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Abstract: Cell decision making refers to the process by which cells gather information from their
local microenvironment and regulate their internal states to create appropriate responses. Microenvi-
ronmental cell sensing plays a key role in this process. Our hypothesis is that cell decision-making
regulation is dictated by Bayesian learning. In this article, we explore the implications of this hy-
pothesis for internal state temporal evolution. By using a timescale separation between internal
and external variables on the mesoscopic scale, we derive a hierarchical Fokker–Planck equation
for cell-microenvironment dynamics. By combining this with the Bayesian learning hypothesis, we
find that changes in microenvironmental entropy dominate the cell state probability distribution.
Finally, we use these ideas to understand how cell sensing impacts cell decision making. Notably, our
formalism allows us to understand cell state dynamics even without exact biochemical information
about cell sensing processes by considering a few key parameters.

Keywords: cell decision making; Bayesian learning; least microenvironmental uncertainty principle
(LEUP); hierarchical Fokker–Planck equation; cell sensing dynamics; multiscale

1. Introduction

Decision making is the process of choosing different actions based on certain goals [1].
Similarly, cells make decisions as a response to microenvironmental signals [2]. When exter-
nal cues, such as signaling molecules, are received by the cell, a series of chemical reactions
is triggered inside the cell [3]. This decision-making process is influenced by intrinsic signal
transduction pathways [4], the genetic cell network [5], extrinsic cues [6], and molecular
noise [7]. In turn, such intracellular regulation produces an appropriately diverse range of
decisions, in the context of differentiation, phenotypic plasticity, proliferation, migration,
and apoptosis. Understanding the underlying principles of cellular decision making is
essential to comprehend the behavior of complex biological systems.

Cell sensing is a fundamental process that enables cells to respond to their environ-
ment and make decisions. Typically, receptors on the cell membrane can detect various
stimuli, such as changes in temperature [8], pH [9] or the presence of specific molecules.
The specificity of the receptors and the signaling pathways that are activated are critical in
determining the response of the cell. However, receptors are not the sole sensing unit of
the cell. Recent studies have also revealed that cells use mechanical cues to make decisions
about their behavior [10]. For example, cells can sense the stiffness of the substrate they
are growing on [11]. In turn, cells make decisions about changing their shape, migration,
proliferation or gene expression, in the context of a phenomenon called mechanotrans-
duction [12]. Errors in cell sensing can lead to possible pathologies, such as cancer [13],
autoimmunity [14], diabetes [15], etc.
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Bayesian inference or updating has been the main toolbox for general-purpose de-
cision making [16]. In the context of cell decision making, this mathematical framework
assumes that cells integrate new information and update their internal state based on the
likelihood of different outcomes [17]. Although static Bayesian inference was the main
tool for understanding cell decisions, recently, Bayesian forecasting has been additionally
employed to understand the dynamics of decisions [18]. In particular, Mayer et al. [19]
used dynamic Bayesian prediction to model the estimation of the future pathogen distri-
bution by adaptive immune cells. A dynamic Bayesian prediction model was also used
for bacterial chemotaxis [20]. Finally, the authors developed the least microenvironmental
uncertainty principle (LEUP) that employs Bayesian-based dynamic theory for cell decision
making [21–24].

To understand the stochastic dynamics of the cell-microenvironment system, we
focus on the mesoscopic scale and we derive a Fokker–Planck equation. Fokker–Planck
formalism was developed to study the time-dependent probability distribution function
for the Brownian motion under the influence of a drift force [25]. We can see nowadays
a huge number of applications of Fokker–Planck equations (linear and non-linear) across
disciplines [26,27]. Here, we will additionally assume a timescale separation between
internal and external variables [28]. Timescale separation has been studied rigorously [29]
from the microscopic point of view using Langevin equations. In the case of cell decision
making, microscopic dynamics have been studied, specifically in the context of active
Brownian motion and cell migration using Langevin equations [22,30,31]. Understanding
dynamics induced by a timescale separation at the mesoscopic scale, using Fokker–Planck
equations, was studied only recently by S. Abe [32].

We will assume a timescale separation, where cell decision time, when internal states
evolve, is slower than the characteristic time of the variables that belong to the cellular
microenvironment. This assumption is particularly valid for cell decision making at the
timescale of a cell cycle, such as differentiation. The underlying molecular regulation
underlying these decisions may evolve over many cell cycles [33,34]. When these molecular
expressions cross a threshold, the cell decision emerges.

The structure of our paper is as follows: In Section 2 we present the Bayesian learning
dynamics for cell decision making. In turn, we derive a fluctuation–dissipation relation
and the corresponding continuous-time dynamics of cellular internal states. After that, in
Section 3, we elaborate on the concept of the hierarchical Fokker–Planck equation in relation
to cellular decision making and the underlying Bayesian learning process. In Section 4, we
demonstrate the use of a simple example of coarse-grained dynamics for cell sensing to
analyze the steady-state distribution of cellular states in two scenarios: (i) in the absence
and (ii) presence of cell sensing. Then, in Section 5, we connect this idea with the least
microenvironmental uncertainty principle (LEUP) as a special case of Bayesian learning.
Finally, in Section 6, we conclude and discuss our results and findings.

2. Cell Decision Making as Bayesian Learning

Cell decisions, here interpreted as changes in the cellular internal states X within a
decision time τ, are realized via (i) sensing their microenvironment Y and combining this
information with (ii) an existing predisposition about their internal state. In a Bayesian
language, the former can be interpreted as the empirical likelihood P(Y | X) and the latter
as the prior distribution P(X). Interestingly, the previously mentioned distributions are
time dependent since we assumed that the cell tries to build increasingly informative priors
over time to minimize the cost of energy associated with sampling the cellular microen-
vironment. For instance, assuming that cell fate decisions follow such Bayesian learning
dynamics, during tissue differentiation, we observe the microenvironment evolving into a
more organized state (e.g., pattern formation). Therefore, one can observe a reduction in
microenvironmental entropy over time, which is further associated with the microenviron-
mental probability distribution or likelihood in Bayesian inference. Here, we postulate that
the cells evolve the distribution of their internal states in the form of Bayesian learning.
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2.1. A Fluctuation–Dissipation Relation

Formalizing the above, let us assume that after a decision time τ, the cell updates its
state from X to X′ both belonging to Rn. Moreover, we assume that the microenvironmental
variables Y ∈ Rm. According to Bayesian learning, the posterior of the previous time
P(X | Y) becomes prior to the next time step, i.e., P(X′) = P(X | Y). Therefore, the Bayesian
learning dynamics read:

P
(
X′
)
=

P(Y | X)P(X)
P(Y)

,

=⇒ ln
P
(

X
′
)

P(X)
= ln

P(Y | X)
P(Y)

.

=⇒
∫

P
(

X
′
, X, Y

)
ln

P
(

X
′
)

P(X)

dX
′
dXdY

=
∫

P
(

X
′
, X, Y

)
ln
(

P(Y | X)
P(Y)

)
dX
′
dXdY

=⇒
〈

D
(

X
′ || X

)〉
P(X′ |X)

= β̃I(Y, X),

(1)

where β̃ =

∫
P
(

X
′ |X,Y

)
dX
′∫

P(Y|X,X′)dXdY
, which is different from one if the corresponding conditional

distributions require different finite support for their normalization. In the above relation,

the Kullback–Leibler divergence D
(

X
′ || X

)
=
∫

P
(

X
′
)

ln

(
P
(

X
′)

P(X)

)
dX
′

that quantifies the

convergence to the equilibrium distribution of the internal value of X is connected to the
amount of available information I(Y, X) =

∫
P(X, Y) ln

(
P(Y|X)

P(Y)

)
dXdY between the cell and

its microenvironment. From Equation (1), the Kullbeck–Leibler divergence can be further
elaborated in terms of Fisher information as

D
(

X
′ || X

)
=
∫

P
(

X
′)

ln

P
(

X
′
)

P(X)

dX
′

=
∫

P
(

X
′)

ln
(

P
(

X
′))

dX
′ −

∫
P
(

X
′)

ln(P(X))dX
′

=
∫

P
(

X
′)

ln
(

P
(

X
′))

dX
′ −

∫
P
(

X
′)

ln
(

P
(

X
′ − ∆X

′))
dX
′

≈ 1
2

∆X
′T
∫

dX
′
P
(

X
′)(∇2

X′
ln
(

P
(

X
′)))

∆X
′

=
1
2

∆X
′TF

(
X
′)

∆X
′
,

(2)

where ∇2
X′

denotes the corresponding Hessian matrix. Please note that we have assumed
very small changes in the internal variable vector X. Here, F (·) is noted as the Fisher
information metric. Since the last formula does not depend on X, then the averaging
in Equation (1) becomes obsolete. Using the relations Equations (1) and (2) provides
a connection between the Fisher information of the cell internal state and the mutual
information with the cellular microenvironment:

I(Y, X) =
1

2β̃
∆X

′TF
(

X
′)

∆X
′

(3)

The latter formula implies that the fidelity of the future cell’s internal state is related
to the available information in the microenvironment. The above quadratic form makes us
view mutual information as a kind of energy functional.
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2.2. Continuous Time Dynamics

Now, we further assume a very short decision time for the internal variable evolu-
tion τ � 1. Along with the Bayesian learning, we assume that the microenvironmental
distribution is a quasi-steady state, and therefore we focus only on the dynamics of the
internal variable pdf P(X′) = P(X + ∆X, t + τ), where the increment ∆X ∈ Rn. Using the
multivariate Taylor series expansion, we write

P(X + ∆X, t + τ) =
P(Y | X, t)P(X, t)

P(Y)
,

=⇒ P(X, t) + ∆X · ∇XP(X, t) + τ
∂P(X, t)

∂t
+O(τ2, ∆X2) =

P(Y | X, t)P(X, t)
P(Y)

,

=⇒ ∂P(X, t)
∂t

≈ −∆X
τ
· ∇XP(X, t)− 1

τ

(
1− P(Y | X, t)

P(Y)

)
P(X, t)

(4)

The term P(Y|X,t)
P(Y) is the information flow due to cell sensing (empirical likelihood).

Now, Equation (4) reaches a steady state only when the cell senses perfectly the microenvi-
ronment, i.e., P(Y | X, t) is equal as P(Y). The steady solution of the evolution of probability
distribution helps us to understand how it evolved over a long time, which can tell us
how the internal variables of cells settle. So, close to the steady state (i.e., ∂P(X,t)

∂t = 0), the
Equation (4) further reads as

∆X · ∇XP(X) = −
(

1− P(Y | X)
P(Y)

)
P(X, t) ≈ i(X : Y)P(X)

=⇒
n

∑
i=1

∆Xi
∂

∂Xi
P(X) = i(X : Y)P(X)

=⇒
n

∑
i=1

∆Xi
∂

∂Xi

(
ln P(X)

)
= i(X : Y)

(5)

Above, we used the identity ln(x) ≈ 1 − x for small x and the definition of the
point-wise mutual information as i(X : Y) = ln P(Y|X)

P(Y) .
Deriving an analytical solution for Equation (5) is a daunting task. Therefore, we use a Gibbs

ansatz, which additionally assumes that mutual independence of the random variable Xi ⊥ Xj
for i 6= j:

P(X) ≈
n

∏
i=1

P(Xi) =
e−∑n

i=1 αiUi

Z

=⇒ P(Xi) =
e−αiUi

Zi

(6)

Combining the above ansatz with the Equation (5), we obtain

i(X : Y) = −
n

∑
i=1

∆Xiαi
∂Ui(Xi)

∂Xi
(7)

Using our results in the Appendix A and in particular Equation (A4), we can write

i(X : Y) = ln P(Y | X)− ln P(Y) =
n

∑
i=1

ln P(Y | Xi)− n ln P(Y) =
n

∑
i=1

i(Xi : Y) (8)
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Now combining the above equations and integrating for the variable Xi, we can obtain
an explicit formula for the potential Ui:

Ui(Xi) = −
1

αi∆Xi

∫ Xi
i
(
X̃i : Y

)
dX̃i. (9)

Therefore, the probability distribution for the internal variable Xi reads

P(Xi) =
eβi
∫ Xi i(X̃i :Y) dX̃i

Zi
, (10)

where we introduce the sensitivity parameter βi ∝ ∆X−1
i . Working out further the above

equation, we obtain

P(Xi) =
eβi
∫ Xi i(Y:X̃i)dX̃i

Zi

=
eβi
∫ Xi dX̃i i(Y:X̃i)

∫
Rm P(Y|X̃i)dY∫

dXie
βi
∫ Xi dX̃i i(Y:X̃i)

∫
Rm P(Y|X̃i)dY

=
e−βi

∫ Xi S(Y|X=X̃i)dX̃i−βi
∫ Xi dX̃i

∫
Rm dYP(Y|X̃i) ln p(Y)∫

dXie
−βi

∫ Xi S(Y|X=X̃i)dX̃i−βi
∫ Xi dX̃i

∫
Rm dYP(Y|X̃i) ln p(Y)

=
e−βi

∫ Xi dX̃iS(Y|X=X̃i)−β′iXi

Zi
.

(11)

where we used the fact that the
∫
Rm P(Y|X̃i)dY = 1 and the definition of the condi-

tional entropy S(Y | X = X̃i) = −
∫

dYP(Y|X = X̃i) ln P(Y|X = X̃i). The parameter
β′i = βidX̃i

∫
Rm dYP(Y|X̃i) ln p(Y) is a real constant.

3. Connection between Hierarchical Fokker–Planck Equation and Bayesian
Learning Process

In this section, we shall discuss the connection between dissipative dynamics and
Bayesian learning regarding the cell decision-making process. Since cell decision making
is a stochastic process of the continuous internal variable X, we can assume the existence
of the Fokker–Planck description. When there exists a timescale separation between two
dynamical variables, a hierarchical Fokker–Planck equation [32] can be derived. In this
section, we shall show how this formalism can be applied in cell decision making and
also will show how it helps us to study the origin of biophysical forces in terms of the
information-theoretic quantities as shown in Figure 1.

Let us consider X and Y to be the internal variables which evolve in a slow timescale
and external variables that are fast, and the corresponding 2-tuple random variables (which
evolve over time) as

M =

(
M1
M2

)
=

(
X
Y

)
(12)

Now for a random variable M, one can write in the Ito-sense the generalized stochastic
differential equation for multiplicative noise processes as

dM = K(M, t)dt + Σ(M, t)dW (13)

In this above Equation (13), we define the drift term K, the Σ that is a 2×2 covariance matrix
and dW as the Wiener process [35], which satisfies the mutual independence condition below

dWidWj = δijdt (14)
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The realization of X = M1 and Y = M2 , obeys the time-dependent joint probability.
P(X, Y, t) which satisfies the generalized Fokker–Planck equation. Now, the generalized
Fokker–Planck equation [35–37] corresponding to the Langevin Equation (13) for two-
variable homogeneous processes can be written as

∂P
∂t

= −
2

∑
p=1

∂

∂Mp

(
KpP

)
+

2

∑
p,q=1

∂2

∂Mp∂Mq

(
σpqP

)
(15)

where drift coefficients Kp = Kp(X, Y, t) and diffusion coefficients σpq = σqp = σpq(X, Y, t).

X(t+τ): Cell's 
internal state at 
time t+τ
 

Y  : Microenvironment
 

𝓵

X (t) : Cell's 
internal state at 
time t

𝓵

Adaptation
through learning
 algorithm 
 

X(t+τ): Cell's 
internal state at 
time t+τ
 

Y  : Microenvironment
 

𝓵

X(t): Cell's 
internal state at 
time t

𝓵

Bayesian 
Learning

Hierarchical 
Fokker - Planck 
Equations

Adaptation
through physical 
forces
 

Figure 1. A schematic picture of cellular decision making in a complex microenvironment through
physical forces and through Bayesian learning.

The Fokker–Planck equations represent the mesoscopic scale of a dynamical system [38].
Interestingly, in a large timescale separation at the mesoscopic level, the degrees of freedom
associated with the fast variables depend on slow variables but not vice versa. Since we
assumed that the microenvironmental variables Y evolve at the fastest timescale, it follows
that K1 ≡ K1(X, Y), K2 ≡ K2(X) and σ22(Y, X, t) ≡ σ22(X). To use the separation method
adiabatically, we shall substitute

P(X, Y, t) = P(Y, t | X)P(X), (16)

where the P(X) is time invariant relative to the evolution of the microenvironmental
variables. Thus, the dynamics of the joint probability reduces to the dynamics of the fast
variable Y and using Equation (15), we have

∂P(X, Y, t)
∂t

= P(X)
∂P(Y, t | X)

∂t
= −P(X)∇Y · (K1(Y, X, t)P(Y, t | X))

−∇X · (K2(X)P(Y, t | X)P(X))

+ P(X)∇2
Y(σ11(Y, X, t)P(Y, t | X))

+ 2∇X · [P(X)∇Y(σ12(Y, X, t))P(Y, t | X)]

+∇2
X(σ22(X)P(X)P(Y, t | X))

(17)
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From this point, the equations for the fast degree of freedom and the others (slow
degree of freedom and coupling between them) are derived, respectively, as follows:

∂P(Y, t | X)
∂t

= −∇Y · (K1(Y, X, t)P(Y, t | X)) +∇2
Y(σ11(Y, X, t)P(Y, t | X)), (18)

∇X · (K2(X)P(Y, t | X)P(X)) + 2∇X · [P(X)∇Y · (σ12(Y, X, t))P(Y, t | X)]

+∇2
X(σ22(X)P(X)P(Y, t | X)) = 0

(19)

From Equation (19), if we integrate once over X, it follows

− K2(X)P(Y, t | X)P(X) + 2P(X)∇Y · (σ12(Y, X, t)P(Y, t | X))

+∇X · (σ22(X)P(Y, t | X)P(X)) = 0,
(20)

and working further on the equations

− K2(X)P(Y, t | X)P(X)
+ 2P(X)∇Y · (σ12(Y, X, t))P(Y, t | X) + 2P(X)σ12(Y, X, t)∇Y(P(Y, t | X))

+∇X · (σ22(X))P(Y, t | X)P(X) + σ22(X)P(X)∇X(P(Y, t | X))

+ σ22(X)P(Y, t | X)∇X(P(X)) = 0.

(21)

To isolate the slow degree of freedom, we further separate Equation (21) as follows:

− (K2(X)−∇X · (σ22(X)))P(X) + σ22(X)∇X(P(X)) = 0, (22)

2∇Y · (σ12(Y, X, t)P(Y, t | X)) + σ22(X)∇Y(P(Y, t | X)) = 0, (23)

which are the equations for the slow degree of freedom and the coupling, respectively.
Thus, Equations (18), (22) and (23) are the ones to be analyzed. Now, we try to establish the
connection between hierarchical Fokker–Planck equations and steady-state Bayesian learn-
ing when the internal variable is one-dimensional. The general solution of Equation (22) in
one dimension can be written as

P(Xi) = f0 exp

(∫ Xi
dX̃i

K2
(
X̃i
)

σ22
(
X̃i
) − ln σ22(Xi)

)
. (24)

where f0 is a positive constant. If we have information about the drift term K2
(
X̃i
)

and
diffusion coefficient σ22(Xi), we can easily calculate the probability distribution of the inter-
nal variables from Equation (24), which is independent of the fast variable. So, comparing
Equations (11) and (24), one can obtain

P(X = Xi) =
e−βi

∫ Xi dX̃iS(Y|X=X̃i)−β′iXi

Zi
= f0 exp

(∫ Xi
dX̃i

K2
(
X̃i
)

σ22
(
X̃i
) − ln σ22(Xi)

)
,

=⇒ e−βi
∫ Xi dX̃iS(Y|X=X̃i)−β′iXi

Zi
= f̃ exp

(
1

σ22

∫ Xi
K2
(
X̃i
)
dX̃i

)
,

=⇒ −βi

∫ Xi
dX̃iS(Y|X = X̃i)− β′iXi = ln

[
f̃ Z
]
+

1
σ22

∫ Xi
K2
(
X̃i
)
dX̃i,

=⇒ K2(Xi) = −βiσ22S(Y|X = Xi)−
β′i
2

X2
i .

(25)

In the above Equation (25), f̃ is defined as f0
σ22

and the diffusion coefficient σ22(Xi) in
Equation (25) is considered constant, i.e., σ22(Xi) = σ22. Therefore, we can directly see how
the microenvironmental entropy and the drift force have a unique relation.
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4. Implications of Cell Sensing Activity

Cell sensing is usually defined as a process where cells communicate with the external
environment based on their internal regulatory network of signaling molecules. In the
context of Bayesian learning cells, the cell sensing distribution P(Y|X) plays a central role.
The problem is that the regulation between a particular sensing molecule and the set of
microenvironmental variables can be complex [39]. For simplicity, we constrain ourselves to
one-dimensional internal and external variables. Let us consider that the microenvironment
Y is sensed by the internal state X as

YX = Y | X = F
(
X, 〈Yn〉

)
. (26)

Here, we assume that the cell sensing function F(·) also depends on moments of
the microenvironmental variable and, consequently, we assume their existence. Now, if
we perform a Taylor series expansion around the mean value of the internal state X̄ in
Equation (26),

YX = F(X̄) +
∣∣∣ ∂

∂X
F(X̄)

∣∣∣(X− X̄)

YX − Ȳ = F(X̄)− Ȳ +
∣∣∣ ∂

∂X
F(X̄)

∣∣∣(X− X̄)

σ2
Y|X(x) =

〈(
b + g(x− X̄)

)2
〉

P(Y)
=
(
b + g(x− X̄)

)2

(27)

Here, we define the bias term b = F(X̄) − Ȳ and the linear sensing response to
microenvironmental changes Y defined by g =| ∂

∂X F(X̄) |. Please note that both b and g
depend only on the moments of Y. The biological relevance of this linear sensing function
can be found in the classical receptor–ligand models [40]. In particular, let us assume that
the sensed environment variable Y|X is the ligand–receptor complex and the variable X
corresponds to the receptor density. If g is a first-order Hill function for the first moment of
Y, which in this context is the ligand concentration, and if F(X̄) = 0, then first, Equation (26)
corresponds to the textbook steady state of the complex formation [40].

Moreover, we consider the microenvironmental distribution as Gaussian, where the
entropy of the microenvironment, conditioned by the corresponding internal states, can be
written as

S(Y | X = x) =
1
2

ln
(

2πeσ2
Y|X(x)

)
. (28)

Now, using the above expression of microenvironmental conditional entropy, one
can calculate the steady state of cellular internal variables from Bayesian learning using
Equation (11). In turn, it can be written as

P(X) ∝ e−β
∫ X S(Y|X=X̃)dX̃−β

′
X

= e−β
∫ X ln (b+g(X̃−X̄))dX̃−β

′
X (29)

Interestingly, we have two cases to study the steady-state distribution of the cellular
internal states: (I) when the response of X to microenvironmental changes is negligible
and (II) when there exists a finite correlation value between internal cellular state and
microenvironmental state, which follows as

P(X) = C1e−β̄X , g� 1

P(X) = C2(b + g(X− X̄))
β
(

X−X̄+ b
g

)
e−(β+β

′
)X , g = O(1)

(30)

Here, C0 and C1 are normalization constants of corresponding probability distributions,
and β̄ is defined as (β ln b + β

′
). In case (I), i.e., when g is equal to 0, the steady-state

distribution of internal variables converges to an exponential distribution. Please note that
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the sensor OFF probability distribution makes sense only for β̄ > 0. In the ON case, when
the linear response g is finite and β < 0, the expression of the steady state is unimodal.
Interestingly, for β > 0 and for a finite range of X values, the distribution is bimodal with
the highest probability density around the boundaries of the domain. Please note that
for very large β

′
values, the exponential decay term dominates. In a nutshell, the above

expression of the internal state shows how an ON-OFF switching case can happen when the
environment correlates with the cell and as a response the cell senses the microenvironment
changing its phenotype, which confirms the existence of the monostable–bistable regime as
shown in Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
X

0.0000

0.0003

0.0006

0.0009

0.0012

P(
X)

 = 2, g = 0
 = 0.7, g = 1
 = -5, g = 1

Figure 2. Plot of the normalized steady−state probability distribution of cellular phenotypes for both
cases (I) g = 0 and (II) g = 1 with different values of β. b and X̄ parameter is kept at 2 and β

′
is kept at 0.

5. Bayesian Learning Minimizes the Microenvironmental Entropy in Time

Recently, we postulated the least environmental uncertainty principle (LEUP) for the
decision making of cells in their multicellular context [21,22]. The main premise of LEUP is
that the microenvironmental entropy/uncertainty decreases over time. Here, we hypothesized
that cells use Bayesian learning to infer their internal states from microenvironmental
information. In particular, we previously showed that dS(Y|X)

dt ≤ 0 [22], which is the case
in the Bayesian learning case. To illustrate this, let us focus on the Gaussian 1D case of
the previous section. Averaging Equation (27) for the distribution p(X, Y), we can obtain
the following:

σ2
Y|X = b2 + g2σ2

x . (31)

One can show that the linear response term is proportional to the covariance of the
internal and external variables, i.e., g ∝ cov(X, Y) as a result of the Gaussian conditional
variable. As the Bayesian learning is reaching equilibrium, according to Equation (1), the

covariance approaches zero and consequently, σ2
Y|X

t→∞−−→ b2.
Please note that we still assume that the microenvironmental pdf is in a quasi-steady

state due to the time scale separation [22]. The latter implies that the variance of Y|X
is monotonically decreasing and therefore S(Y|X) is also a decaying function in time.
Therefore, we can postulate that Bayesian learning is compatible with the LEUP idea.

Mathematically speaking, the original LEUP formulation was employing an entropy
maximization principle, where one can calculate the distribution of cell internal states
using as a constraint the mutual information between local microenvironment variables
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and internal variables. Adding as a constraint the expected value of internal states, the
corresponding variational formulation reads:

δ

δP(Xi)

{
S(Xi) + βi

[ ∫
dXiP(Xi)

∫
dYP(Y | Xi)i(Y : Xi)− Ī(Y : Xi)

]

− β
′
i

[ ∫
P(Xi)XidXi − X̄i

]
− λi

[ ∫
P(Xi)dXi − 1

]}
= 0,

(32)

Here, δ/δP(Xi) is the functional derivative with respect to the internal states. Three
Lagrange multipliers in Equation (32), i.e., βi, β

′
i and λi, are associated with the steady-

state value of the mutual information Ī(Y, Xi), mean value of the internal variables and
the normalization constant of the probability distribution. The constraint or the partial
information about the internal and external variables is written in terms of the statistical
observable. Solving Equation (32), we can find a Gibbs-like probability distribution:

P(Xi) =
eβi D(Y|X=X̃i ||Y)−β

′
i Xi

Zi
=

e−βiS(Y|Xi=X̃i)−β′iXi

Z′i
. (33)

Here, Z
′
i =

∫
e−βiS(Y|Xi=X̃i)−β

′
i X̃i dX̃i is the normalization constants. Please note that

we used the fact that D(Y | X = Xi||Y) = −S(Y|X = Xi))−
∫

dYp(Y | X) ln p(Y), where
the second term gets simplified since it is independent of Xi. Interestingly, it can coincide
with the Bayesian learning context as a special case, where the i(Y : Xi) → 0. Using
Equation (11) in a finite domain Xi ∈ Ω and the mean value theorem for integration, there
exists a value X̂i such that

P(Xi) =
e−βiS(Y|Xi=X̂i)−β′iXi

Z′i
. (34)

Therefore, the form of the maximum entropy distribution (33) and the Bayesian
learning steady-state distribution (11) coincide when the random variable Xi takes values
in the vicinity of X̂i.

6. Discussion

In this paper, we elaborate on the idea of cellular decision-making based on Bayesian
learning, assuming a time-scale separation between environmental and internal variables.
We derive a stochastic description of the temporal evolution of the corresponding dynamics,
studying the impact of cell sensing on the internal state distribution and the corresponding
microenvironmental entropy evolution.

An interesting finding is the steady-state distributions of the internal state depending
on the state of the cell sensor activity. When the cell weakly senses its microenvironment,
the internal state follows an exponential distribution (see Equation (29)). In terms of the
receptor–ligand sensing mechanism, this implies that no specific amount of receptors is
expressed by the cell. When the sensor is in the ON state, then a unimodal distribution
occurs, which implies that the cell expresses a precise number of, for example, receptors
as a response to a certain stimulus. The former can be viewed as the physiological modus
operandi of the cell. However, when the sensitivity β changes sign, then the probability
mass is distributed to the extreme values of the internal state space. This can be potentially
mediated by a bistability regulation mechanism, e.g., for the receptor production. Such
bimodality is relevant in the context of cancer, where it is considered a malignancy prognos-
tic biomarker [41,42]. However, it can also occur in physiological cases such as in healthy
immune cells [43]. It would be interesting to explore if the sensing activity is a plausible
mechanism for explaining transitions from unimodality to bimodality.

One important point of interest is the range of validity of regarding the timescale sepa-
ration between the cell decision and the cell’s microenvironmental variables. In particular,
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we assumed that the internal state characteristic time is slower than the microenvironmental
one, which can be true for decision timescales related to the cell cycle duration. Sometimes,
cell decisions may seem to be happening within one cell cycle, but the underlying molecu-
lar expressions may evolve even over many cell cycles [33,34]. During the cell cycle time,
we can safely assume that external variables, such as chemical signal concentrations or
migrating cells, will be in a quasi-equilibrium state. However, for cell decisions with shorter
timescales, such as migration-related processes, which are at the order of one hour, this
assumption needs to be relaxed. In the latter case, the discrete-time dynamics presented in
Section 2 are still valid.

Here, we assumed that the fast timescale environmental variables can be influenced by
the current state of cellular internal variables. However, we did not consider the influence
of the past time states. This would imply non-Markov dynamics for internal cellular
state evolution. It would be interesting to study how this assumption could impact the
information flow dynamics between environmental states and cellular internal variables.

The outlined theory is related to single-cell decision making. Our ultimate goal is
to understand how Bayesian learning impacts the collective behavior of a multicellular
system. An agent-based model driven by Bayesian learning dynamics could be used to
analyze the collective dynamics as in [22]. Interestingly, we expect a Bayesian learning
multicellular theory to produce similar results to the rattling interactions introduced in [44].
Similarly, in rattling dynamics, an approximation of the mutual information between
neighboring individuals is minimized, leading to the emergence of a self-organized active
collective state.

Regarding cell sensing, we took an agnostic approach, where a generic function was
assumed. Linearizing the sensing function leads to steady-state dynamics, which could
be seen in the ligand–receptor dynamics, e.g., [45], by assuming our sensed environment
variable Y|X is the ligand–receptor complex and the variable X the receptors. It will be
alluring to further investigate the non-linear relationship between internal and external
variables, which means considering a few more terms in the Taylor series expansion of
conditional variance to simulate a greater variety of biological sensing scenarios.

Our decision-making approach is a dynamic theory based on Bayesian learning of
cellular internal states upon variations of the microenvironment distribution. The classical
Bayesian decision-making methods are of a static nature relying on Bayesian inference
tools [16]. Belief updating networks resemble the ideas of Bayesian learning; however,
such algorithms are treated typically computationally, and to our knowledge there have
been not many attempts of deriving dynamic equations [46]. The oldest life science field
where such ideas have been developed is human cognition. This dates back to 1860 when
Hermann Helmholtz postulated the Bayesian brain hypothesis, where the nervous system
organizes sensory data into an internal model of the outside world [47]. Recently, Karl
Friston and collaborators formulated the brain free energy theory deriving a variational
Bayesian framework for predicting cognitive dynamics. Friston’s ideas were recently
translated into the Bayesian mechanics approach [48]. The latter resembles our approach,
but it requires concepts of Markov blankets and control theory. The main difference is that
all of the above attempt to model human cognition and not cell decision making.

Finally, assuming Bayesian learning/LEUP as a principle of cell decision making, we
can bypass the need for a detailed understanding of the underlying biophysical processes.
Here, we showed that even by using an unknown cell sensing function, we can infer the
state of the cell with a minimal number of parameters. Building on these concepts, we can
create theories and predictive tools that do not require the comprehensive knowledge of
the underlying regulatory mechanisms.
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Appendix A

Our goal is to write the likelihood function of the microenvironment for multivariate
internal variables and identify the appropriate conditions as the following:

P(Y | X1, X2, . . . , Xn) = P(Y | X) ∝
n

∏
i=1

P(Y | Xi) (A1)

Using the Bayesian theorem, one can write the posterior Equation (A1) in the multi-
variate case as

P(Y | X) =
P(X | Y)P(Y)

P(X)
(A2)

The joint probability P(Y, X) = P(Y, X1, X2, . . . , Xn) = P(Y | X1, X2, . . . , Xn)
P(X1, X2, . . . , Xn). For any particular internal variable Xi, we can obtain

P(Xi | Y) =
P(Y | Xi)P(Xi)

P(Y)
(A3)

Using our Equations (A2) and (A3), we can work out the following:

P(Y | X) =
∏n

i=1 P(Xi | Y)P(Y)
P(X)

=
∏n

i=1 P(Y | Xi)∏n
i=1 P(Xi)

P(X)P(Y)n−1 =
n

∏
i=1

P(Y | Xi) P(Y)1−n

=⇒ − ln P(Y | X) = −
n

∑
i=1

ln P(Y | Xi) + (n− 1) ln P(Y)
(A4)

In the above Equation (A4) we used our assumption that P(X) ≡ ∏n
i=1 P(Xi). Finally,

averaging both sides of Equation (A4) by the joint probability P(X, Y), we obtain

S(Y | X) = Σn
i=1S(Y | Xi) + (n− 1)S(Y) (A5)
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