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Abstract: The conceptual analysis of quantum mechanics brings to light that a theory inherently
consistent with observations should be able to describe both quantum and classical systems, i.e.,
quantum–classical hybrids. For example, the orthodox interpretation of measurements requires the
transient creation of quantum–classical hybrids. Despite its limitations in defining the classical limit,
Ehrenfest’s theorem makes the simplest contact between quantum and classical mechanics. Here,
we generalized the Ehrenfest theorem to bipartite quantum systems. To study quantum–classical
hybrids, we employed a formalism based on operator-valued Wigner functions and quantum–classical
brackets. We used this approach to derive the form of the Ehrenfest theorem for quantum–classical
hybrids. We found that the time variation of the average energy of each component of the bipartite
system is equal to the average of the symmetrized quantum dissipated power in both the quantum
and the quantum–classical case. We expect that these theoretical results will be useful both to
analyze quantum–classical hybrids and to develop self-consistent numerical algorithms for Ehrenfest-
type simulations.

Keywords: quantum–classical dynamics; open quantum systems; quantum mechanics in phase
space; Ehrenfest’s theorem
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1. Introduction

The logical analysis of quantum mechanical phenomena highlights the general coexis-
tence of classical and quantum systems and the consequent need for consistently describing
them. The object of such a theory would be a quantum–classical hybrid (QCH), i.e., a
system comprising a quantum and a classical interacting subsystem. QCHs are a subset of
open quantum systems [1–3] and can also be called open quantum–classical systems [4].

Although not able to fully characterize the emergence of the classical regime [5–7],
Ehrenfest’s theorem establishes the simplest formal link between the quantum and classical
worlds. In fact, the quantum average over the positions and momenta of a quantum
system in a time-dependent state performed using Ehrenfest’s theorem naturally leads to
the emergence of QCHs described by classical-like variables together with Hamiltonian-
like equations of motion [5–7]. Moreover, this theorem has been extended to relativistic
quantum theory [8].

Here, we developed Ehrenfest’s theorem for quantum bipartite systems, as the latter
play a special role in the generation of QCHs. We specialized our theorem to the case
of a quantum bipartite system comprising light and heavy particles. Such systems can
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be studied in terms of an operator-valued Wigner function [9–14] and its equation of
motion defined by means of a quantum–classical bracket [15–21]. One can also define
QCHs by means of the partial Wigner transform of the density matrix with respect to the
heavy coordinates [22]. In this way, one obtains an operator-valued Wigner function. The
equation of motion is obtained by applying the same partial transform to the quantum
Liouville equation and linearizing the result. The law of evolution is then defined by
an antisymmetric quantum–classical bracket [15–21]. Using the operator-valued Wigner
function [9–14] and the quantum–classical bracket [15–21], we derived Ehrenfest’s theorem
for QCHs. Notably, both for the quantum bipartite system and for the QCH, we found
that the time variation of the quantum/quantum–classical ensemble average of the energy
(i.e., the average energy dissipation) is equal to the average of the symmetrized power.

From a practical perspective, QCH are also important, as already noted, to approximate
quantum many-body problems involving systems with mixtures of particles with light and
heavy masses. There are various theoretical formalisms for describing QCHs, including
approaches based on the path integral formalism [23,24], the linear QCH dynamics [25,26],
hybrid quantum–classical master equations [27], and quantum–classical ensembles in
configuration space [28,29]. Using the results of [30,31], it was suggested in [32,33] that
one could devise a representation of QCHs where both quantum and classical variables
are defined in phase space. This is achieved using conditional tomographic probability
distributions [34]. We adopted here a formalism for QCH dynamics based on an operator-
valued Wigner function that depends parametrically on the phase space coordinates of
the classical system [9–14]. In passing, we note that there are also approaches for studying
the semi-classical limit of the Wigner function, (see, e.g., [35]). However, here, in line with
the approach of [9–21], we considered QCHs to exist in their own right, regardless of any
limiting procedure. The motivations for this perspective will be discussed in the following.

The paper is organized as follows. In Section 2, the role of QCHs in quantum me-
chanics is discussed with emphasis on both known and lesser known issues. The standard
Ehrenfest’s theorem for an isolated system is sketched in Appendix A. In Section 3, we
derive the form of Ehrenfest’s theorem for a quantum bipartite system. In this case, both
quantum subsystems are open with respect to each other. Thus, while the average energy
of the total system is a constant of motion, the energy of each separate subsystem is not
conserved. We show that the change in time of the average energy is equal to the average
of the anticommutator of the quantum dissipated energy. In Section 4, we consider the
dynamics of QCHs. These are a particular type of quantum open systems where one of
the two systems is classical. There are many situations in which QCHs appear, and we
also discuss them in Section 2. The equation of motion of QCHs is introduced in Section 4,
where its algebraic properties are also discussed. Section 5 is devoted to the derivation of
Ehrenfest’s theorem for QCHs.

2. Relation between Quantum and Classical Worlds

After almost one century from the birth of quantum mechanics (QM) and the inception
of the orthodox interpretation (OI) [36,37], a large part of the scientific community is still
searching for a more satisfactory understanding of the theory’s ontology [38,39]. From a
mathematical point of view, QM is an elegant theory. The work of Dirac enlightens QM’s
structural algebraic connection with classical mechanics, while QM’s probabilistic rules,
together with the principle of state reduction, provide solid machinery for the theoretical
predictions of the behavior of physical systems. However, the situation is not so bright
from the conceptual point of view. Landau [40] noted that QM needs classical mechanics in
order to be formulated. The quantum formalism is obtained by first considering a classical
system and, afterwards, quantizing it: except in a few cases, nobody has so far managed
to directly write quantum equations of motion without taking the “classical step” first.
To capture this state of affairs, Landau wrote that “quantum mechanics is not logically
closed” [40].
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The role of classical systems is not only to be some kind of algebraic blueprint for the
formulation of QM. Ultimately, a theory must predict the results of measurements. In the
present understanding of QM, the properties of a quantum system can only be measured
by classical instruments. Accordingly, quantum systems and classical systems, i.e., instru-
ments, must coexist in the study of quantum systems. QM describes the action of classical
instruments by means of a stochastic evolution, i.e., the collapse of the state [36,37,40–43],
which is a non-linear process. In fact, it is well known that, during the measurement,
linear coherent equations of motion are no longer valid. This is the famous “measurement
problem” [36,37,40–43]. We can see that a quantum–classical hybrid (QCH) naturally arises
from a quantum subsystem interacting with an external classical instrument. Moreover, the
quantum system’s environment can also act as a measuring apparatus, thus manifesting
classical properties.

Some interpretations of quantum mechanics deal with the measurement problem
in a somewhat more consistent way, e.g., the de Broglie-Bohm approach [44], Cramer’s,
time-symmetric, transactional interpretations of QM [45,46], and its possibilist variant [47].
In doing so, these theories pay the price of making the non-local character of QM even more
apparent. As is well known, Bohm’s potential is non-local in configuration space [44]. The
translational interpretation of QM [45–47] is based on an even more astounding non-locality,
according to which interactions are highly non-causal because the action of the future on
the past carries the same weight as the action of the past on the future. Moreover, they still
suffer from the fact that they are logically open, i.e., the equations are exactly the same as
the standard QM, and they cannot be written without imagining a model of the classical
world first. Moreover, they do not really solve the problem of rigorously explaining how
classical phenomena emerge from quantum ones. The possibility of the existence of classical
variables representing a measurement apparatus is linked to the existence of classical states
(i.e., non-linear chaotic states) that cannot be quantized and, conversely, quantum states
(i.e., stationary states) that do not admit a classical limit [44]. This situation is depicted in
Figure 1: The classical world is not contained in a larger and more fundamental quantum
world. Instead, there is only an overlap between the two worlds [44]. Nevertheless, the
“classical” system is composed of quantum particles, and the theory does not tell us when
a system of quantum particles becomes a classical object. This fact supports the reality
of QCHs.
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Figure 1. Relation between the quantum and the classical worlds. The classical world is not
contained in a larger and more fundamental quantum world. Instead, there is only an overlap
between the two worlds. In the picture the cyan Q-world (quantum) overlaps with the light orange
C-World (classical) and the green area is their intersection.
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self-field), instead than resorting to absolutely unpredictable interactions with classical156

objects that are external to the system. Such a mechanics necessitates QCHs.157

Figure 1. Relation between the quantum and the classical worlds. The classical world is not contained
in a larger and more fundamental quantum world. Instead, there is only an overlap between the two
worlds. In the picture, the cyan quantum world (Q-world) overlaps with the light orange classical
world (C-world), and the green area represents their intersection.

Besides the measurement problem, another argument in favor of the fundamental role
of QCHs in physics is found within certain approaches to quantum gravity. QCHs are nec-
essary for describing quantum processes taking place on classical curved manifolds [48–51].
Due to the present lack of a definitive theory of quantum gravity [52–57], one must resort to
a quantum–classical theory of motion [50,51]. QCHs have a true foundational status for the-
ories that look at quantum gravity as an emergent phenomenon [58–63]. In particular, Roger
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Penrose proposed an approach for the quantum-to-classical limit, called objective reduction
(OR), which involves an unquantized gravity field coupled to quantum matter [64–66]. OR
explains the quantum-to-classical limit by turning the idea of quantizing gravity on its
head: indeed, Penrose proposed to gravitize quantum theory [64–66]. Basically, the idea
behind OR is that all quantum particles are locally coupled to their own gravitational field.
Because of this coupling, an unstable entangled state of particles is created together with
particles’ gravitational self-field. Essentially, different gravitational metrics imply different
kinds of universes. In OR, it is assumed that this is not possible and that the more non-local
the separate particles’ states become, the more unstable is their entangled state with the
metric self-field. In a certain sense, the self-field is intrinsically classical and measures
the quantum superposition of states that generates it. Despite the superficial similarity
with the OI, OR assigns the collapse of the wave function to the internal dynamics of the
system (coupled to the local gravitational self-field), rather than resorting to absolutely
unpredictable interactions with classical objects that are external to the system. Such a
mechanics necessitates QCHs.

When a quantum many-body system comprises light and heavy particles, approxima-
tion as a QCH can enable efficient numerical calculations [67–75]. Our theoretical approach
uses an operator-valued Wigner function [9–14], thus enabling a suitable representation of
mixed states and making the theory amenable to the derivation of controllable approxima-
tions of numerical algorithms [75,76]. Approximations of many-body problems in terms of
QCHs most naturally appear in the description of chemical and biochemical reactions in
gases, fluids, and gels. One example is given by superoxide dismutase (SOD) [77–80]. SOD
is an enzyme whose action favors the reduction of O−2 into O2 and H2O2. In Cu, Zn SODs,
the whole physical process can be approximately analyzed in terms of a classical diffusive
motion of the superoxide to the quantum reactive center, i.e., the Cu atom, inside the SOD
protein, which is able to transfer quantum electrons between the different atoms involved
in the reactions.

3. Ehrenfest Theorem for Bipartite Systems

Before tackling QCHs, we take into consideration bipartite quantum systems. In
the next section, we will see that a QCH can be obtained via the classical approximation
of one of the two components of the otherwise completely quantum bipartite system.
Thus, we now consider a bipartite system SB, composed of subsystems S and B. The
position and momentum operators of subsystem S are denoted by r̂ and p̂, respectively.
They are also denoted collectively as x̂ = (r̂, p̂). As for subsystem B, its position and
momentum operators are written as R̂ and P̂, respectively. Similarly, we use the notation
X̂ = (R̂, P̂) for subsystem B. Using a compact notation, the position and momentum opera-
tors of SB are globally written as χ̂ = (x̂, X̂). Note that we are using a multidimensional
notation akin to that introduced in [22]. Accordingly, (r̂, p̂) ≡ (r̂1, ..., r̂n, p̂1, ..., p̂n) and
(R̂, P̂) ≡ (R̂1, ..., R̂N , P̂1, ..., P̂N), where n is the number of configurational coordinates of
system S and N is the number of configurational coordinates of system B, respectively. In
this way, x̂ is the multidimensional notation for x̂j, with j = 1, ..., 2n, and X̂ stands for X̂K,
K = 1, ..., N. Thus, the multidimensional symbol χ̂ is the compact notation for χ̂α, with
α = 1, ..., 2(n + N), describing all the canonical operators of the bipartite system. This
means that our theory is naturally valid for multidimensional systems.

We assumed that the Hamiltonian operator of the coupled system can be written as

ĤSB(χ̂) = ĤS(x̂) + ĤB(X̂) + V̂SB(r̂, R̂) , (1)

where the Hamiltonian operators of subsystems S and B are

ĤS(x̂) =
p̂2

2m
+ V̂S(r̂) , ĤB(X̂) =

P̂2

2M
+ V̂B(R̂) , (2)

respectively, and V̂SB(r̂, R̂) is the coupling potential.
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Ehrenfest’s theorem for the composite system is obtained by using the same kind of
reasoning adopted in the case of the isolated system S, which is treated in Appendix A. A
general quantum state of system SB is represented by the density matrix f̂SB(t) [81–83]. In
the Schrödinger scheme of motion, f̂SB(t) obeys the equation of motion:

d f̂SB(χ̂, t)
dt

= − i
h̄

[
ĤSB(χ̂), f̂SB(χ̂, t)

]
. (3)

The time evolution equations of 〈r〉t and 〈R〉t are given by

d
dt
〈r̂〉t = TrSB

([
f̂SB(χ̂, t), r̂

])
=
〈 p̂〉t
m

, (4)

d
dt
〈R̂〉t =

〈P̂〉t
m

. (5)

where TrSB represents the trace over both subsystems S and B. For the expectation values of
momenta, one finds

d〈 p̂〉t
dt

= −
〈∂V̂S(r)

∂r
|r→r̂

〉
t
−
〈∂V̂SB(r, R̂)

∂r
|r→r̂

〉
t

, (6)

d〈P̂〉t
dt

= −
〈∂V̂B(R)

∂R
|R→R̂

〉
t
−
〈∂V̂SB(r̂, R)

∂R
|R→R̂

〉
t

. (7)

Equations (4)–(7) establish Ehrenfest’s theorem in the case of a bipartite quantum system.
Equations (4) and (5) are identical to those one would obtain in the case of V̂SB(r̂, R) = 0.
Instead, Equations (6) and (7) contain the mutual backreaction of a system upon the other.

This backreaction is given by the averages of the quantum forces −
〈

∂rV̂SB(r, R̂)|r→r̂

〉
t

and

−
〈

∂RV̂SB(r, R̂)|R→R̂

〉
t
, where ∂r = ∂/∂r and ∂R = ∂/∂R.

Because of the coupling V̂SB(r̂, R̂), the average value of ĤS is not conserved. The
variation of the average value 〈ĤS〉t over time is

d
dt
〈ĤS(x̂)〉t = TrSB

((
d
dt

f̂SB(χ̂, t)
)

ĤS(x̂)

)

= − i
h̄

TrSB

([
ĤSB(x̂), f̂SB(χ̂, t)

]
ĤS(x̂)

)
= − i

h̄
TrSB

(
f̂SB(χ̂, t)

[
ĤS(x̂), ĤSB(χ̂)

])
= − i

h̄
TrSB

(
f̂SB(χ̂, t)

[
p̂2

2m
, V̂SB(r̂, R̂)

])
= −TrSB

(
f̂SB(χ̂, t)

[
p̂

2m
·∂V̂SB(r, R̂)

∂r
|r→r̂ +

∂V̂SB(r, R̂)
∂r

|r→r̂ ·
p̂

2m

])
= −1

2

〈{
∂V̂SB(r, R̂)

∂r
|r→r̂ ,

p̂
m

}〉
t

, (8)

where · is the multidimensional scalar product and {. . . , . . .} is the anticommutator of
the quantum force acting on system S because of its coupling to system B. The term
−∂rV̂(r, R̂)|r→r̂ · p̂/m represents the quantum dissipated power by system S. The anti-
commutator in the rhs of Equation (8) obeys Weyl’s ordering rule. We believe that the
derived Equation (8) is an elegant formula providing a structure as close as possible to the
classical formalism, while taking into account quantum algebra in a way that can readily
be expressed in terms of Wigner–Weyl’s formalism [84–89]. Since the Hamiltonian ĤSB(χ̂)
is symmetric under the transformation x̂ � X̂, Equations (4)–(8) take the same form for
subsystem B.
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In the next section, we show how the previous analysis can be adapted to QCHs.
We will find that the formulas retain their structure after a suitable reinterpretation of the
symbols involved.

4. The Dynamics of Quantum–Classical Hybrids

As discussed in the Introduction, there is a variety of situations in which it is necessary
to adopt a hybrid quantum–classical description of a bipartite system. When M � m, it
follows that Λ� λ, where Λ and λ are the de Broglie wavelengths of B and S, respectively.
Thus, one can disregard quantum effects on the dynamics of B and take the classical
approximation R̂→ R and P̂→ P. This means that the Hamiltonian of B in Equation (2)
becomes purely classical:

HB(X) =
P2

2M
+ VB(R) , (9)

while the coupling potential becomes a hybrid operator ṼSB(r̂, R). The Hamiltonian opera-
tor of S is still defined by Equation (2). Hence, the total Hamiltonian of SB:

H̃SB(χ̃) = ĤS(x̂) + HB(X) + ṼSB(r̂, R) (10)

defines a QCH, i.e., a hybrid system where classical and quantum “variables” are mixed.
In Equation (10), the tilde on the symbols χ̃ = (x̂, X) and H̃SB(χ̃) stands for their double
dependence on both quantum operators and classical parameters. Since the classical param-
eters X correspond to the (R, P) positions and momenta of B, they can be identified with
the phase space coordinates of B. Since P� p (because M� m), one can take an Eulerian
point of view, according to which the quantum motion of S occurs at high frequencies,
while B, from the point of view of S, appears frozen. So far, we have considered QCHs
following the historical development and via physical intuition. However, some years
ago, it was proven that QCHs can be obtained through a specific first-order approximation
of the partially Wigner-transformed commutator of a quantum bipartite system. This is
shown in Appendix B.

In the Schrödinger scheme of motion (while hybrid or quantum operators are constant
over time), the state operator of the QCH system, f̃SB(χ̃, t), obeys an equation for its time
evolution that couples the quantum degrees of freedom to the classical parameters X:

∂

∂t
f̃SB(χ̃, t) = − i

h̄
[
H̃SB(χ̃), f̃SB(χ̃, t)

]
+

1
2 ∑

kl
Jkl
(
∇k H̃SB(χ̃)

)
∇l f̃SB(χ̃, t)

−1
2 ∑

mn
Jmn
(
∇m f̃SB(χ̃, t)

)
∇nH̃SB(χ̃)

≡ − i
h̄
[̃
H̃SB(χ̃), f̃SB(χ̃, t)

]̃
. (11)

The symbol ∇ = (∂R, ∂P) represents the phase space gradient, and J is the symplectic
matrix [90]:

J =

[
0 1
−1 0

]
. (12)

The first term in the rhs of Equation (11) is the commutator between H̃SB(χ̃) and f̃SB(χ̃, t).
The commutator can also be written in terms of the symplectic matrix [19–21] J:

[
H̃SB(χ̃) f̃SB(χ̃, t)

]
J
[

H̃SB(χ̃)
f̃SB(χ̃, t)

]
. (13)

It is easy to verify that the last two terms of Equation (11) are the Poisson brackets of
H̃SB(x̂, X) and f̃SB(χ̃, t) defined so that their combination is antisymmetric.

All three terms in the rhs of Equation (11) define the quantum–classical bracket
[̃..., ...]̃ [15–21]. There are deep physical reasons for postulating that the dynamics of the state
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operator of QCHs is defined by the quantum–classical bracket [15–21]. Such a bracket is a
quasi-Lie bracket because it obeys all the properties of Lie brackets, but the Jacobi relation:[̃

Õ1,
[̃
Õ2, Õ3

]̃]̃
+
[̃
Õ3,

[̃
Õ1, Õ2

]̃]̃
+
[̃
Õ2,

[̃
Õ3, Õ1

]̃]̃
6= 0 . (14)

Equation (14) represents the failure of the Jacobi relation of Lie algebras (wherein it is an
identity) in the quasi-Lie algebra of quantum–classical brackets. In general, this implies
that quasi-Lie algebras do not obey time translation invariance. In the case of QCHs, the
evolution in time will inevitably mix quantum and classical operators so that, even in the
cases when S and B are initially uncorrelated, the quantum–classical bracket will inevitably
produce a QCH (when, of course, ṼSB(r̂, R) 6= 0). We now illustrate this point explicitly. Let
us assume that the state operator of the QCH is that of an uncorrelated initial state of S and
B. This is written as

f̃SB(χ̃) = fB(X) f̂S(x̂) . (15)

Upon propagating the state of Equation (15) over time by

f̃SB(χ̃, t) = e−(i/h̄)[̃H̃SB(χ̃),...]̃ f̃SB(χ̃) , (16)

the “sector” of the quantum variables x̂ and the “sector” of the phase space parameters X
become unavoidably mixed. Hence, even if the quasi-Lie hybrid bracket in Equation (11)
conserves the energy and the probability (it can be easily verified that the propagator in
Equation (16) is unitary), the quasi-Lie structure of the algebra obeyed by QCHs introduces
a form of irreversibility: the “partition” of the QCH defines a particular type of open
quantum system.

5. Ehrenfest’s Theorem for Quantum–Classical Hybrids

Average values of the variables of the QCH are calculated as

〈〈Õ(χ̃)〉〉t = TrS

∫
Ω

dX f̃SB(χ̃, t)Õ(χ̃) (17)

= T̃rSB
(

f̃SB(χ̃, t)Õ(χ̃)
)

(18)

The double brackets in the lhs of Equation (17) imply a double averaging, i.e., a partial trace
over the quantum degrees of freedom and an integral over the phase space parameters
of the QCH. In the rhs of Equation (17), TrS(. . .) stands for the partial trace over x̂, while∫

Ω dX . . . is clearly the phase space integral. Both operations are indicated by T̃rSB(. . .) in
the rhs of (18).

To derive Ehrenfest’s theorem, we consider

d
dt
〈〈r̂〉〉t = T̃rSB

(
∂

∂t
f̃ (χ̃, t)r̂

)
= − i

h̄
T̃rSB

([
H̃SB(χ̃), f̃ (χ̃, t)

]
r̂
)

+
1
2

T̃rSB

[
∑
jk

Jjk
(
∇jH̃SB(χ̃)

)(
∇k f̃ (χ̃, t)

)
r̂

]

− 1
2

TrSB

[
∑
mn

Jmn
(
∇m f̃ (χ̃, t)

)(
∇n H̃SB(χ̃)

)
r̂

]
(19)
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We also calculate

− i
h̄

T̃rSB
([

H̃SB(χ̃), f̃ (χ̃, t)
]
r̂
)

= − i
h̄

T̃rSB
[
H̃SB(χ̃) f̃ (χ̃, t)r̂− f̃ (χ̃, t)H̃SB(χ̃)r̂

]
= − i

h̄
T̃rSB

[
f̃ (χ̃, t)r̂H̃SB(χ̃)− f̃ (χ̃, t)H̃SB(χ̃)r̂

]
= − i

h̄
T̃rSB f̃ (χ̃, t)

[
r̂, H̃SB(χ̃)

]
= − i

h̄
T̃rSB

(
f̃ (χ̃, t)

[
r̂,

p2

2m

])
= T̃rSB

(
f̃ (χ̃, t)

p
m

)
=
〈〈 p̂(t)〉〉t

m
. (20)

The second term in the rhs of Equation (19) is

T̃rSB

∑
jk

Jjk

(
∇j H̃SB(χ̃)

)(
∇k f̃ (χ̃, t)

)
r̂

 = −T̃rSB

∑
j,k

Jjk

(
∇2

kj H̃SB(χ̃)
)

f̃ (χ̃, t)r̂

 = 0 .

(21)

Equation (21) follows from the fact that ∇k r̂ = 0 and ∑jk Jjk∇2
jk ĤSB(χ̃) = 0, because it is the

trace of the product of an antisymmetric matrix by a symmetric one. Analogously, we find that

T̃rSB

∑
jk

Jjk

(
∇j f̃ (χ̃, t)

)(
∇k H̃SB(χ̃)

)
r̂

 = 0 . (22)

To complete the derivation of Ehrenfest’s theorem in the case of a QCH, we must consider the
time derivative of 〈〈 p̂〉〉t. Let us consider now

d
dt
〈〈

p̂
〉〉

t = T̃rSB

(
∂

∂t
f̃ (χ̃, t) p̂

)
= − i

h̄
T̃rSB

([
H̃SB(χ̃), f̃ (χ̃, t)

]
p̂
)

+
1
2

T̃rSB

∑
jk

Jjk

(
∇j H̃SB(χ̃)

)(
∇k f̃ (χ̃, t)

)
p̂


− 1

2
T̃rSB

[
∑
mn

Jmn
(
∇m f̃ (χ̃, t)

)(
∇n H̃SB(χ̃)

)
p̂

]
. (23)

We calculate the three terms in the rhs of Equation (23). For the the average of the commutator, we
obtain

− i
h̄

T̃rSB
([

H̃SB(χ̃), f̃ (χ̃, t)
]
p̂
)

= − i
h̄

T̃rSB
(

f̃ (χ̃, t)
[
p̂, H̃SB(χ̃)

])
= − i

h̄

〈〈[
p̂, V̂S(r̂)

]〉〉
t
− i

h̄

〈〈[
p̂, ṼSB(r̂, R)

]〉〉
t

(24)

while for the other two terms on the rhs of Equation (23), we have

T̃rSB

∑
jk

Jjk

(
∇j H̃SB(χ̃)

)(
∇k f̃ (χ̃, t)

)
p̂

 = 0; , (25)

T̃rSB

[
∑
mn

Jmn
(
∇m f̃ (χ̃, t)

)(
∇n H̃SB(χ̃)

)
p̂

]
= 0 . (26)
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Finally, collecting the formulas for (d/dt)〈〈r̂〉〉t and (d/dt)〈〈 p̂〉〉t, the Ehrenfest theorem in a classical
bath is given by

d
dt
〈〈

r̂
〉〉

t =

〈〈
p̂(t)
m

〉〉
t

, (27)

d
dt
〈〈

p̂
〉〉

t = −
〈〈

dV̂S(r)
dr

〉〉
t

−
〈〈

∂ṼSB(r̂, R)
∂R

〉〉
t

. (28)

To complete the derivation of Ehrenfest’s theorem for the QCH, we also have
to calculate

d
dt
〈〈

R
〉〉

t =
d
dt

T̃rSB

(
d f̃SB(χ̃, t)

dt
R
)
= T̃rSB

R
2

∑
jk

Jjk(∇j H̃SB(χ̃))∇k f̃SB(χ̃, t)

− ∑
mn

Jmn(∇m f̃SB(χ̃, t))∇n H̃SB(χ̃)

)]
=

〈〈
P
M

〉〉
t

, (29)

where we integrated by parts and used ∂R∂P H̃SB(χ̃) = 0.
The time derivative of 〈〈P〉〉t is

d
dt
〈〈

P
〉〉

t = T̃rSB

(
P

d
dt

f̃SB(χ̃, t)
)
= T̃rSB

P
2

∑
jk

Jjk(∇j H̃SB(χ̃))∇k f̃SB(χ̃, t)

− ∑
mn

Jmn(∇m H̃SB(χ̃))∇n f̃SB(χ̃, t)

)]
= T̃rSB

[
P
2

(
∂H̃SB(χ̃)

∂R
· ∂ f̃SB(χ̃, t)

∂P

− 2P
M
· ∂ f̃SB(χ̃, t)

∂R
+

∂ f̃SB(χ̃, t)
∂P

· ∂H̃SB(χ̃)

∂R

)]
= T̃rSB

(
P
M

∂H̃SB(χ̃)

∂R
· ∂ f̃SB(χ̃, t)

∂P
+

P
M

∂ f̃SB(χ̃, t)
∂P

· ∂H̃SB(χ̃)

∂R

)
= −

〈〈
dVB(R)

dR

〉〉
t

−
〈〈

∂ṼSB(r̂; R)
∂R

〉〉
t

. (30)

Equations (29) and (30) give the formulation of Ehrenfest’s theorem for the averages of the phase
space parameters X.

The average energy of the quantum subsystem is not conserved. Within the QCH is a particular
type of open quantum system. If the number of phase space coordinates N is much greater than the
number n of quantum particles of S (N � n), one has an open quantum system in a classical bath.
The dissipation of 〈〈ĤS〉〉t can be calculated considering〈〈

ĤS
〉〉

t = T̃rSB
(

f̃ (χ̃, t)H̃SB(χ̃)
)

, (31)

from which

d
dt
〈〈

ĤS(x̂)
〉〉

t = − i
h̄

T̃rSB
([

H̃SB(χ̃), f̃ (χ̃, t)
]
ĤS(x̂)

)
+

1
2

T̃rSB

∑
jk

Jjk

(
∇j H̃SB(χ̃)

)
(∇k f (χ̃, t))ĤS(x̂)


− 1

2
T̃rSB

[
∑
nm

Jnm
(
∇n f̃ (χ̃, t)

)(
∇m H̃SB(χ̃)

)
ĤS(x̂)

]
. (32)
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The last two terms on the rhs of Equation (32) are null because of the antisymmetry of J. We are left
with

d
dt
〈〈

ĤS(x̂)
〉〉

t = − i
h̄

T̃rSB
([

H̃SB(χ̃), f̃ (χ̃, t)
]
ĤS(x̂)

)
= − i

h̄
T̃rSB

(
H̃SB(χ̃) f̃ (χ̃, t)ĤS(x̂)− f̃ (χ̃, t)H̃SB(χ̃)ĤS(x̂)

)
= − i

h̄
T̃rSB

(
f̃ (χ̃, t)

[
ĤS(x̂), H̃SB(χ̃)

])
= − i

h̄
T̃rSB

(
f̃ (χ̃, t)

[
p̂2

2m
, ṼSB(r̂, R)

])
= − i

h̄
T̃rSB

(
f̃ (χ̃, t)

(
p̂

2m
·
[
p̂, ṼSB(r̂, R)

]
+
[
p̂, ṼSB(r̂, R)

]
· p̂
2m

))

= −1
2

T̃rSB

(
f̃ (χ̃, t)

{
p̂
m

,
∂ṼSB(r, R)

∂r
|r→r̂

})

= −1
2

〈〈{
∂ṼSB(r; R)

∂r
|r→r̂ ,

p
m

}〉〉
t

. (33)

We now calculate the dissipation of the average value 〈〈HB〉〉 under the dynamics of the QCH.

d
dt
〈〈

HB(X)
〉〉

t = T̃r
[

1
2

HB(X)

(
∂H̃SB(χ̃)

∂R
· ∂ f̃SB(χ̃, t)

∂P
+

∂ f̃SB(χ̃, t)
∂P

· ∂H̃SB(χ̃)

∂R

)
− HB(X)

P
M
· ∂ f̃SB(χ̃, t)

∂R

]
= −

〈〈
P
M
·
(

∂H̃SB(χ̃)

∂R
+

∂HB(X)

∂R

)〉〉
t

= −
〈〈

P
M
· ∂ṼSB(r̂, R)

∂R

〉〉
t

. (34)

Equation (34) shows that the non-conservation of the energy of system B is due to its dissipated
power because of the coupling with the quantum system S.

6. Concluding Remarks
In this paper, we considered the relationship between the quantum and the classical world,

focusing on the existence of QCHs. Our detailed analysis supports a fundamental role of QCHs
in describing phenomena concerning quantum systems. In particular, Ehrenfest’s theorem shows
how classical-type variables emerge upon averaging over the positions and momenta operators
of a quantum system in a time-dependent state. We derived the form of Ehrenfest’s theorem for
a quantum bipartite system as a preliminary step to deduce Ehrenfest’s theorem for QCHs. It is
worth remarking that the quantum–classical theory adopted is based on an operator-valued Wigner
function evolving according to an antisymmetric quantum–classical bracket. Through our formalism,
we found that the time derivative of the average energy of one component is given by the average
of the symmetrized dissipated power not only in the case of the quantum bipartite system, but also
for QCHs.

The development of efficient numerical algorithms for the stable integration of the dynam-
ics of QCHs is a difficult problem and is the subject of ongoing research efforts also in our group.
The interest in this problem arises from the fact that QCHs are very good approximations to phys-
ical systems in many situations, including the systems created by the classical measurement of
quantum systems.
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Appendix A. Ehrenfest’s Theorem in Quantum Systems

Let us consider a quantum system S with position and momentum operators (r̂, p̂) = x̂,
respectively. We also assumed that the Hamiltonian operator is

ĤS(x̂) =
p̂2

2m
+ V̂S(r̂) . (A1)

The form of V̂S(r̂) is sufficiently general to embrace most of the situations of interest in non-relativistic
quantum statistical mechanics. The density matrix of system S, f̂S(x̂, t), obeys the quantum Liouville
equation of motion:

d
dt

f̂S(x̂, t) = − i
h̄

[
ĤS(x̂), f̂S(x̂, t)

]
. (A2)

In the Schrödinger picture, the averages of arbitrary dynamical variables O(x) are given by

〈O(x)〉t = TrS

(
f̂S(x̂, t)Ô(x̂)

)
(A3)

The evolution of the average value in Equation (A3) is given by

d
dt
〈O(x, t)〉t = − i

h̄
TrS

([
ĤS(x̂), f̂S(x̂, t)

]
Ô(x̂)

)
= − i

h̄
TrS

(
ĤS(x̂) f̂S(x̂, t)Ô(x̂)− f̂S(x̂, t)ĤS(x̂)Ô(x̂)

)
= − i

h̄
TrS

(
f̂S(x̂, t)Ô(x̂)ĤS(x̂)− f̂S(x̂, t)ĤS(x̂)Ô(x̂)

)
= − i

h̄
Tr
(

f̂S(x̂, t)
[
Ô(x̂), ĤS(x̂)

])
(A4)

Considering now the two canonical operators r̂ and p̂, with [r̂, p̂] = ih̄, Equation (A4) gives

d
dt
〈r〉t = − i

h̄
Tr
(

f̂S(x̂, t)
[
r̂, ĤS(x̂)

])
, (A5)

d
dt
〈p〉t = − i

h̄
Tr
(

f̂S(x̂, t)
[
p̂, ĤS(x̂)

])
. (A6)

Using the canonical commutator of r̂ and p̂, together with the Dirac correspondence rule between
commutators and Poisson brackets, which gives [ p̂, V̂S(r̂)] = −ih̄∂V̂S(r)/∂r, Equations (A5) and (A6)
provide the expression of the Ehrenfest theorem:

d
dt
〈r〉t =

< p̂ >t
m

(A7)

d
dt
〈p〉t = −

〈 dV̂S(r)
dr
|r→r̂

〉
t

(A8)

The energy of the isolated system S is clearly conserved.

Appendix B. Operator-Valued Wigner Function, Quantum–Classical Bracket, and Partial
Wigner Transform

The quantum–classical bracket can be obtained by taking the partial Wigner transform [22]
over the highly massive position and momentum operator of a bipartite quantum system SB. After-



Entropy 2023, 25, 602 12 of 14

wards, an expansion of the semiclassical Moyal bracket [85] in the small adimensional parameter
m =

√
m/M << 1 provides the quantum–classical brackets.

The quantum Liouville equation for a quantum bipartite is given in Equation (3). Upon taking
the partial Wigner transform of Equation (3), one obtains

∂

∂t
f̃SB(X, t) = − i

h̄

(
H̃SB(X)e

ih̄
2 ∑jk

←−∇ j Jjk
−→∇ k f̃SB(X, t)− f̃SB(X, t)e

ih̄
2 i ∑mn

←−∇m Jmn
−→∇n H̃SB(X)

)
, (A9)

where we used the partial Wigner transform of a product of operators:

WX
(
Ô1Ô2

)
W(R, P) = Õ1,SB(X)e

ih̄
2 ∑jk

←−∇ j Jjk
−→∇ k Õ2,SB(R, P) , (A10)

WX(. . .) denotes the partial Wigner transform over X̂. Hence, within this approach, we have f̃SB(X, t) =WX( f̂SB)
and ÕSB(X) = (2πh̄)NWX(ÔSB); see [22].

To obtain a QCH, one introduces suitable units for energy, time, length, the momentum of the light particles,
and the momentum of the heavy particles:

∆E = ∆w0 , (A11)

∆τ0 = h̄/∆w0 , (A12)

∆`m =

√
h̄2/m∆w0 , (A13)

∆pm = m∆`m/t0 =
√

m∆w0 , (A14)

∆PM =
√

M∆w0 . (A15)

The units of measure in Equations (A11)–(A14) are used to define the following dimensionless variables:

r̂′ = r̂/∆`m , (A16)

R′ = R/∆`m , (A17)

p̂′ = p̂/∆pm , (A18)

P′ = P/∆PM , (A19)

t̂′ = t̂/(h̄/∆w0) , (A20)

Ĥ′W(X′) =
ĤW(X)

∆w0
, (A21)

where, of course, we defined X′ = (R′, P′). Phase space derivatives can now be defined in terms of the adimen-
sional variables as

∂

∂t
=

∆w0

h̄
∂

∂t′
(A22)

∂

∂R
=

√
m∆w0

h̄
∂

∂R′
(A23)

∂

∂P
=

1√
M∆w0

∂

∂P′
(A24)

ih̄
2 ∑

jk

←−∇ j Jjk
−→∇ k = im ∑

jk

←−∇ ′j Jjk
−→∇ ′k , (A25)

where ∇′ = ((∂/∂R′), (∂/∂P′)). Then, Equation (A9) becomes

∂

∂t′
f̃ ′SB(X′, t′) = −i

(
H̃′SB(X′)e

im
2 ∑jk

←−∇ ′j Jjk
−→∇ ′ f̃ ′SB(X′, t′)

− f̃SB(X′, t′)e
im
2 ∑mn

←−∇ ′m Jmn
−→∇ ′n H̃SB(X′)

)
. (A26)

Since m << 1, we can expand the exponential up to the first order:

e
im
2 ∑jk

←−∇ ′j Jjk
−→∇ ′k ≈ 1 +

im
2 ∑

jk

←−∇ ′j Jjk
−→∇ ′k + ... (A27)

Hence, we obtain the quantum–classical equation of motion in scaled coordinates:

∂

∂t′
f̃ ′SB(X′, t′) = −i

[
H̃′SB, f̃ ′SB(X′, t′)

]
+

m
2

(
∑
jk

H̃′SB(X′)
←−∇ ′j Jjk

−→∇ ′k f̃ ′SB(X′, t′)

)

− m
2

(
∑
mn

f̃ ′SB(X′, t′)
←−∇ ′m Jmn

−→∇ ′n H̃′SB(X′)

)
. (A28)

Going back to dimensional coordinates, one finally obtains Equation (11).
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