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Abstract: The paradigm-shifting developments of cryptography and information theory have focused
on the privacy of data-sharing systems, such as epidemiological studies, where agencies are collecting
far more personal data than they need, causing intrusions on patients’ privacy. To study the capability
of the data collection while protecting privacy from an information theory perspective, we formulate
a new distributed multiparty computation problem called privacy-preserving epidemiological data
collection. In our setting, a data collector requires a linear combination of K users’ data through a
storage system consisting of N servers. Privacy needs to be protected when the users, servers, and
data collector do not trust each other. For the users, any data are required to be protected from up
to E colluding servers; for the servers, any more information than the desired linear combination
cannot be leaked to the data collector; and for the data collector, any single server can not know
anything about the coefficients of the linear combination. Our goal is to find the optimal collection
rate, which is defined as the ratio of the size of the user’s message to the total size of downloads
from N servers to the data collector. For achievability, we propose an asymptotic capacity-achieving
scheme when E < N − 1, by applying the cross-subspace alignment method to our construction; for
the converse, we proved an upper bound of the asymptotic rate for all achievable schemes when
E < N− 1. Additionally, we show that a positive asymptotic capacity is not possible when E ≥ N− 1.
The results of the achievability and converse meet when the number of users goes to infinity, yielding
the asymptotic capacity. Our work broadens current researches on data privacy in information
theory and gives the best achievable asymptotic performance that any epidemiological data collector
can obtain.

Keywords: secure multiparty computation; data privacy; epidemiological data collection; asymptotic
capacity

1. Introduction

During any prevention and control period in an epidemic, strengthening the protec-
tion of personal information is conducive not only to safeguarding personal interests, but
also better controlling the development of the epidemic. Differently from the collection
of other homogeneous data, such as the large-scale labeled sample obtained in machine
learning, the characteristics of medical or epidemiological data collection are reflected in the
following aspects: (1) In order to establish a surveillance system for a dynamical group of
people to collect syndromic data, the sample size is always changing [1,2]; (2) Data sharing
and early response are critical in containing the spread of highly infectious diseases, such
as COVID-19. This requires the data stored in the database to be updated to track real-time
changes in symptoms, severity, or other disease-related patterns [3,4]; (3) Some of the
epidemiological data, such as the locations of infected individuals, the blood oxygen satura-
tion levels of patients with respiratory diseases after medication, or the physical condition
monitoring data after viral infection, are related to the user’s privacy, so a “privacy-first”
approach which uses dynamic identifiers and stores their data in a cryptographically secure
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manner is needed [5]. Hence, for these factors of epidemiological data collection, the key to
ensuring the efficiency of information sharing and privacy protection is to maximize the
balance between data privacy and collection rate in epidemic analysis.

While the data collection from public health authorities and the open-source access
to researchers can provide convenience to epidemiologists, these strategies may also sig-
nificantly intrude upon citizens’ privacy. Some of these individuals were affected by
unwanted privacy invasion, and the ubiquitous data surveillance devices certainly exac-
erbate those concerns. Therefore, the responsible use of shared data and algorithms, the
compliance with data protection regulations, and the appropriate respect for privacy and
confidentiality have become important topics in epidemiological data collection [6,7]. In
2014, the Global System for Mobile Communications (GSM) Association outlined some
privacy standards for data-processing agencies regarding mobile phone data collection
in response to the Ebola virus [8]. Some other methods that effectively guarantee user
privacy include: encryption mechanisms [9], the privacy-aware energy-efficient framework
(P-AEEF) protocol [10], the differential privacy-based classification algorithm [11], and
the spatio-temporal trajectory method [12]. Moreover, unauthorized agencies, malicious
hackers, and unidentified attacks, such as traffic analysis attacks, fake-node injection, and
selective forwarding, may also eavesdrop on users’ data under the current ambiguous and
non-uniform collecting algorithms [13]. To avoid the leakage of information from malicious
collecting servers or untrusted access, the privacy of data needs to be ensured during data
storage and processing.

In line with ensuring the security and privacy of user data, epidemiological data col-
lection also requires the protection of data collectors. In accessing public databases, various
epidemiological investigation agencies have different requirements for data privacy. For
example, many epidemiological surveys are conducted by governments, universities, re-
search institutes, pharmaceutical companies, and private institutions. Access to public data
may reveal these agencies’ data preferences, resulting in information leakage. Therefore, the
private-preserving epidemiological data collection includes the user’s privacy regarding
the storage and data collector, along with the data collector’s privacy in data storage.

In epidemiological modeling, many recent studies have shown that various models
have a good fitting effect on the nature of epidemics, such as the Bayesian model [14] and
deep learning models, including multi-head attention, long short-term memory (LSTM),
and the convolutional neural network (CNN) [15]. Additionally, when it comes to privacy
and security concerns, some work conducted in computer science, cryptography, and infor-
mation theory provides handy tools to model and solve such problems. The privacy leakage
was modeled in differential privacy [16], k-anonymity [17], t-closeness [18], interval pri-
vacy [19], etc. With those concerns and analysis, several studies in cryptography and infor-
mation theory have focused on the issue of sharing messages to untrusted agencies, such as
distributed linear separable computation [20–22], secured matrix multiplication [23–25], se-
cure aggregation [26], participatory sensing [27], and private information retrieval [28–31].
Specifically, a cryptographical epidemiological model with data security and privacy called
RIPPLE was analyzed [32]. This model enables the execution of epidemiological models
based on the most-recent real contact graph while keeping all the users’ information pri-
vate. As an extension to the model, the data collector uses the sum private information
retrieval (PIR) schemes to obtain the statistical data, which is described as the sum of a set
of elements from a database.

Inspired by the cryptographical epidemiological model in [32], we propose an
information-theoretic privacy-preserving epidemiological-data-collection problem , de-
scribed as follows. We have a large and changing number of users sharing their real-time
epidemiological data to N servers. The server will update its database once new data are
uploaded. The storage of those users’ data is also open to all authorized data collectors.
For any data collector who desires only some statistical feature, rather than all the data, it
directly retrieves the statistic from N servers. We designed the protocol of the interaction
between the N servers and the data collector so that when all N servers honestly answer
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the queries from the data collector, then the desired statistical data can be correctly decoded
at the data collector. To simplify the problem, we assume the desired statistics to be the
linear combinations of users’ personal data. The privacy of this model is reflected in the
following three aspects: (1) The privacy of users’ data against the data collector: after
downloading all answers from the servers, the data collector can decode the desired data
without learning anything about the irrelevant details of the users’ personal information.
(2) The privacy of users’ data against servers: for any user successfully sharing the data
to all N servers, the personal information of the user is still confidential, even if of any
up to E(E < N) servers collude. (3) The privacy of the data collector’s preference against
servers: the protocol between data collector and servers should promise that any single
server cannot know any preference of the desired statistical data from the query generated
by the data collector. In our paper, we take the above privacy concerns into consideration
and analyze the data collector’s ability of privately receiving the shared data, with respect
to the number of symbols it needs to download.

The remainder of the paper is organized as follows: In Section 2, we introduce an
information-theoretic description of the privacy-preserving epidemiological-data-collection
problem, and we define the communication rate and capacity of our problem. In Section 3,
we give a closed-form expression for the asymptotic capacity, which is the main result
of the paper. In Section 4, we derive a converse proof for E < N − 1, which provides an
upper bound on the asymptotic capacity when the number of users tends to infinity. An
asymptotically capacity-achieving scheme using the technique of cross-subspace alignment
when E < N − 1 is given in Section 5, and in Section 6, we prove that the problem is not
asymptotically achievable when E = N − 1. Finally, in Section 7, we summarize our results
and suggest some open problems in this field.

2. System Model

We formulate the privacy-preserving epidemiological-data-collection problem over
a typical distributed, secure computation system, in which there are K users, N servers,
and a data collector; and the number of users (K ∈ N+) is a large-enough integer. Here
and throughout the paper, we assume that all of the random symbols in our system
are generated by a large-enough finite field Fq, and we standardize the entropy of any
uniformly distributed symbol to be 1 by taking the term log in the entropy, conditional
entropy, and mutual information to be base q. The model is depicted in Figure 1.

Figure 1. The secure, privacy-preserving epidemiological-data-collection problem.
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Let W1, · · · , WK be K independent messages, where Wk, k ∈ [1 : K] denotes the epi-
demiological data of user k and Wk ∈ GFL×1

q , L ∈ N+ is an L× 1 vector with L i.i.d. uniform
symbols from the finite field GFq—i.e.,

H(W[1:K]) = ∑K
k=1 H(Wk),

H(Wk) = L, ∀k ∈ [1 : K].
(1)

The data-collection problem contains two phases: the upload phase and the computa-
tion phase. The upload phase starts when the user is required to update its data to each of
the N servers. Before uploading, user k knows nothing about the contents of other users’
epidemiological data. While uploading their personal data, the users would like to keep
his/her message private against E (E ≤ N, E ∈ N) colluding servers; i.e., any of up to E
servers will learn nothing about the messages uploaded by K users. For any n ∈ [1 : N], let
Dk,n ∈ D denote the uploaded message from the k-th user to the n-th server. We have the
following equality called the privacy constraint of the users against E servers:

I(Dk,E ; Wk) = 0, ∀k ∈ [1 : K], ∀E ⊆ [1 : N], |E | ≤ E. (2)

For any k ∈ [1 : K], let Zk ∈ Zk denote a random variable privately generated by user
k, and its realization is not known to any of the N servers. User k utilizes the user-side
randomness Zk to encipher the message Wk; i.e., for any user k, there exist N functions
{dk,n}n∈[1:N] such that dk,n(Wk, Zk) = Dk,n, where dk,n : GFL

q × Zk → D is the encoding
function from the user k to the server n. We have

H(Dk,[1:N]|Wk, Zk) = 0, ∀k ∈ [1 : K]. (3)

When the servers receive the updated data from users, the old contents of the server
will be replaced with the new contents, and all servers will be ready for the computation
phase and allow the access of data updated by data collectors.

The computation phase starts when a data collector would like to compute statistical
data of the current epidemiological database. To simplify our problem, we only consider
statistical data to be a linear combination of all messages W[K]. Let Wf and f be the statistical
data and the corresponding coefficient vector. Then, we have

Wf = fT

W1
...

WK

 =
K

∑
k=1

fkWk, (4)

where Wf ∈ GFL
q has the same number of symbols with the message length, and f ∈ GFK

q
contains K elements in the finite field GFq. In our setting, the coefficient vector f only
contains the preference of the data collector among K user’s epidemiological data records.
Therefore, the value of f does not depend on the users’ messages W[1:K] or the storage of N
servers: {Dk,n}k∈[1:K],n∈[1:N].

Let Z′ ∈ Z denote a random variable privately generated by the data collector, and its
realization is not available to any of the N servers and K users. In the computation phase,
the data collector with its preference vector f utilizes the randomness Z′ to generate its
queries to N servers. Assume that the query from the data collector to the n-th server is
denoted as Qf

n ∈ Qn. Then, the data collector uses the strategy g to map the randomness
and the coefficient to the queries, such that

g(f, Z′) =
{

Qf
1 Qf

2 · · ·Qf
N
}T ,
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where g : GFK
q × Z → ∏N

n=1 Qn is the encoding function from the data collector to the
servers. Hence, we have

H(Qf
[1:N]|Z

′, f) = 0. (5)

Since the randomness Z′ and queries Qf
[1:N] are generated privately, and the user-side

data and randomness W[1:K], Z[1:K] are already known before the computation phase starts,
the data collector has no knowledge of W[1:K], Z[1:K] when the queries Qf

[1:N] are generated.
Thus, we have

I(W[1:K], Z[1:K]; Qf
[1:N], Z′) = 0. (6)

Upon receiving the query Qf
n, the n-th server will send an answer Af

n back to the
data collector according to the storage of the n-th server. We assume that there is no
drop-out in the model—i.e., each server n will successfully return its answer to the data
collector. Let Af

n ∈ An be the answer from the n-th server to the data collector, and then
for any n ∈ [1 : N], there exists a deterministic function af

n : Qn ×DK → An, such that
Af

n = af
n(Qf

n,
[
D1,n D2,n, · · · , DK,n

]T
), ∀n ∈ [1 : N]. Hence,

H(Af
n|Qf

n, D[1:K],n) = 0, ∀n ∈ [1 : N]. (7)

We would like to design a scheme φ = {dk,n, g, af
n}k∈[1:K],n∈[1:N],f∈GFK

q
in the upload

and computation phases so that the following three constraints can be achieved. Firstly,
the data collector is able to reconstruct the desired message from all the information it has
received, which we call the decodability constraint. Let ψ be the reconstruction function of
the data collector, where ψ : ∏N

n=1 An ×∏N
n=1 Qn × GFK

q ×Z → GFL
q . We have

Ŵf = ψ(Af
[1:N], Qf

[1:N], f, Z′). (8)

Let Pe be the probability of decoding error achieved by a given scheme φ and decoding
function ψ. We obtain

Pe(φ, ψ) = max
f

Pr{Ŵf 6= Wf}.

According to Fano’s inequality, the decodability constraint is equivalent to

H(Wf|Af
[1:N], Qf

[1:N], Z′) =o(L), ∀f ∈ GFN
q , (9)

when Pe → 0, where o(L) denotes any possible function h : N+ → R of L satisfying
lim

L→∞

h(L)
L = 0.

The second constraint guarantees the data privacy of K users against the data collector.
The privacy leakage to the data collector is unavoidable, as the data collector must learn
some statistical data of the users. This constraint requires that the data collector can learn
nothing about the information of the K users other than the desired data Wf. We have

I(W[1:K]; Af
[1:N], Qf

[1:N], Z′|Wf) =0. (10)

To protect the privacy of data collector, the third constraint requires the coefficient
vector f of the data collector to be indistinguishable from the perspective of each server;
i.e., for any different (linearly independent) coefficient vectors f and f′ from the same
scheme φ, the queries to every single server are identically distributed, so that any server
cannot deduce f merely from the query and storage without communicating to other
servers. Hence, we have
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(Af
n, Qf

n, W[1:K]) ∼ (Af′
n , Qf′

n , W[1:K]), ∀f, f′ linear independent (11)

where A ∼ B means that the random variables A and B have the same distribution. This
constraint is called the privacy constraint of the data collector against non-colluding servers.

The reason why in the upload phase, we consider up to E servers may collude, and in
the computation phase, we consider non-colluding servers to be defined by the following:
the upload phase and the computation phase do not always occur at the same time. For
example, the users are required to upload their epidemiological data on a regular basis,
and the data collector may start his/her queries of certain statistics at relatively random
times. Due to the dynamic topology of the servers, the numbers of colluding servers may
be different during the uploading phase and the computation phase. Our work assumes
that the servers are non-colluding in the computation phase, since the servers may be more
interested in the epidemiological data than the data collector’s interest. If E = 1, then
we have a model where the servers are non-colluding in both the upload phase and the
computation phase.

For any scheme φ = {dk,n, g, af
n}k∈[1:K],n∈[1:N],f∈GFK

q
that satisfies the above decodability

constraint, i.e., (9), and the privacy constraints, i.e., the privacy constraint of the users
against E servers (2), the privacy constraint of the users against the data collector (10),
and the privacy constraint of the data collector against the non-colluding servers (11), its
communication rate is characterized by the number of symbols the data collector decodes
per download symbol—i.e.,

R :=
L

∑N
n=1 H(Af

n)
. (12)

It is worth noticing that R is not a function of f due to (11).
A rate R is said to be (ε-error) achievable if there exists a sequence of schemes indexed

by L with their communication rate less than or equal to R where the probability of error Pe
goes to zero as L → ∞. The ε-error capacity of this random secure aggregation problem
is defined as the supremum of all ε-error achievable rates, i.e., C := sup R, where the
supremum is over all possible ε-error achievable schemes.

3. Main Result

For the information-theoretical framework of our privacy-preserving epidemiological-
data-collection problem presented in Section 2, our main result is the characterization of
the asymptotic capacity when K → ∞ for any N ∈ N+ and E ∈ N.

To begin with, we show that the problem is infeasible when N = 1 or N = E, since
in these cases, some constraints of our setting contradict each other, and no scheme can
satisfy all the constraints. Firstly, when there is only one server, the privacy of users against
the data collector and the privacy of data collector against servers will conflict with each
other. The reason is as follows. First, according to (11), the answer A will be given that for
two different f, f′, the distribution of A is the same. Second, the decodability (9) guarantees
that Wf can be derived from A. Then, Wf′ can be derived from A, which contradicts the
privacy of users against the data collector.

Moreover, when E = N, the decodability constraint and the privacy of users against
the servers will conflict with each other. The reason is as follows. First, the answers Af

[1:N]

from N servers are given by the queries Qf
[1:N] and the storage D[1:K],[1:N] according to (7),

so there is a Markov chain W[1:K] → (Qf
[1:N], D[1:K],[1:N]) → Af

[1:N]. Second, when E = N,

Qf
[1:N] and D[1:K],n are independent from W[1:K] according to (6) and (2), which contradicts

the decodability constraint as Af
[1:N] is independent from the database W[1:K]. Therefore, no

scheme can simultaneously satisfy all the constraints in a single-server or E = N scenario,
and there does not exist a positive capacity.
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The following theorem gives the asymptotic capacity of private-preserving epidemio-
logical data collection for an infinitely large K, where we have N ≥ 2, E < N servers.

Theorem 1. Consider E as a non-negative number, and there are N ≥ 2 servers. When E < N,
and the number of users K → ∞, the asymptotic capacity of the secure privacy-preserving
epidemiological-data-collection problem is

lim
K→∞,L→∞

C =

{
N−E−1

N , if E < N − 1
0, otherwise

. (13)

When E < N − 1, the converse proof of Theorem 1 will be given in Section 4, and
the achievability proof will be given in Section 5 for any finite K ∈ N+. When K → ∞,
our scheme in Section 5 remains achievable at the same rate, and the performance of the
achievability and converse will meet. When E = N − 1, the proof of the zero asymptotic
capacity is given in Section 6.

Remark 1. From Theorem 1, we can see a threshold in the asymptotic capacity on the number of
the maximized possible colluding servers E. When E ≥ N − 1, there is no scheme with a positive
asymptotic capacity; when E < N − 1, the asymptotic capacity is a decreasing function of E. When
N approaches infinity while E is a constant, the asymptotic capacity approaches one.

Remark 2. When the number of users K is a finite integer, the achievability and converse results do
not always meet. From our converse proof in Section 4, the upper bound we give for finite K depends
on the value of K. However, the performance (i.e., achievable rate) of our scheme in Section 5 is
irrelevant to K, even though the scheme we propose is different for the finite K ∈ N+. How to close
the gap between the upper and lower bounds when K is finite is still an open problem.

4. Proof of Theorem 1: Converse When E < N − 1

We give the converse proof of Theorem 1 when E < N− 1 in this section. The converse
allows any feasible scheme φ, and we give an upper bound over the rates of all possible
schemes. We start with the following lemma, which states an iterative relationship among
the number of linear combinations of the users’ messages.

Lemma 1. Consider K linear independent vectors f1, f2, · · · , fK ∈ GFK
q . Let E be a set and

E ⊆ [1 : N], |E | = E. We have

H(Afk
[1:N]/E |W

f1 , · · · , Wfk , D[1:K],E , Qfk
[1:N]

, Z′)

≥ L
N − E

+
1

N − E
H(Afk+1

[1:N]/E |W
f1 , · · · , Wfk+1 , D[1:K],E , Qfk+1

[1:N]
, Z′)− o(L). (14)

Proof. According to our problem setting, we have

(N − E)H(Afk
[1:N]/E |W

f1 , · · · , Wfk , D[1:K],E , Qfk
[1:N]

, Z′)

≥ ∑
n∈[1:N]/E

H(Afk
n |Wf1 , · · · , Wfk , D[1:K],E , Qfk

[1:N]
, Z′) (15)

= ∑
n∈[1:N]/E

H(Afk+1
n |Wf1 , · · · , Wfk , D[1:K],E , Qfk+1

[1:N]
, Z′) (16)

≥H(Af′
[1:N]/E |W

f, D[1:K],E , Qf′
[1:N], Z′)

=H(Af′
[1:N]/E |W

f, D[1:K],E , Qf′
[1:N], Z′) + H(Wf′ |Af′

[1:N]/E , Wf, D[1:K],E , Qf′
[1:N], Z′)− o(L) (17)

=H(Wf′ |Wf, D[1:K],E , Qf′
[1:N]) + H(Af′

[1:N]/E |W
f′ , Wf, D[1:K],E , Qf′

[1:N], Z′)− o(L)

=L + H(Af′
[1:N]/E |W

f′ , Wf, D[1:K],E , Qf′
[1:N], Z′)− o(L), (18)
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where (15) holds because of the non-negativity of the following conditional entropy; i.e.,

H(Afk
[1:N]/(E∪{k})|A

fk
n , Wf1 , · · · , Wfk , D[1:K],E , Qfk

[1:N]
, Z′) ≥ 0, ∀n ∈ [1 : N]/E ,

and (16) holds because of (11). The equality in (17) follows due to the fact that

H(Wf′ |Af′
[1:N]/E , Wf, D[1:K],E , Qf′

[1:N], Z′) = H(Wf′ |Af′
[1:N]/E , Wf, D[1:K],E , Af′

E , Qf′
[1:N], Z′) = o(L),

where the first equality follows from (7), and the second equality follows from (9). Finally,
(18) holds because Wf′ is independent from the queries and randomness, the security
constraint and that f, f′ ∈ GFK

q are linear independent vectors.

The following lemma shows that any answers in a set are independent from any
queries conditioned on the same set of queries to the same coefficient and any size of
messages and randomnesses. This is the direct inference from the independence of message,
queries, and randomnesses generated by the data collector (6).

Lemma 2. Assume that f ∈ GFN
q , N1,N2 ∈ [1 : N], and K ∈ [1 : K]. Then, we have the

following equality:

I(Af
N1

; Qf
N2
|WK, Z′, Qf

N1
) = 0. (19)

Proof. The proof is the same as Section VI, Lemma 1, in [29], and the key to this proof is
that Af

N1
is determined by W[1:K], conditioned on Z′ and Qf

N1
. We omit the detailed proof

here.

The lemma below has a similar form to Lemma 2, and it shows that any set of answers
with size of E do not depend on the desired statistic, conditioned on the same set of queries
and the randomnesses generated by the data collector.

Lemma 3. For any E ⊆ [1 : N], |E | = E,

H(Af
E |Qf

E , Wf, Z′) =H(Af
E |Qf

E , Z′). (20)

Proof. We only need to show that I(Af
E ; Wf|Qf

E , Z′) is less than or equal to 0 because of its
non-negativity.

I(Af
E ; Wf|Qf

E , Z′) ≤I(Af
E , D[1:K],E ; Wf|Qf

E , Z′)

=I(D[1:K],E ; Wf|Qf
E , Z′) + I(Af

E ; Wf|D[1:K],E , Qf
E , Z′)

=I(D[1:K],E ; Wf|Qf
E , Z′) (21)

=H(D[1:K],E |Qf
E , Z′)− H(D[1:K],E |Wf, Qf

E , Z′)

=0, (22)

where (21) holds because the answers Af
E are determined by (D[1:K],E , Qf

E , Z′) in (7), and (22)
holds because of (6) and (2).

The following lemma shows that we can split the answers into two parts—one from E
servers that cannot decode the database and the other from N − E servers:

Lemma 4. For any f ∈ GFK
q and E ∈ [1 : N], |E | = E, we obtain(

1− E
N

)
H(Af

[1:N]|Q
f
[1:N], Z′) ≥ L + H(Af

[1:N]/E |W
f, D[1:K],E , Qf

[1:N], Z′)− o(L). (23)
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Proof. Based on the system model, we have

H(Af
[1:N]|Q

f
[1:N], Z′)

=H(Wf|Qf
[1:N], Z′) + H(Af

[1:N]|W
f, Qf

[1:N], Z′)− H(Wf|Af
[1:N], Qf

[1:N], Z′)

=L + H(Af
[1:N]|W

f, Qf
[1:N], Z′)− o(L) (24)

=L + H(Af
E |Wf, Qf

[1:N], Z′) + H(Af
[1:N]/E |W

f, Af
E , Qf

[1:N], Z′)− o(L)

=L + H(Af
E |Wf, Qf

E , Z′) + H(Af
[1:N]/E |W

f, Af
E , Qf

[1:N], Z′)− o(L) (25)

=L + H(Af
E |Qf

E , Z′) + H(Af
[1:N]/E |W

f, Af
E , Qf

[1:N], Z′)− o(L) (26)

≥L + H(Af
E |Qf

E , Z′) + H(Af
[1:N]/E |W

f, D[1:K],E , Qf
[1:N], Z′)− o(L) (27)

≥L +
E
N

H(Af
[1:N]|Q

f
[1:N]) + H(Af

[1:N]/E |W
f, D[1:K],E , S, Qf

[1:N], Z′)− o(L), (28)

where (24) follows from (1), (6), and (9); (25) follows from Lemma 2 when N1 = E and
N2 = [1 : N]; (26) follows from (20), (6), and (7); (27) is due to (7); and (28) follows from the
Han’s inequality—i.e.,

∑
E⊆[1:N],|E |=E

H(Af
E |Qf

E ) ≥
E
N

(
N
E

)
H(Af

[1:N]|Q
f
[1:N]). (29)

Now, we can get the lower bound on the asymptotic download size when L and K
goes infinity by applying (14) to (23). We have

lim
K→∞,L→∞

(
1− E

N

)
H(Af

[1:N]|Q
f
[1:N])

≥ lim
K→∞,L→∞

(
H(Af

[1:N]/E |W
f, D[1:K],E , S, Qf

[1:N]) + L− o(L)
)

(30)

= lim
K→∞,L→∞

H(Af
[1:N]/E |W

f, D[1:K],E , S, Qf
[1:N]) + L (31)

≥ lim
K→∞,L→∞

1
N − E

(
L + H(Af′

[1:N]/E |W
f, Wf′ , D[1:K],E , S, Qf′

[1:N] − o(L))
)
+ L

≥
(

∞

∑
k=0

1
(N − E)k

)
L, (32)

where (30) follows from (23), (31) is because o(L) goes zero when L→ ∞, and (32) follows
from the non-negativity of the conditional entropy. The iteration (14) can be continued
because for any k ∈ N, o(L)

(N−E)k → 0 when L→ ∞. Thus, we can calculate the upper bound
of the asymptotic capacity when E < N − 1 as follows:

lim
K→∞,L→∞

C ≤ lim
K→∞,L→∞

L
H(Af

[1:N]
)

≤ lim
K→∞,L→∞

L
H(Af

[1:N]
|H(Qf

[1:N]
)

≤
1− E

N

∑∞
k=0

1
(N−E)k

=
N − E− 1

N
.

Thus, for any possible scheme φ satisfying the constraints of the problem, the rate
cannot be more than N−E−1

N when E < N − 1 and K → ∞.
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5. Proof of Theorem 1: Achievability When E < N − 1

In this section, we give a cross-subspace alignment (CSA) scheme based on the coding
of interference in the computation phase to reach the asymptotic capacity [33] for any
integers N > E + 1 and K ≥ 2. Throughout the scheme, we choose the length of each
personal message L = N − E − 1 ≥ 1, and we use the notation ∆n = ∏L

i=1(i + αn) for
n ∈ [1 : N].

First, we specify the encoding functions {dk}k∈[1:K] in the upload phase. Let W l
k ∈ GFq

be the l-th symbol of each Wk, k ∈ [1 : K], l ∈ [1 : L], and W l ∈ GF1×K
q be the row vector

of the l-th symbol of all K messages, i.e., W l = [W l
1, · · · , W l

K]. Assume that αn, n ∈ [1 : N]
are N distinct coefficients all belonging to the set {α ∈ GFq : α + i 6= 0, i ∈ [1 : L]}—i.e.,
for any i, j ∈ [1 : N], αi 6= αj. Note that the αns are globally shared variables known to the
users, servers, and the data collector. In order to protect the privacy of the users against
the servers, each user k will generate L× E random noises Zk

le uniformly from GFq. The
uploaded information to the n-th server by the k-th user is given by

Dk,n = dk,n(Wk, Zk) =

W1
k + ∑E

e=1(1 + αn)eZk
1e

...
WL

k + ∑E
e=1(L + αn)eZk

Le


T

, ∀k ∈ [1 : K], n ∈ [1 : N], (33)

For convenience of notation, we write the content stored at server n in a vector form as

Dn =[D1
1,n, · · · , D1

K,n, D2
1,n, · · · , D2

K,n, · · · , DL
1,n, · · · , DL

K,n] (34)

=

 W1 + ∑E
e=1(1 + αn)eZ1e

...
WL + ∑E

e=1(L + αn)eZLe.


T

, (35)

where Dn ∈ GF1×KL
q , and Zle is defined as Zle = [Z1

le, · · · , ZK
le].

In the computation phase, the query to Server n is determined by the coefficient f and
the randomness from the data collector Z′. We design the query to Server n based on f as

Qf
n =


∆n

1+αn
(f + (1 + αn)Z′1)

...
∆n

L+αn
(f + (L + αn)Z′L)

, (36)

where Z′1, · · · , Z′L are L random column vectors of length K, whose elements are uniformly
distributed on GFq, generated by the data collector.

For any server n ∈ [1 : N], the answer to the data collector Af
n ∈ An = GFq is

calculated by

Af
n = af

n(Q
f
n, D[1:K],n) = Dn ·Qf

n (37)

=

(
W1 +

E

∑
e=1

(1 + αn)
eZ1e

)
·
(

∆n

1 + αn
(f + (1 + αn)Z′1)

)

+ · · ·+
(

WL +
E

∑
e=1

(L + αn)
eZLe

)
·
(

∆n

L + αn
(f + (L + αn)Z′L)

)
, ∀n ∈ [1 : N]. (38)

According to the expansion of the representation (38) in the descending power of α, we

can see that Af
n

∆n
is the sum of ∑L

l=1
1

l+αn
W l · f and a polynomial of degree E in αn. We can

rewrite (38) as
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Af
n = ∆n

(
L

∑
l=1

W lf
l + αn

+
E

∑
e=0

Ieαe
n

)
, (39)

where Ie is the coefficient of αe
n for any e ∈ [0 : E]. We can clearly see from (38) and (39) that

Ie is not a function of n. If we write the answers to the data collector from all the N servers
together, we can get the following formula in a matrix form:


Af

1
∆1
Af

2
∆2
· · ·
Af

N
∆N

 =


1

1+α1
· · · 1

L+α1
1 α1 · · · αE

1
1

1+α2
· · · 1

L+α2
1 α2 · · · αE

2
· · ·

1
1+αN

· · · 1
L+αN

1 αN · · · αE
N

 ·


W1 · f
...

WL · f
I0
...

IE


. (40)

Now, we prove that this scheme satisfies the decodability constraint, i.e., (9), and
the privacy constraints—i.e., the privacy constraint of the users against E servers (2), the
privacy constraint of the users against the data collector (10), and the privacy constraint of
the data collector against the non-colluding servers (11).

Recall that in our scheme, we let L = N− E− 1. The decodability constraint is satisfied
because the matrix in (40) is an N × N full-rank matrix when the αns are distinct Lemma 5

in [33]. Hence, W1 · f, · · · , WL · f can be fully recovered from Af
1

∆1
, · · · , Af

N
∆N

, and the desired
data Wf in (4) is obtained by

Wf = WT · f =

W1 · f
· · ·

WL · f

. (41)

The privacy constraint of the users against E colluding servers is satisfied due to the
sharing strategy of the users. In (33), we know that the k-th user shares its l-th symbol to
the n-th server in a form

Dl
k,n = W l

k +
E

∑
e=1

(1 + αn)
eZk

le, (42)

where Dl
k,n denotes the storage in server n that W l

k shares. The security needs to guar-
antee that any E out of N servers do not know Wk for any k ∈ [1 : K]. For any set
E := {o1, · · · , oE} such that E ∈ [1 : N] and |E | = E, we choose the E servers to be in E .
We can write the storage of these servers with respect to what W l

k shares in a matrix form:Dl
k,o1
· · ·

Dl
k,oE

 =

W l
k
· · ·
W l

k

+

 l + αo1 (l + αo1)
2 · · · (l + αo1)

E

· · ·
l + αoE (l + αoE)

2 · · · (l + αoE)
E

 ·
Zk

l1
· · ·
Zk

lE

. (43)

Notice that the Vandermonde matrix in (43), denoted by VE , is invertible for distinct
{1 + αe : αe ∈ GFq, e ∈ E}, so the second term of (43) contains E symbols that are linearly
independent. The privacy constraint of the users against E colluding servers can be
guaranteed as the E additional random symbols protect the shared message. We have
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I(Dk,E ; Wk)

≤
L

∑
i=1

L

∑
j=1

I(Di
k,E ; W j

k|D
[1:i−1]
k,E ; W [1:j−1]

k )

=
L

∑
i=1

L

∑
j=1

I(Wi
k1E + VE · Zk

i,E ; W j|D[1:i−1],E ; W [1:j−1]) (44)

=
L

∑
l=1

I
(

W l
k; W l

k1E + VE · Zk
l,E

)
(45)

=
L

∑
l=1

I
(

W l
k; Zk

l,E

)
=0, ∀k ∈ [1 : K], n ∈ [1 : N].

where (44) comes from (43), and (45) holds because when i < j, we have

I(Wi
k1E + VE · Zk

i,E ; W j|D[1:i−1],E ; W [1:j−1])

=H(Wi
k1E + VE · Zk

i,E |D[1:i−1],E ; W [1:j−1])− H(Wi
k1E + VE · Zk

i,E |D[1:i−1],E ; W [1:j])

=H(Wi
k1E + VE · Zk

i,E |Wi)− H(Wi
k1E + VE · Zk

i,E |Wi)

=0, ∀i ∈ [1 : L], ∀j ∈ [i + 1, L],

and when i > j, we have

I(Wi
k1E + VE · Zk

i,E ; W j|D[1:i−1],E ; W [1:j−1])

=H(Wi
k1E + VE · Zk

i,E |D[1:i−1],E ; W [1:j−1])− H(Wi
k1E + VE · Zk

i,E |D[1:i−1],E ; W [1:j])

=H(Wi
k1E + VE · Zk

i,E )− H(Wi
k1E + VE · Zk

i,E )

=0, ∀i ∈ [1 : L], ∀j ∈ [1 : i− 1],

so the remaining items are those (i, j) such that i = j = l.
To prove that the privacy constraint of the data collector against the non-colluding

servers is satisfied, we notice that the query to each server is composed of the desired
coefficient f and independent additional randomness Z′[1:L]. Consider two linear inde-

pendent vectors, f, f′ ∈ GFK
q . For any l ∈ [1 : L], the l-th entries of Qf

n and Qf′
n are

∆n
l+αn

(f + (l + αn)Z′l) and ∆n
l+αn

(f′ + (l + αn)Z′l), respectively. Notice that Z′l (thus ∆n
l+αn
· Z′l )

is chosen uniformly from GFK
q , and that ∆n

l+αn
· f and ∆n

l+αn
· f′ are two deterministic vectors

in GFK
q . The l-th symbol of Qf

n or Qf′
n has the same distribution. Therefore, any single server

can not distinguish queries from the data collector with one coefficient f. Furthermore, if
we assume the desired coefficient t is a random variable with some distribution known
only to the data collector, and f is an implementation of t, we can prove that the mutual
information between t and (Qt

n, At
n, W[1:K]) is zero. We have



Entropy 2023, 25, 625 13 of 16

I(Qt
n, At

n, W[1:K]; t)

≤I(Qt
n, W[1:K], {Zle}l∈[1:L],e∈[1:E]; t) (46)

=I(Qt
n; t|W[1:K], {Zle}l∈[1:L],e∈[1:E]) (47)

=H(Qt
n|W[1:K], {Zle}l∈[1:L],e∈[1:E])− H(Qt

n|t, W[1:K], {Zle}l∈[1:L],e∈[1:E])

=H(Qt
n)− H

 t + (1 + αn)(Z′1)
· · ·

t + (L + αn)(Z′L)

∣∣∣∣∣∣t, W[1:K], {Zle}l∈[1:L],e∈[1:E]

 (48)

=H(Qt
n)− H(Z′1, · · · , Z′L)

=L− L

=0,

where (46) is from (38), (47) is from (10), and (48) is from (6).
Finally, to prove that the privacy constraint of the users against the data collector is

satisfied, we construct a basis of GFK
q containing the desired f. Assume that the vectors in

the basis is denoted by {f1, f2, · · · , fK} where f1 = f. We then have

I
(

W[1:K]; Af
[1:N], Qf

[1:N], Z′|Wf
)

=
L

∑
l=1

I
(

W l ; Af
[1:N], Qf

[1:N], Z′|W [1:l−1], Wf
)

≤
L

∑
l=1

I
(

W l ; Af
[1:N], Qf

[1:N], Z′|W [1:L]/{l}, Z, Wf
)

(49)

=
L

∑
l=1

I

((
W l +

E

∑
e=1

(l + αn)
eZle

)
·

(
∆n

1 + αn
(f + (l + αn)(Z′l)

T)

)
n∈[1:N]

; W l |W [1:L]/{l}, Z, Wf

)
(50)

=
L

∑
l=1

I

(W l(Z′l)
T +

E

∑
e=1

(l + αn)
eZle(Z′l)

T

)
n∈[1:N]

; W l |W [1:L]/{l}, Wf

 (51)

≤
L

∑
l=1

I
((

W l(Z′l)
T , Zle(Z′l)

T
)

e∈[1:E]
; W l |W [1:L]/{l}, Wf

)
(52)

=0, (53)

where (49) holds because (W [1:L]/{l}, Z) is independent with W l ; (50) holds because except
for the term containing W l , all terms in (38) are given, so deducting them would not change
the mutual information; (51) is because ∆n is a constant; (52) is because for any n ∈ [1 : N]
and e ∈ [1 : E], (l + αn)e is a constant, and for n ∈ [1 : N], W l(Z′l)

T +∑E
e=1(l + αn)eZle(Z′l)

T

can be derived by W l(Z′l)
T and

(
Zle(Z′l)

T)
e∈[1:E]; and (53) holds because for any l ∈ [1 : L],

{Zle}e∈[1:E] and Z′l are generated independently of W [1:L].
Thus, we prove that the scheme satisfies all the constraints. As the answer from any

server contains one symbol (the inner product) from GFq, the rate of our proposed scheme is

R =
L

∑N
n=1 H(Af

n)

N − E− 1
N

. (54)

It can be seen that the scheme we construct by (33), (36), and (38) is achievable with
the rate (54) invariant with K by rearranging the data W[1:K] to W [1:L]. We notice that the
achievable rate meets the asymptotic upper bound for any K ∈ N+, so the scheme is then
proved to be asymptotically optimal, by letting K → ∞.
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6. Converse Result When E = N − 1

In this section, we prove that the asymptotic capacity is zero when N = E + 1. First,
the inequality (23) also holds when N = E + 1 because the inequality in (15) becomes an
equality. Hence, we have

H(Af
[1:N]/E |W

f, D[1:K],E , S, Qf
[1:N], Z′) ≥L + H(Af′

[1:N]/E |W
f, Wf′ , D[1:K],E , Qf′

[1:N], Z′)− o(L). (55)

Thus, for any linear independent vectors f1, f2, · · · , fK ∈ GFK
q , we have(

1− E
N

)
H(Af

[1:N]|Q
f
[1:N]) ≥H(Af1

[1:N]/E |W
f1 , D[1:K],E , Qf1

[1:N]
, Z′) + L− o(L) (56)

≥2L + H(Af2
[1:N]/E |W

f1 , D[1:K],E , Qf2
[1:N]

, Z′)− o(L) (57)

≥
K

∑
k=0

L + H(AfK
[1:N]/E |W

[1:L], D[1:K],E , QfK
[1:N]

, Z′) (58)

=
K

∑
k=0

L + H(AfK
[1:N]/E |W[1:K], D[1:K],E , QfK

[1:N]
, Z′) (59)

=KL,

where (56), (57), and (58) are from (55); and (59) holds because any K linear independent
vectors constitute a basis in GFK

q , so W[1:K] can be decoded. We can see that the download
will go to infinity when K → ∞, and thus the asymptotic capacity will be

lim
K→∞,L→∞

C ≤ lim
K→∞,L→∞

L
H(Af

[1:N]
)

≤ lim
K→∞,L→∞

L
H(Af

[1:N]
|H(Qf

[1:N]
)

≤ lim
K→∞,L→∞

1− E
N

KL
=0.

The upper bound of C indicates that it is unfeasible to construct a scheme that has
a positive communication rate when K → ∞. However, differently from the N = E
scenario, our proof of the zero asymptotic capacity does not mean that there does not exist
any scheme that satisfies all the constraints of our problem. In other words, there may
be schemes that can satisfy all the constraints of the problem, albeit with an asymptotic
capacity of zero. The detailed construction of a feasible scheme for E = N − 1 and finite K
is still an open problem.

7. Conclusions

Thanks to the research on data privacy and modeling of infectious diseases, the
privacy-preserving epidemiological-data-collection problem was proposed, which aims to
maximize the collection rate while protecting the privacy of all users’ data and the data
collector’s preferences. We have found the asymptotic capacity of this problem, and the
result shows that when there is more than one remaining server that not colluding with
the other servers to decode the users’ data, the asymptotic capacity exists. The objective
of this work was to find the best performance for the privacy-preserving epidemiological-
data-collection problem, and we partly achieved this goal by giving the construction and
proof of the optimal scheme when K is infinitely large. The achievability for N ≥ E + 2
was given by the cross-subspace alignment method, and the infeasibility of N = 1 or
N = E was also proved. Our findings not only extend the research on secure multi-party
computing systems in information theory, but also provide information-theoretic frame-
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works, implementations, and capacity bounds for the study of privacy epidemiological
modeling. Although we characterized the asymptotic capacity for this problem, the exact
capacity is still unknown. Some future directions include finding the exact capacity for
finite K, the construction of a scheme when N = E + 1, and the performance of asymptotic
capacity under irregular colluding patterns. In general, our result of asymptotic capacity
for this problem will provide useful insights for further studies in data both privacy and
epidemiological modeling.
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