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Abstract: In this paper, the major problems associated with detached eddy simulation (DES) (namely,
modeled stress depletion (MSD) and slowing of the RANS to LES transition (RLT)) are discussed and
reviewed, and relevant improvements are developed. A modified version for the delayed DES (DDES)
method with adaptive modified adequate shielding and rapid transition is proposed; this is called
MSRT DDES. The modified shielding strategy can be adjusted adaptively according to the local flow
conditions: keeping the RANS behavior in the whole boundary layer when there is no resolved
turbulence, and weakening the shielding function when resolved turbulence exists in the mainstream
over the boundary layer. This strategy can significantly ameliorate the MSD in the RANS boundary
layer, regardless of the mesh refinement, and avoid excessive shielding in the fully developed
resolved turbulence that may otherwise delay the development of the separated and reattached
flow. Three cases are designed to test the modified DDES, namely, complete shielding in the RANS
zone of a boundary layer (the zero-pressure gradient turbulent boundary layer with the refined
mesh), modified adaptive improved shielding with a rapid transition (the flow over a hump), and the
overall performance in a complex 3D separation (the corner separation in a compressor cascade). The
results show that the modified shielding function is more physical than earlier proposals compared
to shielding functions, and according to detailed comparisons of the wall skin friction coefficients,
velocity profiles, total pressure-loss coefficients, entropy production analyses, and so on, the MSD
and RLT problems are moderately alleviated by the MSRT DDES.

Keywords: delayed detached eddy simulation; boundary layer shielding; modeled stress depletion;
RANS-LES transition; gray area mitigation; entropy production

1. Introduction

One of the most promising hybrid RANS/LEES methods is detached eddy simulation
(DES), as proposed by Spalart [1,2]. DES behaves like Reynolds-averaged Navier–Stokes
(RANS) simulations in the wall boundary layer, while it exhibits large eddy simulation
(LES) behavior far away from the wall. According to the relative sizes of RANS scales and
LES scales, the flow field is spatially partitioned into RANS regions and LES regions. DES
is considered a weak coupling method [3] and leads to various problems.

Near the interface of RANS and LES regions, the RANS eddy viscosity decreases to
the level of the SGS viscosity, and the highly averaged flow field similar to the “laminar
flow” can only switch to the resolved turbulence with three-dimensional fluctuations via
nonmodal growth mechanisms. This area, where the fluid does not completely transition
from RANS behavior to LES behavior, is known as the “gray area” and is formed due to
a lack of direct transfer from the modeled turbulence energy to the resolved turbulence
energy. The gray area presents two serious problems, which are described below.

1.1. Modeled Stress Depletion

When the grid in the wall boundary layer is over-refined, the gray area will be located
within the boundary layer. As a result of the delayed generation of resolved turbulence,
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the resolved Reynolds stress cannot compensate for the reduction in the modeled Reynolds
stress; this is the so-called modeled stress depletion (MSD) [4], further leading to grid-
induced separation (GIS). The delayed DES (DDES) proposed by Spalart [4] maintains
the RANS behavior in the boundary layer and delays the LES behavior via the shielding
function fd, thus alleviating the MSD problem to a large extent. However, the shielding
function fd cannot completely cover the whole boundary layer [5] and will be further
weakened in boundary layers with an over-refined mesh or a strong adverse pressure
gradient [3,6,7]. The application of artificial turbulence at the inlet can alleviate the MSD
problem, in which case the solution will exhibit WMLES behavior [8]. The inner layer of
the boundary layer keeps the RANS behavior, and the turbulence level in the outer layer is
maintained by the artificial resolved turbulence. However, this will introduce nonphysical
phenomena, which require a transition distance to recover a well-behaved turbulent flow.
The much higher grid resolution is needed for the WMLES behavior to forecast anisotropy
turbulence in near-wall dynamics [9].

Many studies on MSD focused on the remedy of the shielding function. Increasing
the protective capability by changing the constants of the shielding function [5,7] is too
case-dependent and could cause the excessive shielding of separated flows or free shear
flows. Probst et al. [6] constructed a shielding function with an algebraic sensor. In the
study of airfoil separated flows, lists of points lying on an approximate wall-normal ray
were constructed, so that velocity profiles were obtained to calculate the thickness of the
boundary layer. However, it was difficult to find a unified boundary criterion for inner
flows and outer flows. In addition, the wall-normal point lists were nonlocal structures that
could be unreasonable in complex boundary situations (e.g., corner flows and tip leakage
flows). Deck [3] proposed to superimpose a second shielding function on the standard
shielding function fd to protect the whole attached boundary layer profile, regardless of
the infinitely fine meshes and arbitrary pressure gradients. An inhibition function was
introduced to prevent the increased shielding from delaying the formation of instabilities
in separated flows or free shear layers. This method achieves complete shielding of the
boundary layer without resolved turbulence in the mainstream.

1.2. RANS-to-LES Transition (RLT) Problem

Another problem is the RANS-to-LES transition (RLT) problem. Owing to the ex-
cessive shielding function and convection of the high eddy viscosity from the upstream
RANS region, the development of inviscid instability in the gray area will be inhibited.
Even under low eddy viscosity, the RANS “laminar flows” still need space to transit into
three-dimensional turbulent flows. These two issues will lead to a serious delay in the
development of resolved turbulence downstream of the separated flow, and then lead to
discrepancies in physical situations, such as a smaller vorticity thickness [10] in the free
shear flow and a delayed reattachment position [11] in the back-step and hump cases.
Applying artificial turbulence at the RANS/LES interface in the separation zone might
accelerate the 3D turbulence recovery [12,13]. However, it is difficult to ensure the “quality”
of artificial turbulent content, especially for complex separated flows.

Most solutions for the RLT problem involve reducing the eddy viscosity in the gray
area to reduce dissipation and accelerate the development of the non-viscous instability.
Mockett [14] introduced the WALE SGS model [15] and the σ SGS model [16] into DDES.
The difference operators of the WALE and σ SGS models can decrease the sub-grid viscosity
in the quasi-2D flow regions and recover the normal SGS model activity in the developed
3D turbulence. However, the LES scales are improved to make the sub-grid viscosity level
match the resolution of local grids. Chauvet [17] changed the LES scale into the projected
length of grids on the plane perpendicular to the local vortex vector. This LES scale, ∆ω,
takes into account the different resolution abilities of a highly anisotropic grid in different
directions. On the basis of ∆ω , the grid length scale ∆SLA proposed by Shur [18] introduces
the vortex tilting measure (VTM) specifically for rapid transition in gray regions. The VTM
can distinguish laminar flow regions from 3D turbulence regions, and further reduce the
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grid length scale in laminar flow regions to accelerate the RLT. Various studies have verified
its applicability to different flow phenomena [19,20] other than free shear flows. Moreover,
the VTM has the ability to detect the 3D vortex structure and identify the specific areas of
flow fields.

1.3. Coupling of the MSD and RLT Problems

The MSD and RLT problems are coupled in separated–reattached flows, which makes
the previous DES-type model perform poorly near the reattached area. On the premise that
artificial turbulence is not applied, DDES is required to maintain the RANS behavior in
the entire boundary layer, and quickly switch to LES behavior in flow-separation regions.
This idea is more reasonable for a boundary layer outside which there is no resolved
turbulence (such as the free shear flow over a flat plate). However, for a reattached
boundary layer in the separated–reattached flows, such as the flow over a hump and
the back-step flow, maintaining the RANS behavior in the entire boundary layer will be
excessive. In the reattached region (Area A in Figure 1), the strong 3D resolved turbulence
induced by the flow separation is close to the wall and occupies most areas of the outer
layer of the boundary layer. The strong 3D resolved turbulence can alleviate the “gray area”
problem of the local boundary layer (the resolved Reynolds stress of LES can compensate
for the reduced modeled Reynolds stress of RANS). Therefore, the shielding function
should be weakened adaptively in this area. The improved DDES (IDDES) proposed by
Shur [21] can switch between DDES and WMLES according to whether there is resolved
turbulence in the boundary layers. However, the shielding function in IDDES still cannot
guarantee the complete shielding of the boundary layer in the DDES branch, and no means
have been developed to alleviate the gray area problem to accelerate the RLT. Francesco
De Vanna [22] suggested a novel numerical methodology merging wall-modeled and
wall-resolved LES techniques, which introduces an enlightening switching strategy. The
dominance of WMLES and WRLES is decided by the inner-scaled wall spacings which
are the ratio of the grid spacings to local viscous lengths in the corresponding direction.
WMLES will be activated when any one of inner-scaled wall spacings does not reach the
redetermined threshold. This strategy considers both the grid resolutions and the local
turbulence scales. However, the MSD can still be a problem since the complete shielding in
the equilibrium boundary layers cannot be guaranteed.
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Figure 1. A typical separated–reattached flow.

In this study, a variant of DDES with modified shielding and rapid transition is proposed;
this is referred to as MSRT DDES. This variant is designed to ensure that the whole bound-
ary layer is shielded by means of the second shielding function when there is no resolved
turbulence in the mainstream; the transition of RANS-LES in the gray area is accelerated by
∆SLA [18] when flow separation occurs, and the shielding of the boundary layer is weakened



Entropy 2023, 25, 613 4 of 21

adaptively when there is 3D-resolved turbulence in the mainstream, which is realized by the
modified shielding function fVTM constructed in this paper. Several test cases are used to
examine the MSRT DDES. The shielding capability of fVTM in the boundary layer without
resolved turbulence is tested using the case of a zero-pressure gradient turbulent boundary
layer over a flat plate with a challenge area. The ability of modified shielding in the MSRT
DDES is tested using a wall-mounted hump case with separated–reattached flows. Lastly, the
overall performance of the MSRT DDES in respect of a complex three-dimensional flow is
tested via a linear compressor cascade with corner separation.

2. Proposed Approaches

The governing equations of the SST DDES model are as follows [23]:

∂ρk
∂t

+∇·
(

ρ
→
Uk
)
= ∇·[(µ + σkµt)∇k] + Pk −

ρ
√

k3

lDDES
, (1)

∂ρω

∂t
+∇·

(
ρ
→
Uω

)
= ∇·[(µ + σωµt)∇ω] + 2(1− F1)ρσω2

∇k·∇ω

ω
+ α

ρ

µt
Pk − βρω2. (2)

The DDES length scale in Equation (1) is as follows:

lDDES = lRANS − fdmax(0, lRANS − lLES), (3)

lRANS =

√
k

Cµω
, (4)

lLES = CDES∆, (5)

CDES = CDES1·F1 + CDES2·(1− F1), (6)

where ∆ is the grid length scale, and fd is the shielding function. The model constants are
identical to those of the original model [23]. The grid length scale and shielding function
are modified as described below.

2.1. Alternative Grid Length Scales

Taking the hump flow in the XY-plane as an example, the initial region of the separated
flow from the wall is generally a gray area, where the flow is quasi-2D. The mesh in this
area is generally anisotropic with a scale in the Z-direction larger than that in the X- and
Y-directions. In the downstream of separated flows, there is a core area with developed
3D turbulence, and the mesh in that area should be as isotropic as possible for the LES
resolution. To enable selection of the most appropriate grid scale, Table 1 shows the length
orders of several different grid length scales in the quasi-2D flow regions and the developed
3D turbulence region. The resolution of grids to a quasi-2D flow in an XY-plane should
be determined by the grid scales in the X- and Y-directions; thus, ∆̃ω and ∆SLA are more
reasonable than the standard ∆max and ∆cube−root. ∆SLA reduces the grid length scale for
quasi-2D flow regions to accelerate the RANS-LES transition; hence, it is finally applied in
the MSRT DDES.

Table 1. Order of grid length scale in different regions.

Grid Length Scale Quasi-2D Flow Regions Developed 3D Turbulence

∆max [23] O(∆z) O(max(∆x, ∆y, ∆z))
∆cube−root [24] O

(
3
√

∆x∆y∆z
)

O
(

3
√

∆x∆y∆z
)

∆̃ω [18] O(max(∆x, ∆y)) O(max(∆x, ∆y, ∆z))
∆SLA [18] 0.1·O(max(∆x, ∆y)) O(max(∆x, ∆y, ∆z))
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2.1.1. Max Length Scale ∆max

The typical length scale ∆max used in the standard DDES formulation is given by

∆max = max(∆x, ∆y, ∆z). (7)

2.1.2. Shear Layer Adapted Length Scale ∆SLA

∆SLA [18] is defined as per Equation (8).

∆SLA = ∆̃ω FKH(< VTM >), (8)

∆̃ω =
1√
3

max
n,m=1,8

|(In − Im)|, (9)

In = nω × rn, (10)

where “<>” denotes averaging over the current and closest neighboring cells, nω is the
unit vector aligned with the vorticity vector, and rn denotes the location vectors of the cell’s
vertices. The scale ∆̃ω can be regarded as the larger scale of the projected grid on the plane
perpendicular to the local vector, as shown in Table 1.

The Kelvin–Helmholtz instability un-locker FKH and vortex tilting measure in
Equation (8) are defined as Equations (11) and (12), respectively.

FKH(< VTM >) = max

{
Fmin

KH , min

{
Fmax

KH , Fmin
KH +

Fmax
KH − Fmin

KH
a2 − a1

(< VTM >− a1)

}}
, (11)

VTM =

√
6
∣∣(Ŝ·ω)×ω

∣∣
ω2

√
3tr
(

Ŝ2
)
−
[
tr
(
Ŝ
)]2 max

{
1,
(

v∗

vt

)}
, v∗ = 0.2v, (12)

where Fmax
KH = 1.0, Fmin

KH = 0.1, a1 = 0.15, and a2 = 0.3. If the vorticity vector is parallel to
the eigenvector of the strain tensor, then the VTM will be equal to 0, which means that the
strain will only have a stretching or compression effect on the vorticity, corresponding to
quasi-2D flow regions. When the vorticity vector is tilted toward other directions, VTM will
not be 0, which means that the strain will make the vorticity develop in different directions,
corresponding to developed 3D turbulence regions. This feature of VTM can realize the
ability to reduce the grid length scale in quasi-2D flow regions but remain the normal grid
length scale in the developed 3D turbulence regions.

It should be noted that VTM will also treat the RANS boundary layers as quasi-2D
flow regions, which will decrease the local grid length scale and, thus, increase the burden
of the shielding function. This will increase the risk of MSD. In some studies [19], the
shielding function fd was used to inactivate the function FKH in the RANS region of the
boundary layer, making the grid length scale fall back to ∆̃ω rather than 0.1∆̃ω. In this
study, the second shielding function fP is used to ensure that the shielding of the entire
boundary layer is not affected by the local grid length scale, which overcomes this problem.

2.2. Modifications of the Shielding Function

In this section, the standard shielding function [23] and the second shielding function [3]
are introduced, on the basis of which the modified shielding function fVTM is defined.

2.2.1. Standard Shielding Function fd

In the SST k–ω-based DDES model [23], the standard shielding function is defined as

fd(rd) = 1− tanh
[
(C1rd)

C2
]
, C1 = 3 C2 = 20, (13)



Entropy 2023, 25, 613 6 of 21

rd =
vt + v

k2d2
w
√

0.5·(S2 + Ω2)
. (14)

2.2.2. Second Shielding Function fP

The second shielding function fP proposed by Deck [3] for the ZDES mode2 (EP) is
given by Equation (15).

fP = fd(rd)(1− (1− fP2) fR(GΩ)), (15)

fP2 = fd(Gṽ), (16)

Gṽ =
C3max(0,−∂vt/∂n)
√ui,jui,jkdw

, C3 = 25, (17)

fR(GΩ) =


1 i f GΩ ≤ C4,

1
1+exp

(
−6α

1−α2

) i f C4 < GΩ ≤ 4
3 C4, α =

7
6 C4−GΩ

1
6 C4

C4 = 0.03,

0 i f GΩ ≥ 4
3 C4,

(18)

GΩ =
∂(|ω|)

∂n

√√√√ vt(√ui,jui,j

)3 , (19)

where Gṽ is a dimensionless function reflecting the variation law of the eddy viscosity in the
normal direction of the wall. Gṽ mainly draws upon the characteristic that the wall-normal
gradient of the eddy viscosity is negative in the outer area of the wall boundary layer
and is positive or close to 0 in other areas. Then, the outer layer of the boundary layer
is shielded by fP2. It is assumed that the wall-normal gradient of |ω| will be positive
between the separating location and the separating vortex core. The dimensionless function
GΩ constructed from this idea is used to detect the massively separating area and help
fR(GΩ) inhibit the second shielding function fP to prevent excessive shielding, maintaining
the LES behavior.

2.2.3. Modified Shielding Function fVTM

Considering that the VTM can detect the 3D vortex structure, a new inhibition func-
tion fRKH constituted by VTM is constructed and superimposed on the second shielding
function fP2, contributing to the modified shielding function fVTM as per Equation (20).

fVTM = fd(rd)(1− (1− fP2) fR(GΩ) fRKH), (20)

fRKH = 1−max
{

0, min
{

1,
1

a2 − a1
(< VTM > −a1)

}}
, a1 = 0.15, a2 = 0.2, (21)

VTM =

√
6
∣∣(Ŝ·ω)×ω

∣∣
ω2

√
3tr
(

Ŝ2
)
−
[
tr
(
Ŝ
)]2 , (22)

where “<>” denotes averaging over the current and closest neighboring cells. a1 and a2
are threshold values that are adjustable empirical parameters, which are adjusted to
0.15 and 0.2, respectively, in the 2D hump case. fRKH is set as 1 in the RANS region
and in the LES region without three-dimensional turbulence, in which case fP2 and fR(GΩ)
are activated as normal. When located in the LES region with strong 3D turbulence
(area A in Figure 1), fRKH is set to 0, which makes fP2 invalid and reduces the RANS areas
shielded by fVTM. It should be noted that in the separated and reattached regions, the
shielding function fVTM still remains at the level of the standard shielding function fd(rd)
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in order to prevent the RANS/LES interface from getting too close to the wall surface, in
which case a large number of grids will be required to support the LES.

3. Results
3.1. Numerical Methodology

All tests were performed using the open-source CFD environment OpenFOAM, which
is a cell-centered, unstructured, finite-volume-based code of second-order accuracy in
temporal and spatial discretization. Some studies on variants of the DDES model have been
carried out for separated flows, free shear flows, etc. using OpenFOAM [11,14], proving
the reliability of the DDES code in OpenFOAM. All the calculations in this paper were
performed with the incompressible solver [25]. The second-order central difference is used
in the LES area because it is non-dissipative and conservative, whereas the upwind scheme
is not used in the LES area because of too much numerical dissipation [26]. The hybrid
convection scheme of Travin et al. [27] was used to adopt the robust second-order upwind
differencing in the RANS area and low-dissipation second-order central differencing in
the LES area. In order to ensure computational convergence, all cases were first run with
the steady SST-RANS and were then switched to the unsteady SST-DDES with turbulent
transport equations marching but N–S equations frozen. After the convergence of turbulent
transport equations, the unsteady calculation of SST-DDES returned to normal.

3.2. Flat-Plate Boundary-Layer Case

The flat-plate boundary-layer case was used to verify whether the shielding function
fVTM could guarantee RANS behavior in the entire boundary layer regardless of the
infinitely fine meshes, which might mitigate the MSD problem.

This case was set as a zero-pressure gradient turbulent boundary layer over a flat plate
of L = 2 m. The free stream velocity was U∞ = 69.4 m/s, leading to a Reynolds number per
meter Re = 5× 106 m−1. The computational domain and grids in the XY-plane are shown
in Figure 2. The plate started at x = 0, before which a symmetry boundary was set. The
grids in the X direction were set according to the flat-plate case by Deck [3], i.e., keeping
∆x/δx ≈ 0.1 in the area 0.35 ≤ x/L ≤ 0.8, which was considered the “challenging area”,
while setting coarser X-direction grids in other areas (Figure 3). In the Y-direction (wall-
normal direction), y+, based on the mesh center of the first layer, was set to approximately
1.0. The grids in the Z-direction were set to 0.5∆x at x/L = 0.35, where ∆x was the smallest.
The grid numbers in all directions were Nx = 1053, Ny = 385, and Nz = 10, leading to four
million cells in total.
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The profiles of the velocity, eddy viscosity, and fVTM in Figure 4 show that fVTM
inherited the advantage of fP and succeeded in shielding the whole boundary layer, keeping
the results highly similar to those for RANS. Serious MSD in the challenging area was
shown in the DDES with the standard shielding functions fd and ∆max. When the SLA grid
scale ∆SLA was applied, the MSD problem for the fd DDES was seriously aggravated in the
challenging area owing to a decrease in the local grid length scale in the boundary layer.
This proves that ∆SLA weakened the ability of the standard shielding function in shielding
the whole boundary layer. The fd ∆SLA DDES behaved like the WMLES at x/L > 0.65, with
modeled turbulence switching into resolved turbulence, which still could not alleviate the
MSD. However, the second shielding function fP alleviated the MSD to the greatest extent
even when ∆SLA was applied, verifying the superiority of the shielding capacity.
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3.3. Flow over the Hump

The flow over the hump in this paper refers to the NASA wall-mounted hump sep-
arated flow validation experiment [28]. It includes the representative separation phe-
nomenon induced by adverse pressure gradients, often occurring in suction surfaces of
turbomachinery fans, compressor blades, etc. Accurate prediction for the reattachment of a
separated flow is difficult for both RANS and DDES. A test was conducted to contrastively
examine the overall performance of the MSRT DDES and other variants of DDES.

The computational domain is shown in Figure 5. The hump cord length, c, was equal
to 0.42 m. The nominal test section height (between the splitter plate and the upper wall)
was 0.382 m, equal to 0.91c. The width in the spanwise direction was 0.4c, referring to the
previous case setting in the Go4Hybrid project [11]. The inflow velocity of the mainstream
was U = 34.6 m/s, leading to a Reynolds number of 9.36× 105 based on the hump chord c.
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The hump and splitter plate are considered to be no-slip wall conditions. The upper
wall includes a contour to its shape to approximately account for the blockage caused by
the end plates in the experiment, which uses slip wall conditions. The inflow boundary is
set at x/c = −2.14, with a fully turbulent boundary layer of 0.08c thickness. The velocity
and turbulent quantity profiles at the inflow boundary were obtained from a steady k–ω
SST RANS of the zero-pressure gradient boundary layer over a flat plate, which was set
to match the profiles from the experiment at x/c = −2.14. The boundary conditions in the
spanwise direction were periodic.

The structured grids from the Go4Hybrid project [11] in the XY-plane are shown in
Figure 5. The first-layer grid y+ was set to be less than 1. The separated and reattached
region (0.67 < x/c < 1.5) was considered the “focus region” in Figure 6, keeping ∆x and ∆y
approximately equal to 0.005c. The spanwise grid width was constantly equal to 0.005 c,
contributing to a fine grid resolution for the LES branch in the “focus region”. The total
grid number was 511 × 127 × 80 ≈ 5.2 million. The timestep was set to dt = 2× 10−5 s.
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By observing the overall performance of the two shielding functions in Figure 7, it
is clear that the second shielding function fP suffered from randomly returning to RANS
regions (where fd = 0) in the LES region after the separated point. In contrast, the modified
shielding function fVTM in this paper was more consistent with physical situations and
maintained LES behavior in the whole region with resolved turbulence. The unreasonable
behavior of the second shielding function fP in the separated and reattached area can be
explained as follows: over the plate behind the hump, there were resolved turbulence
fluctuations caused by flow separation upon the reattached boundary layer, which made
the distribution of eddy viscosity in this area relatively random, further leading to a random
distribution of the normal-wall gradient of eddy viscosity ∂vt/∂n. Moreover, this area
was still close to the wall. Considering the above, the second shielding function sensor
Gṽ, constituted by ∂vt/∂n and the wall distance dw in Equation (17), led to the irregular
activation of RANS behavior in LES regions near the boundary layer.
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Figure 8 shows that, at some locations where x/c < 1, the average RANS velocity
profiles were closer to the experimental results than the DDES variants. However, when
it comes to the separated and reattached area (x/c > 1), the average velocity profiles of
each DDES variant were closer to the experimental values than RANS. In addition, the
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fVTM ∆SLA DDES was advanced in the development of the velocity from the negative
gradient to the positive gradient, which had more consistency with the experimental result
than the fP ∆SLA DDES. This indicates that fVTM displayed the advantages of LES in the
separated–reattached region to a greater extent and reduced the negative impact existing
in the RANS model under the precondition of grid support.
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In summary, fVTM adopted the second shielding function before the separated point
to ensure RANS behavior in the entire boundary layer. After separation, fVTM inactivated
the second shielding function and returned to the standard shielding function. Compared
with fd and fP, the shielding strategy of fVTM proposed in this paper had a better result for
the hump cases.

4. Corner Separation in the Linear Compressor Cascade

After two basic cases, the fVTM ∆SLA DDES had the best performance among the
tested strategies, and it was referred to as the modified shielding and rapid transition
DDES (MSRT DDES). Considering the fact that all the tested fluid phenomena involved
two-dimensional separations, the MSRT DDES is applied to complex and three-dimensional
separation in this section, which comprises the corner separation in the compressor cascade.

Corner separation occurs near the hub and suction surface of the compressor blade
row, which is large-scaled and highly three-dimensional. Corner separation is induced by
the strong adverse pressure gradient and secondary flow [20]. It will lead to total pressure
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loss, which limits the static pressure rise, reduces the compressor efficiency, and contributes
to the passage blockage [29]. Therefore, it is of great significance to predict the corner
separation correctly with a fairly low cost.

The linear compressor cascade from Ecole Centrale de Lyon is the benchmark case
according to which numerical methods can be tested for corner separation [30–34]. Com-
pared to the experiment in [31], LES agreed well with this experiment, while having a cost
of 200 million grid points. Some RANS studies [35], including SA, k–ε, k–ω, and k–ω SST,
overpredicted the total pressure loss and separation area. Xia applied a k–ω–SST-based
DDES with C2 = 8 instead of 20, and an ∆SLA DDES with C2 = 20 to the corner separation
case, which both seemed to improve the total pressure loss compared to RANS and stan-
dard DDES. However, both solutions could suffer from severe MSD problems, especially
when the grids near the leading edge are refined to capture the unsteadiness of a horseshoe
vortex (HSV), which is considered an important element to indicate corner separation. The
MSRT DDES has the potential to improve the behavior of DDES and overcome the MSD.

The key parameters of the linear cascade are shown in Table 2, which can be found in
Ma et al. [31] in detail. The computation domain is shown in Figure 9, including a single
passage and half-blade-span domain of the cascade. The inlet freestream velocity was
U∞ = 40 m/s. The inflow boundary was set at x/ca = −2.2 with the leading edge set as
x/ca = 0, where the axial chord length ca was 0.11 m. A fully turbulent boundary RANS
profile was set for the hub in the inlet, which was obtained using a flat-plate turbulent
boundary layer RANS case to match the experimental data. The outflow boundary was set
2ca downstream of the trailing edge as suggested in Yin [36].

Table 2. Key parameters of the linear cascade.

Name Magnitude

Chord (c) 0.150 m
Pitch/spacing (s) 0.134 m

Blade span (h) 0.370 m
Stagger angle (γ) 42.70◦

Camber angle (ϕ) 23.22◦

Incidence angle (i) 4◦
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The HOH meshes were generated by AUTOGrid5 with an O-block around the blade
and H-blocks for the passage, as shown in Figure 10. The spacing of the first-layer grid
near the viscous walls was set to 2.5× 10−6 m to guarantee y+ < 1. The grids near the
separation area were set to be orthotropic and isotropic for LES. Two grids were studied in
this paper. Grid 1 contained a 336 × 50 O-grid and a 316 × 100 H-grid, with 100 layers in
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the spanwise direction, leading to 4.8 million grids; this arrangement was used in Yin [36].
The finer Grid 2 contained a 626 × 50 O-grid and a 508 × 204 H-grid, with 160 layers in
the spanwise direction, leading to able 20 million grids; this arrangement had a higher
grid resolution near the separation area. Since there is no concept of “mesh independence”
in the LES region (because the behaviors of the sub-grid model are based on mesh scale
changes), it is necessary to ensure that the mesh scale in the LES region is within the inertial
range of the turbulent energy spectrum. A more relaxed mesh requirement is to set the
scale in a range where the turbulent energy generation and dissipation have relatively
small energy cascades. In general, the mesh scale is taken as l0

6 ∼ 60η, where l0 is the
integral length scale and η is the dissipation scale. The relationship between the integral
length scale and the dissipation scale is l0

η ∼ Re3/4
l0

, where Rel0 = ρu′ l0
µ , u′ represents the

turbulent fluctuating velocity. Both grids satisfy the scale requirement. Yin [36] compared
three different grid resolutions for the same liner cascade case in detail, with 2.82 million,
4.84 million, and 9.60 million grids. The results showed that 9.60 million grids did not show
significant improvement compared to 4.84 million grids [20,35]. In summary, Grid 1 and
Grid 2 in our study satisfied the numerical requirement.
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The timestep in the unsteady computation was set to dt = 5× 10−6 s. The unsteady
result in 0.2 s of physical time was averaged and analyzed. The computation with Grid 2
took 274 h with 120 CPUs used in parallel.

Figure 11 shows the static pressure coefficient Cp at z/h = 1.4%, 13.5%, and 29.7% for
Grid 1. Cp is defined as

Cp =
p− p∞
1
2 ρU2

∞
. (23)



Entropy 2023, 25, 613 14 of 21

Entropy 2023, 25, x FOR PEER REVIEW 14 of 21 
 

 

Around the blade surface at all three spanwise positions, 𝐶௣ for the MSRT DDES 
was closer to the experimental data than k–ω SST RANS and standard DDES, especially 
for the whole pressure surface and the downstream part of the suction surface. When close 
to the trailing edge, the resolved turbulence became fully developed owing to the acceler-
ation of ∆ௌ௅஺, which led to a better result than the standard DDES. However, for the suc-
tion surface near the leading edge, 𝐶௣ at z/h = 1.4% and 13.5% almost had the same devi-
ation from the experiment for three different models. The constant pressure area (𝐶௣ ൎ 0) 
resulting from corner separation was more ahead than the experimental value, which can 
be seen more clearly from the 𝐶௣ distribution on the suction surface in Figure 12. 

 
(a) 

  
(b) (c) 

Figure 11. Static pressure coefficient 𝐶௣ at different spanwise positions for grid 1: (a) z/h = 1.4%; (b) 
z/h = 13.5%; (c) z/h = 29.7%. 

   
(a) (b) (c) 

Figure 12. Static pressure coefficient 𝐶௣ at the suction surface: (a) Exp; (b) LES; (c) MSRT DDES. 

Figure 11. Static pressure coefficient Cp at different spanwise positions for grid 1: (a) z/h = 1.4%;
(b) z/h = 13.5%; (c) z/h = 29.7%.

Around the blade surface at all three spanwise positions, Cp for the MSRT DDES was
closer to the experimental data than k–ω SST RANS and standard DDES, especially for the
whole pressure surface and the downstream part of the suction surface. When close to the
trailing edge, the resolved turbulence became fully developed owing to the acceleration of
∆SLA, which led to a better result than the standard DDES. However, for the suction surface
near the leading edge, Cp at z/h = 1.4% and 13.5% almost had the same deviation from the
experiment for three different models. The constant pressure area (Cp ≈ 0) resulting from
corner separation was more ahead than the experimental value, which can be seen more
clearly from the Cp distribution on the suction surface in Figure 12.
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The total pressure-loss coefficient distribution is defined as

Cpt =
pt,∞ − pt

pt,∞ − ps,∞
. (24)

Figure 13 shows Cpt at x/ca = 1.363. The larger area of high total pressure loss for the
MSRT DDES resulted from the earlier and larger corner separation compared to upstream.
Figures 14 and 15 show the pitchwise integrated total pressure loss C∗pt along the blade
span at x/ca = 1.363 and the overall integral total pressure loss Cpt,global along the axial
direction, which are defined as

C∗pt(z) =

∫ s
0 Cpt(y, z)u(y, z)dy∫ s

0 u(y, z)dy
. (25)
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The total pressure loss for the MSRT DDES was closer to the experimental value than
the standard DDES, while it was almost at the same level as the RANS.

According to the above comparison, the MSRT DDES performed better than the
standard DDES. The result for the MSRT DDES was improved by predicting the separating
location and separating scale more precisely. However, the best loss result obtained via
a hybrid simulation was almost equal to that obtained via a pure RANS simulation, as
shown in Figure 15, because the point of separation and the extension of the separation
zone were determined by the RANS part of the modeling.

The LES grid resolution and the RANS behavior of DDES might have an influence on
the separation. Grid 2, with a finer LES grid, was used to study the impact on the corner
separation. In addition, the Wilcox k–ω RANS [37] was used to study the impact of RANS
models on the separation location. As shown in Figure 16, the difference in Cp for the MSRT
DDES between Grid 1 and Grid 2 was limited, while Cp for the Wilcox k–ω RANS is much
closer to the experimental value. In Figures 17 and 18, the integrated total pressure loss for
the Grid 2 MSRT DDES had a moderate reduction compared to Grid 1 MSRT DDES, while
that for the Wilcox k–ω RANS was much closer to the level of the experiment (the Wilcox
k–ω RANS result from Feng [32,33] is plotted for comparison in the Figure 18, proving the
reliability of the RANS result). This is direct proof of the argument that the RANS part of
the modeling determined the quality of the prediction of the loss for the corner separation
to the largest extent. The loss result of a DES cannot be better than the loss result of the
basic RANS for corner separation.
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Corner separation can also be better characterized by entropy production. There are
various ways to calculate entropy production (∆S); in physical and thermodynamics, it can
generally be related to the internal energy (U) of a system:

dU = T dS− p dV. (26)

For incompressible substances, where the change in volume (V) is considered to be
zero, the entropy is only a function of temperature (T):

TdS = dU = cdT. (27)

Then, the entropy production can be defined as

∆S =
∫

c
dT
T

. (28)

In order to get rid of this dependence on freestream Mach numbers, the entropy
increment ratio (Sratio) is introduced as follows [38]:

Sratio =
S

S∞
− 1

Ma∞
. (29)

The finer LES grid reduced the numerical viscosity from spatial discretization, con-
tributing to the acceleration of the transition. The higher level of resolved turbulence in
Grid 2 reduced the width of the separation region in the vertical direction of the main flow
compared to Grid 1, as shown in Figure 19. However, the starting point of the separation
was almost unchanged when the grid was refined. Furthermore, the choice of RANS model
led to a significant difference in both the separation point and the scale of the separation
region. This proves that the choice of the RANS turbulence model was also the determining
factor for the separation point. The Wilcox k–ω RANS considered the whole boundary
layer as fully developed turbulence from the leading edge, which reinforces the ability
of anti-separation. This delayed the corner separation and reduced the total pressure
loss. Considering that two tripping wires were set on the leading edge to strengthen the
turbulence in the experiment, the Wilcox k–ω-based DDES was expected obtain a more
reasonable result than the k–ω SST-based DDES.
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In summary, the performance of the MSRT DDES was more successful than the
standard DDES and the closest to the corresponding RANS. The remaining gap between
the MSRT DDES and the experimental results can be attributed to the poor performance
of the k–ω SST branch. Therefore, the choice of the RANS branch in the DDES plays an
important role for the prediction of corner separation.

5. Conclusions

In this study, we proposed a version of DDES with modified shielding and rapid
transition (MSRT DDES). In the modified shielding function fVTM, an inhibition function
fRKH based on the VTM was constructed to inactivate the second shielding function
adaptively when resolved turbulence was induced by the separated flow. This was the first
attempt to apply the VTM to the shielding function, and it worked as expected in these
cases. The VTM was reutilized in the ∆SLA to accelerate the transition from RANS to LES.

• The ∆SLA provided practical remedies to the RANS-LES transition problem and main-
tained normal LES behavior in the developed 3D turbulence. Reutilization of the VTM
made the increase of computational consumption acceptable.

• The modified shielding function fVTM was successful in solving the MSD problem,
which could be exacerbated by mesh refinement and the utilization of ∆SLA.

• The original second shielding function fP was found to make DDES abnormally switch
to RANS behavior when resolved turbulence was present in separated and reattached
flow near the wall, which was ameliorated by the introduction of the new inhibition
function fVTM. The utilization of fVTM led to a moderate improvement with respect
to separated–reattached flows.

• The behavior of the MSRT DDES was more reliable than the standard DDES for a
three-dimensional separation flow. By conducting a detailed analysis of physical
quantities such as entropy increment ratio and total pressure-loss coefficients, the loss
result of the MSRT DDES was almost equal to that of the corresponding RANS, which
is proof of success when considering that the point of separation and the extension
of the separation zone were mostly determined by the RANS part of the modeling
in this case. The performance of the MSRT DDES could be further improved by the
proper selection of the RANS base, e.g., the Wilcox k–ω-based MSRT DDES. This will
be developed and evaluated in future work.

In conclusion, the MSRT DDES makes use of the second shielding function fP and
∆SLA to ameliorate the main issues present in DES-type models, while overcoming some of
the deficiencies with respect to fP and ∆SLA. This DDES variant has the potential to obtain
promising results in more complex situations, such as the tip leakage flow in compressor
blades. The MSRT DDES with different RANS bases and for more complex cases will be
evaluated in future work.
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