πt(υ) = +
1
π

P
∞∫
−∞

Π(υ′)

υ′ − υ
dυ′ (16b)

It is also interesting to note that mathematically applying the Hilbert transform to
the negative temporal direction of the irreversible τ-axis inverts the conventional cause
and effect relationship that occurs in the forward time direction. That is to say, for the
irreversible τ-axis, from the perspective of the normal (forward-propagating) direction in
time, the ordering is inverted: the “effect” occurs before the “cause”. We argue that this is
indistinguishable (empirically equivalent) to what is observed for apparently spontaneous
or random phenomena. That is to say, our treatment of the irreversible τ-axis offers a
description phenomenologically consistent with what is conventionally associated with
entropy-increasing (irreversible) processes such as radioactivity, decoherence, spontaneous
emission, and other noise-like phenomena, all of which are ubiquitous in the physical realm.
The implications of this approach (that is, the relationship between what are, in effect,
advanced waves and random phenomena) continue to be the topic of future investigation.

Thus, we find the following:

− 1
}H(υ) =

1
2kB

1
π

P
∞∫
−∞

Π(υ′)

υ′ − υ
dυ′ (17)

1
2kB

Πz(υ) =
1

2kB
Π(υ)− i

1
}H(υ) (18)

Πz(υ) = Π(υ) + i
1
π

P
∞∫
−∞

Π(υ′)

υ′ − υ
dυ′ (19)

From Equation (8a), we have Equations (20) (below), and from Equations (8b) and (11),
we have Equations (21) (below):

Hz(ω) ≡ H(ω) + iHτ(ω) (20a)

Hz(υ) ≡ H(υ) + iHτ(υ) (20b)

Πz(υ) ≡ Π(υ) + iΠt(υ) (21a)

Πz(ω) ≡ Π(ω) + iΠt(ω) (21b)

From Equations (11) and (12), we have

H(ω) =
}

2kB
Πt(ω) (22a)

Hτ(ω) =
}

2kB
Π(ω) (22b)
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Hence,

H∗z (ω) ≡ H(ω)− iHτ(ω) =
}

2kB
Πt(ω)− i

}
2kB

Π(ω) (23a)

H∗z (ω) = −i
}

2kB
(Π(ω) + iΠt(ω)) =

}
i

Πz(ω)

2kB
(23b)

Thus, we can see that a fundamental identity between the complex-valued Hamiltonian
and the complex-valued entropy production is yielded by analytical continuation into the
complex frequency plane ω̂ = −(υ + iω) and, using the Cauchy–Riemann relations, the
Hamiltonian and the entropy production are related by a Wick rotation and complex
conjugation. Similarly, note that the Hamiltonian is usually associated with the reversible
(imaginary time) t-axis, whereas the entropy production is usually associated with the
irreversible (real time) τ-axis. In addition, we see that the complex entropy production
(associated with thermodynamic irreversibility) is Wick-rotated (and complex-conjugated)
with respect to the complex Hamiltonian (associated with thermodynamic reversibility).
Thus, in a slightly more compact form, we can write the following:

iH∗z =
h

4πkB
Πz (23c)

where it is the (Wick-rotated) complex conjugate of the (complexified) “entropic Hamiltonian”
of [4] that is reinterpreted here (in holographic natural units—that is, over the whole 4π
sphere) as simply the (complexified) entropy production.

This symmetrical (conjugate) relationship between the Hamiltonian and entropy pro-
duction underlines again the unity of the physical phenomena of thermodynamic reversibil-
ity and irreversibility when viewed from the perspective of complex time. Both processes
(mutually being Hilbert transforms of each other) are now seen to exhibit fundamental
(Noether) conservation properties based on equivalent variational calculus principles.
Using such methods, we also expect to obtain new insights into the acausal (random)
phenomena associated with entropy production such as radioactive decay and the apparent
indeterminism of quantum mechanical measurement.

Equation (23c) also indicates that, although the complex time plane is defined by the
(reversible) t-axis and the orthogonal (irreversible) τ-axis, these axes are not independent.
That is to say, the Hamiltonian (usually defined empirically along the reversible t-axis) and
the entropy production (usually defined empirically along the irreversible τ-axis) are essen-
tially two sides of the same coin, being Hilbert-transform-related (see Equations (14)–(17)).
What this means is that the choice of which axis to use to fully describe any physical phe-
nomenon is arbitrary, depending only on the choice of metric. Either metric (+−−− or
−+++, when considering the whole of 1 + 3 Minkowski spacetime) may be used, provided
it is consistently applied. Conventionally (and here), the reversible metric for time, the
first component in (−+++), is employed, indicating its imaginary nature, where the energy
Hamiltonian is the physical quantity (with real measurable values) that is used to quantify
the phenomenon, and the entropy production (emerging now as the conjugate physical
quantity of interest) is treated as an imaginarily valued quantity (when viewed from the
reversible t-axis). However, if the inverse metric (+−−−) is used for time, then the entropy
production becomes the ‘real-valued’ physical quantity to be measured, with the energy
Hamiltonian now imaginary. Both descriptions are equally valid, but our analysis shows
that, once a metric is adopted, the primary associated temporal axis is thereby inevitably
defined, and either Equation (14) or Equation (18) may be employed, but never both in the
same analysis.

That is, we can now simplify the relevant (cross-axial) components of the complex
Hamiltonian and entropy production in Equation (8):

Hz = −
∂Scl
∂t

+ i
∂Scl
∂τ
≡ H + i

}
2kB

Π (24a)
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Πz =
∂Sth
∂τ

+ i
∂Sth
∂t
≡ Π + i

2kB
} H (24b)

Similarly, we express the Hilbert transform relationships between the Hamiltonian
and entropy production, simplifying Equations (13) and (17) and, for convenience (being
more conventional and familiar), employing the imaginary (reversible) ω-component of
the complex frequency:

Π(ω) = −2kB
π} P

∞∫
−∞

H(ω′)

ω′ −ω
dω′ (25a)

H(ω) =
}

2πkB
P

∞∫
−∞

Π(ω′)

ω′ −ω
dω′ (25b)

Similar relations exist for the real (irreversible) ν-component of the complex frequency:

Π(ν) = −2kB
π} P

∞∫
−∞

H(ν′)

ν′ − ν
dν′ (25c)

H(ν) =
}

2πkB
P

∞∫
−∞

Π(ν′)

ν′ − ν
dν′ (25d)

Thus, our analysis interprets the concept of imaginary energy as the imaginary com-
ponent of the (complex) Hamiltonian, equivalent to (a real) entropy production; similarly,
any imaginary component of the (complex) entropy production can simply be regarded as
an energy term.

4. Application: The Alpha Particle

A system such as the alpha particle, which is unconditionally stable (it does not decay;
the alpha has a QGT treatment [8]), comes into existence at some time in the past (at its
creation) and then has a constant (non-time-varying) energy Hamiltonian Hα. It is also
independent of frequency, so its associated entropy production Πα must also be zero (as
expected for an unconditionally stable system; see the Hilbert transform of Equation (25a)).
Note that, being reversible, the Lagrangian line integral (in the z-plane) for the alpha
remains firmly parallel to the temporal t-axis associated with reversibility. In the case of a
freely moving alpha particle, its Hamiltonian (in the absence of any potential fields) is given
below by Equation (26a), where m is the alpha particle mass and p is its momentum, such
that its associated entropy production is given by Equation (26b) (using Equation (25a)):

Hα =
p2

2m
= −

(
}2

2m

)
∇2 (26a)

Πα(ω) = −2kB
π} P

∞∫
−∞

Hα

ω′ −ω
dω′ = −2kB Hα

π} P
∞∫
−∞

1
ω′ −ω

dω′ = 0 (26b)

This is because the Hilbert transform of a constant quantity is simply zero (according
to the unconditional stability of the alpha particle). The inverse Hilbert transform can
also be undertaken to yield the alpha Hamiltonian. However, the inverse Hamiltonian of
zero is also zero. In this case, however, similar to the case of the real part of the refractive
index, the Hilbert transform (Kramers–Kronig) relations only refer to the variable part of
the overall physical expression and ignore any constant aspects of the physical quantity. In
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this case, the more general expressions for the Hamiltonian and entropy production of a
process should also include constant (d.c.) components, thus

Π(ω) = Π0 −
2kB
π} P

∞∫
−∞

H(ω′)

ω′ −ω
dω′ (27a)

H(ω) = H0 +
}

2πkB
P

∞∫
−∞

Π(ω′)

ω′ −ω
dω′ (27b)

where the quantities Π0 and H0 (with the subscript ‘0′ signifying the zero-frequency or
d.c. value) are constants independent of any frequency variation. For the (unconditionally
stable) alpha particle, we must also have Π0 = 0. In this case, the inverse Hilbert transform
of Πα(ω) (the second term associated with the RHS of Equation (27b)) is zero, so the
Hamiltonian of the alpha is simply given by the constant H0 (independent of frequency):
H0 ≡ Hα = p2/2m = −(}2/2m)∇2 (see Equation (26a)).

5. Application: A Decaying Harmonic Oscillator

Here, we consider the simple case of a decaying oscillator. It has been noted that,
even though this is a system with friction, it can be described with a Hamiltonian (and
Lagrangian) with the implication that Liouville’s theorem applies. It is frequently (wrongly)
assumed that a dissipative system cannot be successfully described with a Hamiltonian
(Lagrangian) within the context of Liouville’s theorem. However, from a kinematic per-
spective, this is clearly not the case, as already elegantly recognised by Kirk McDonald [18],
whose treatment we follow here. Indeed, this is also already described from the entropic
(QGT) perspective, where dissipative systems (with a finite entropy production) have
already been successfully described from the entropic (QGT) perspective using an entropic
Hamiltonian and Lagrangian within the context of the entropic Liouville theorem [7].

This current paper, where the entropy production is found to be the imaginary counter-
part to the (real) kinematic component of the Hamiltonian (with both quantities related to
each other by the Hilbert transform), carries the implication that, rather than being subject
to two independent applications of Liouville’s theorem (each with associated Hamiltonians
and Lagrangians), the two frameworks are actually two sides of the same coin; that is,
together they obey a unified Liouville’s theorem that covers both the real and imaginary
(reversible and irreversible) aspects of a single Hamiltonian (and Lagrangian) description
of any system.

Using McDonald’s analysis (but defining the damping constant, in advance, as repre-
senting a dissipative term, so that the negative sign is explicitly indicated), we consider a
damped harmonic oscillator (mass on a spring) with the equation of motion:

..
x− α

.
x + ω2

0x = 0 (28)

where x is the spatial coordinate and the parameter α = β/m, where β is the damping
constant, m is the mass, and k is the spring constant, with ω2

0 = k/m representing the
natural frequency of the system. McDonald demonstrates that the Hamiltonian can be
represented by the following:

H = (T + V)e−αt =
m

.
x2

+ kx2

2
e−αt = Ue−αt (29)

where U = T + V is the conventional Hamiltonian (the sum of the kinetic T and potential V
energies) for a dissipationless system. Having defined a Hamiltonian for the dissipative
system, we can now use it to derive the associated entropy production and demonstrate
consistency with the key thrust of this paper.
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We first define the system to be causal, that is, to have a specific point in time when it
comes into existence. For simplicity, we define H(t) = 0 for t < 0. In this case, we calculate
the Fourier transform of H(t) to determine its real and imaginary frequency components:

Hz(ω) =
∫ ∞

−∞
H(t)eiωtdt = U

∫ ∞

0
e−αteiωtdt =

U
α− iω

(30)

It is clear that the frequency components of the Hamiltonian have real and imagi-
nary components:

Hr(ω) =
α

α2 + ω2 U (31a)

Hi(ω) =
ω

α2 + ω2 U (31b)

It is immediately apparent that the two components of Equation (31) are Hilbert
transforms of each other (as required by causality). Relating them now directly to the (real)
Hamiltonian H(ω) and (real) entropy production Π(ω), defined within the main part of
the paper (Equations (10), (13), and (14)), we now explicitly write the following:

H(ω) =
α2

α2 + ω2 U (32a)

Π(ω) =
2kB
}

ωα

α2 + ω2 U (32b)

where we have included an additional instance of the frequency α (common to both
expressions) in order to maintain correct dimensionality.

From Equation (24a), the complex Hamiltonian associated with a decaying oscillator
is thus as follows:

Hz(ω) = H(ω) + i
}

2kB
Π(ω) =

αU
α2 + ω2 (α + iω) (33)

More specifically, we can also integrate the entropy production (Equation (32b)) across
the frequency domain and calculate the average rate of change in entropy associated with
the damped oscillator. The characteristic time τ0 for the exponential decaying system is
given by τ0 = 1/α, so that the appropriate ‘cut-off’ frequency for the integral (below which
we can assume most of the entropy production is associated) is α, such that we simply
divide the integral by α (as indicated below) to determine the average entropy production.
According to the usual conventions of measurement theory, we only consider the positive
frequency components:

Π =
1
α

∫ ∞

0

2kB
}

ωα

α2 + ω2 Udω =
2kB
} U

[
1
2

ln
(

1 +
(ω

α

)2
)]∞

0
(34a)

Again, exploiting the appropriate ‘cut-off’ frequency α means that Equation (34a) can
be closely approximated:

Π ≈ 2kB
} U

[
1
2

ln
(

1 +
(ω

α

)2
)]α

0
=

kB
} U ln 2 (34b)

The total entropy S produced by the decaying oscillator over the exponential charac-
teristic time τ0 is thus as follows:

S = Πτ0 =
kB
α}U ln 2 (35)
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We can assume all the energy of the decaying oscillator is dissipated over the character-
istic time τ0 (given the usual conventions for treatments of exponentially decaying systems),
and then the associated temperature T is straightforwardly given by the following:

T =
∂U
∂S

=
α}

kB ln 2
(36)

It is interesting to note from Landauer’s principle [19] that the minimum quantity
kBTln2 of energy is associated with the erasure (or loss) of a bit of information, where a
bit is also equivalent to a system degree of freedom (see also [8]). Thus, it is clear that,
for a decaying oscillator, as its energy is dissipated, Equation (36) suggests that each of
its degrees of freedom dissipates a quantity of energy α}. Clearly, when the oscillator
is dissipationless and α = 0, then, also according to Equation (36), none of its degrees of
freedom are dissipating any energy.

6. Application: The Black Hole

The opposite system to the alpha particle (featuring an unconditionally irreversible
physical phenomenon with a constant entropy production) must also have a Hamiltonian
with zero variation with frequency. Such a physical system is represented by a black hole of
mass MBH, which has a constant entropy production associated with the Hawking radiation
(HR, see Parker and Jeynes [5] Equation (25)):

ΠHR =
c3kB

2GMBH
(37)

where G is the gravitational constant and c is the speed of light. Of course, the Hawk-
ing radiation has a frequency distribution (spectral radiance), obeying the black body
radiation law:

B(ω) =
ω2

2π2c2
}ω

e}ω/kBT − 1
(38)

which describes the energy spectrum (in effect, the Hamiltonian). Unfortunately, calculating
the Hilbert Transform of Equation (38) to obtain the associated entropy production spectrum
is not analytically easy. However, Parseval’s Theorem allows us to calculate the Hamiltonian
associated with the Hawking radiation because, being Hilbert transforms of each other, we
can use this theorem to equate the two quantities associated with the Hamiltonian and the
entropy production: ∫ ∞

−∞
|H(ω)|2dω =

}2

4k2
B

∫ ∞

−∞
|Π(ω)|2dω (39)

Assuming that the entropy production of Equation (37) is appropriately proportional
to the integrated spectrum entropy production, where Ω represents an equivalent spectral
width, we can write the following:

Π2
HRΩ ≡

∫ ∞

−∞
|Π(ω)|2(ω)dω (40)

Then, it is clear the Hamiltonian associated with the integrated Hawking radiation
can be given by the following:

H2
HRΩ ≡

∫ ∞

−∞
|H(ω)|2dω =

}2

4k2
B

Π2
HRΩ =

(
}ΠHR

2kB

)2
Ω (41)

In this case, the integrated energy of the Hawking radiation radiated away by the BH
is given by the following:

HHR =
}ΠHR

2kB
=

}c3

4GMBH
(42)
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Substituting Equation (37) into Equation (27b) yields the following:

H(ω) = H0 +
}

2πkB
P

∞∫
−∞

Π
ω′ −ω

dω′ = H0 +
}Π0

2πkB
P

∞∫
−∞

1
ω′ −ω

dω′ = H0 (43)

The Hamiltonian for a stationary black hole is conventionally given by its mass MBH
within the Schwarzschild radius; yet, as is well known, any Hamiltonian can also be offset
by a constant quantity (with there being no absolute value for the energy, see Caticha
2021 [20]), so that the value of the associated Hamiltonian as determined by Equation (27b)
can be additionally offset by the energy lost to the Hawking radiation H0 = MBHc2 − HHR as
required. Note that such an offset (by unity) is also seen in the Kramers–Kronig expression
for the real part of the refractive index to obtain the correct Hilbert transform relationships
(see, as an example, the unity offset in Equation (1.1) of Toll [16]). That is to say, we can
now rewrite Equation (43) as follows:

H = MBHc2 − }c3

4GMBH
+

}Π0

2πkB
P

∞∫
−∞

1
ω′ −ω

dω′ = MBHc2 − }c3

4GMBH
(44)

Of course, the energy lost to the BH by the Hawking radiation is insignificant compared
with the energy due to the BH mass, so it is generally safe to neglect the HHR term on the
RHS of Equation (44).

Intrinsic to our complex time analysis is the possible existence of two distinct values
each for Hz and Πz, which are normally degenerate, but which may become apparent at
the extreme physical conditions of a black hole. Thus, Equations (22) suggest the following
identities for the ‘trans-axial’ quantities, which may become apparent at the black hole
event horizon where the metric is assumed to invert:

Πt =
2kB
} H (45a)

Hτ =
}

2kB
Π (45b)

Substituting the black hole Hamiltonian Equation (44) into Equation (45a) provides us
with an entropy production Πt associated with the black hole that is considerably larger
than that associated with the Hawking radiation:

Πt =
2kB
} MBHc2 (46)

where we have also chosen to neglect in Equation (46) the HHR Hawking radiation term in
Equation (44). Actually, substituting the Hawking radiation Equation (37) into Equation
(45b) now directly offers us the associated (integrated) energy Hamiltonian of the (very
small) Hawking radiation:

Hτ =
}

2kB

c3kB
2GMBH

=
}c3

4GMBH
(≡ HHR) (47)

Indeed (as a cross-axial Hamiltonian), this is why in Equation (44) it appears to have a
negative sign, because it is energy that is being lost to the system over time. Associated with
the extreme physics of black holes (especially the supermassive BHs at galactic centres) are
the so-called Planck quantities, and it is thus no surprise that we see both the Planck energy
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EP and what we could call the “Planck entropy production” ΠP intimately connecting the
conventional and trans-axial Hamiltonian and entropy production quantities, respectively:

H.Hτ =
}c5

4G
=

E2
P

4
(48)

Π.Πt =
c3kB

2GMBH
.
2kB
} MBHc2 =

c5

}G
k2

B =

(
kB
tP

)2
≡ Π2

P (49)

where tP is the Planck time. The Planck entropy production quantity ΠP is the same as
the entropy production term given previously (Parker and Jeynes [5] Equation (31); the
factor 2π comes from an ambiguity in the definition of wavenumber) in the context of the
entropy production of spiral galaxies. Thus, we find that, associated with a black hole, there
exists another very large entropy production term ΠP (Equation (49)) that is 46 orders of
magnitude larger than the term associated with the Hawking radiation ΠHR (Equation (37));
using the example of the Milky Way featuring a supermassive BH of mass 4.3 × 106 solar
masses), and which can be understood as being related to the highly energetic processes
seen occurring in the accretion disk surrounding a black hole.

7. Discussion

Previously, entropy production has been simply identified with the Hamiltonian (in
natural units; see Equation (15) in [4]). In this complexified analysis, we now identify
the entropy production with the (Wick-rotated) complex conjugate of the Hamiltonian
(Equation (23c)). The purpose of the present analysis is to make full use of the power of the
Hilbert transform, which requires a fully complexified formalism.

We note that, in order for the entropy production to be simply the Wick-rotated com-
plex conjugate of the Hamiltonian (in natural units; Equation (23c)), the Planck constant
must be reduced by 4π (rather than the conventional 2π). On the one hand, reducing by 4π
is appropriately suggestive of the holographic basis of the QGT analysis (and would also
avoid the apparent ‘paradox’ of half-integer spins in a quantum theory); however, rejigging
quantum theory to use a 4π-reduced Planck constant in order to achieve consistent natural
units between the kinematic and entropic domains would cause confusion in the conven-
tional (historical and widely accepted) formalisms of kinematic quantum theory. Rather,
the factor of two must thus be simply understood and accepted as a historical fact from the
development of quantum theory, but which does not undermine the assertion of the natural
relationship between the entropy production and the conventional Hamiltonian. The alpha
particle and the black hole each represent unitary physical systems (both requiring only
four parameters for their full description), yet the former is unconditionally reversible,
while the latter is unconditionally irreversible. It is interesting to note that such comple-
mentary physical phenomena both lend themselves to the Hilbert transform analysis of
the expressions for their Hamiltonian and entropy production (provided, of course, these
are complexified).

The well-known Kramers–Kronig dispersion relations are directly derived from the
Hilbert transform pairs, but based on additional symmetry constraints (the real function
being even for real frequencies, whereas the imaginary function is odd; the so-called
crossing conditions in quantum mechanical scattering). With a minimum of assumptions
about the physical process under investigation, the Kramers–Kronig relations provide
a complete description between two conjugate phenomena using only the empirically
accessible positive frequencies, and their application to the system Hamiltonian and entropy
production is thus the subject of future work.

The metric of complex time also has interesting implications in the context of black
hole thermodynamics. In particular, it is clear that ‘conventional’ reversible (imaginary)
time has a metric of a negative sign (−+++), whereas the irreversible (real) time is associated
with a metric of a positive sign (+−−−). Normally, the sign of the metric is indicative of
whether the dimension is timelike (negative) or spacelike (positive) in character. However,
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here, we see that the sign of the metric is also indicative of whether a physical phenomenon
is thermodynamically reversible or irreversible. It is well known that the metric changes
its sign either side of the vicinity of the event horizon of a black hole. Misner et al. [21], in
interpreting the sign change, pose the following question: ‘What does it mean for r [radius]
to “change in character from a spacelike coordinate to a timelike one”?’ and offer the most
obvious answer as “the reversal there of the roles of t [time] and r as timelike and spacelike
coordinates.” However, we now see an alternative interpretation as the metric changes
sign; that is, the spacetime geometry changes from an intrinsically reversible geometry
to a thermodynamically irreversible geometry. Interestingly, this is still consistent with
the conventional interpretation of the unforgiving ‘point of no return’ beyond the event
horizon. However, now we may couch it in specifically thermodynamic terms, highlighting
the intrinsic irreversibility of the geometry beyond the event horizon (with the inevitable
increase in entropy according to the Second Law). This has the interesting corollary
that the role reversal of the spacelike and timelike coordinates may no longer be strictly
necessary. However, it is clear that inverting the metric across the event horizon can
now be simply interpreted as the transformation of what were reversible processes into
irreversible processes (and vice versa), with the additional interesting implication that what
were irreversible phenomena this side of the event horizon become reversible ones beyond
it. The implications of such a thermodynamic inversion at the event horizon lie beyond the
scope of this work.

Phenomenologically, the conventional Hamiltonian of a system (representing the
energy) is assumed to be positive-definite (like the inertial mass) because it is considered
from the perspective of the real (reversible) time axis. Similarly, the entropy production (the
rate of increase in entropy) considered from the perspective of the imaginary (irreversible)
time axis is also positive-definite (as required by the Second Law). Conversely, considered
from the reversible time axis, the entropy production is imaginary and, considered from
the irreversible time axis, the energy is imaginary. Switching between the two axes defining
the complex temporal plane is effected by a Wick rotation, as represented by the factor i
in Equation (23c). To obtain the correct relationship between the system’s (complexified)
Hamiltonian and its (complexified) entropy production (two equivalent descriptions, in
natural units), a complex conjugation is also needed. In effect, Equation (23c) expresses an
intrinsic redundancy; that is, either the (complexified) Hamiltonian or the (complexified)
entropy production can be used to fully describe the evolution of the system, and each is
sufficient by itself to completely define its evolution in time.

Note that, if purely real definitions of the Hamiltonian and entropy production are
used, then both are required to fully describe a system. However, by allowing them to be
complex-valued, all of the information of the ‘real’ entropy production becomes embedded
into the imaginary component of the Hamiltonian; vice versa, all of the information of the
‘real’ Hamiltonian is to be found in the imaginary component of the entropy production.
Together, this now allows us to interpret ‘imaginary energy’ as simply the entropy pro-
duction associated with a process, and conversely, the ‘imaginary entropy production’ of
a process is simply its energy content. The Hamiltonian (energy) of a system is usually
defined as the total energy of an essentially lossless system (that is, all energy is explicitly
accounted for and conserved according to the First Law), such that the energy is calculated
to be purely real in nature. For such lossless (and thus reversible) systems, the entropy
stays constant and the entropy production is zero. Allowing energy to be lost from a system
due to dissipative processes requires a complex Hamiltonian with an associated finite
entropy production.

We are so familiar with the (generally implicit) assumption of reversibility as the
underlying description of a process that we automatically employ the ‘reversible’ (and,
incidentally, imaginary, although this is generally neither explicitly acknowledged nor
even recognised) temporal axis to describe physical processes (together with real energies);
perhaps this is why it has taken so long to identify the “imaginary” counterpart of energy,
the entropy production (also conserved). However, this is just convention. Had the
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physicists of the 19th century been able to explicitly quantify the dissipations of all parts
of a process (rather than merely reasoning qualitatively that dissipation was simply an
undesired result of “not fulfilling the criterion of a ‘perfect thermodynamic engine’” [22]), they
might have identified the law of conservation of entropy production as the First Law of
the Thermodynamics first, and then puzzled about the physical meaning of an imaginary
aspect of the entropy production. We underline here the importance of the Minkowski
space metric (−+++) and its implicit assumption of thermodynamic reversibility. The
alternate metric (+−−−) has the implicit assumption of thermodynamic irreversibility.
Note that Roger Penrose [23] (2004, §17.8) also points out that the choice of metric depends
on one’s purpose.

It is clear that the physical time associated with any physical phenomenon can only
be uni-valued as it evolves over time (monotonically increasing) in its trajectory across
the complex temporal plane. That is to say, even though, here, we invoke the concept of
a complex temporal plane, the real and imaginary components are not independent of
each other, but must also obey the familiar Hilbert transform relations described here in
detail. Any real time τ can only ever be identified with a single imaginary time t. Complex
time (real or imaginary depending on the reversibility/irreversibility of the process) must
increase inexorably according to the Second Law. However, in addition to describing time
as complex, considerations of chirality cannot be neglected because trajectories (not in
a straight line) across the temporal plane must locally tend to have either a clockwise
or anticlockwise character (however weak), according to their local gradient or indeed
inflection. A natural chirality to physical geometry has already been noticed from a QGT
perspective, as Parker and Walker already showed in 2010 [24] that natural DNA must be
right-handed (see also the more rigorous treatment of Parker and Jeynes [6] Appendix A)
according to the Second Law. It is becoming clear that the complex conjugate operation can
be thought to build chirality into the formalism (see, for example, the “Berry phase” [25]
analysis by Laha et al. [26] of chiral waveguide responses). How such chirality in the
complex time plane physically manifests itself (and allows itself to be observed) must
continue to be a topic of further investigation.

Finally, in applying our approach to the alpha particle (associated with physics on
the microscopic scale, see also [8]) and to a black hole (a macroscopic phenomenon, see
also [5]) shows how QGT can successfully handle physical phenomena at all scales. In
previous work [6], we have already indicated how QGT’s underlying basis in hyperbolic
spacetime implicitly allows phenomena over all scales to be appropriately treated, although
the hyperbolic (essentially, logarithmic) nature of entropic processes has not needed to be
explicitly invoked in this paper. However, we see here that the physics of reversible and
irreversible processes can now be elegantly integrated via the use of complex time into the
microscopic scale, yet without a noticeable micro/macro boundary, such that macroscopic
scale processes are also seamlessly handled. Together, this continues to indicate the unity of
description for physical phenomena that geometrical thermodynamics (QGT) has to offer,
particularly with regard to a theory of scale relativity [27].

[Note added in proof:] It is worth mentioning that Michael Berry [28] underlines both
the value of the Wick rotation for “transforming” a diffusion problem into a problem of
“quantum mechanics” (see our Equations (1) passim) and also the qualitatively different
sorts of solutions that emerge in the reversible/irreversible cases. Indeed he points out the
futility in expecting to be able to intuitively anticipate the resulting physical phenomena
from such a Wick rotation: “ . . . the intuition is wrong, dead wrong”. In the irreversible
case he describes (relating to the sex lives of moths) how the analytical solutions involve
completely different sorts of singularities from those obtained in the reversible cases (as in
optics examples, although these also may be deeply intricate due to additional issues of
irreversibility—see the context of Figure 2 of reference [25]).
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8. Conclusions

In a fully complexified treatment, we have shown essentially that the (complex)
Hamiltonian is the Wick-rotated complex conjugate of the (complex) entropy production
(in natural units). We have considered the application of this treatment to three canonical
cases: the alpha particle [8] and the black hole [5] (both unitary entities in QGT), as well
as the real (dissipative) harmonic oscillator [18]. Landauer’s principle is recovered by an
explicit treatment of the latter case, which indicates a minimal amount of irreversibility
to be associated with any dissipative system whose Hamiltonian and entropy production
(by virtue of causality) are intrinsically related to each other via the Hilbert transform.
In QGT, the alpha and the black hole (BH) have closely related treatments, because, as
a consequence of the entropic Liouville Theorem [7], the Bekenstein–Hawking equation
applies equally to both. We demonstrate that the alpha (trivially reversible with zero
entropy production) is treated coherently. The BH is the opposite case (unconditionally
irreversible) and we demonstrate that the previous entropy production results are also
obtained using these methods.

Just as energy and entropy are closely related, so the Hamiltonian and the entropy
production are also closely related. However, whereas the conventional thermodynamics
considers energy and entropy to be the most-closely related (and thereby quasi-isomorphic)
quantities, simply related to each other via the temperature acting as a coupling coefficient,
in this work, we find that it is the entropy production (rate of increase in entropy) that is
the actual isomorph to energy.

Using analytical continuation into a fully complexified representation (in which time
also is complex), we show that the natural (Hilbert transform) expressions of the various
quantities display these close relations very clearly. This has allowed a detailed calculation
of the entropy production of black holes (consistent with a previous such calculation [5],
but apparently independent of it), as a simple example of a system with a non-zero en-
tropy production.

Fully complexifying the formalism with appropriate consideration of causal properties
immediately allows the application of the Hilbert transform, which in turn enables very
simple relationships to be displayed. In particular, irreversible systems are treated in
exactly the same way as reversible ones; this allows irreversible systems to be treated as
such (invoking their own conservation law based on the application of Noether’s theorem
to quantities related to the entropy production) rather than having to use perturbation
theory on the formalisms for reversible systems. Moreover, of course, it is well known
that application of perturbation theory, on its own, can never recapture the full richness
of mathematical behaviours associated with analytic functions, which feature local and
global (essentially, non-local) characteristics (holomorphism) and allow the process of
analytic continuation.

Understanding the intrinsic role of thermodynamic irreversibility along with its conser-
vation law in the physics of the universe, over and above the conventional understandings
relating to energy and its conservation, will help provide critical insights into the resolution
of at least some of the paradoxes currently recognized within contemporary physics.
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