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Abstract: Gate-level circuit partitioning is an important development trend for improving the effi-
ciency of simulation in EDA software. In this paper, a gate-level circuit partitioning algorithm, based
on clustering and an improved genetic algorithm, is proposed for the gate-level simulation task.
First, a clustering algorithm based on betweenness centrality is proposed to quickly identify clusters
in the original circuit and achieve the circuit coarse. Next, a constraint-based genetic algorithm is
proposed which provides absolute and probabilistic genetic strategies for clustered circuits and other
circuits, respectively. This new genetic strategy guarantees the integrity of clusters and is effective
for realizing the fine partitioning of gate-level circuits. The experimental results using 12 ISCAS ‘89
and ISCAS ‘85 benchmark circuits show that the proposed algorithm is 5% better than Metis, 80%
better than KL, and 61% better than traditional genetic algorithms for finding the minimum number
of connections between subsets.

Keywords: circuit partitioning; clustering algorithm; genetic algorithm; betweenness centrality

1. Introduction

Gate-level circuit partitioning is a very important phase during EDA simulation [1].
It divides large-scale circuits into similar-sized subsets, with a minimum number of con-
nections between subsets. The quality of circuit partitioning directly affects the sequence
simulation [2–4]. With the rapid increase in chip integration, gate-level circuit partitioning
algorithms are attracting expanding attention from the industry and scholars, becoming an
essential part of new generation EDA simulation software. There are two key indicators
to evaluate a circuit partitioning algorithm: the minimum number of connections and
load balancing. Early circuit partitioning algorithms mainly include KL [5–7] and FM [8,9].
With the development of machine learning theory, some heuristic algorithms, such as the
genetic algorithm [10–14], the particle swarm optimization algorithm [15,16], the bird flock
algorithm [17], etc., have also emerged. In order to further improve the calculation speed,
multi-level partition algorithms [18–20], such as Metis [21] and /hMetis [22], etc., have
received extensive attention in recent years. Kumar [23] proposed a streaming Metis parti-
tion to alleviate the computational resource constraints when dealing with large graphs.
He applied the traditional multi-level graph partition strategy to divide ultra-large-scale
circuits [24].

In general, multi-level partition algorithms include two phases: the coarse partition
phase and the fine partition phase. The former identifies clusters in the original circuit and
achieves circuit coarsening. The latter classifies the other nodes for the minimum number
of connections and load balancing. Although there are many algorithms to identify the
clusters of a circuit, the clustering algorithm is the most popular and effective to identify
similar nodes at the same time [25]. Clustering plays an important role in many scientific
fields [26], including earth sciences [27,28], biology [29–31], economics [32], community
detection [33], etc. The nodes identified by clustering algorithms are called clusters, which
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is very important for rapidly realizing the coarse partitioning of a circuit. However, the
traditional clustering algorithms suffer from some disadvantages when they are applied to
gate-level circuit coarse partition, including the random search starting node and how to
determine the optimal cluster size, etc. Thus, it is necessary to design an efficient clustering
algorithm based on the gate-level circuit features.

Moreover, these traditional multi-level partition algorithms, such as Metis, would
break the related clusters of the original circuits. This means that their fine partition
modules would contradict the conclusions of the coarse partition modules, to some extent.
Furthermore, these traditional algorithms often prioritize load balancing and treat the
minimum number of connections as a minor condition. For example, in the fine partition
phase, the traditional Metis algorithms are often optimized by the peer-to-peer exchange of
the elements in different subsets, which strictly guarantees load balancing, but may lead to
an increase in the number of connections. For gate-level circuit partitioning, the number
of connections between subsets, called cutsize, is key to reduce the waiting delay when
simulating different partition subsets. Thus, it is necessary to design a new fine partition
algorithm which not only ensures the integrity of clusters to achieve the compatibility with
the coarse partition algorithm, but also takes the minimum cutsize as the most important
optimization target.

In order to resolve the above disadvantages, a new gate-level circuit partitioning algo-
rithm based on clustering and an improved genetic algorithm is proposed. The proposed
algorithm adopts a two-level partition structure. In the coarse partition phase, the notions
of degree and betweenness centrality [34–37] of the graph theory are applied to optimize the
search starting node and identify the boundary of a cluster, respectively. They are effective
to improve the computational efficiency of clustering algorithms and determine the related
clusters. In the fine partition phase, a constraint-based genetic algorithm is proposed which
adopts the absolute genetic strategy for nodes in clusters and the probabilistic genetic
strategy for other nodes. This new genetic strategy can effectively realize the seamless
connection with the coarse partition, greatly reduce the search space, and improve the
convergence speed. In addition, the proposed genetic algorithm takes the minimum cutsize
as the optimization objective of the fitness calculation, and can obtain a relatively better
partition scheme, with a minimum cutsize.

The main contributions of this paper include the following: (1) a new gate-level
circuit partitioning algorithm is proposed; (2) a clustering algorithm based on betweenness
centrality is proposed which can identify and preserve clusters to realize the coarse partition
of a gate-level circuit; and (3) a constraint-based genetic algorithm is proposed, combining
absolute genetic strategy and probabilistic genetic strategy, which realizes a seamless
connection with coarse partition and is effective to obtain better partition results.

2. Preliminary Knowledge

A gate-level circuit can be described as an undirected graph G(V, E), where V = {v1, v2, · · · , vn}
is a set of nodes that represents the set of electronic components. E = {e1, e2, · · · , em} corresponds
to the set of graph edges that represents the set of connections between electronic components. The
number of edges connected to node v, called the degree of node v, is denoted as dG(v) or d(v).

Given an integrated circuit graph G(V, E), if all the nodes are divided into k two-two
disjoint subsets {V1, V2, · · · , Vk} and V1 ∪ V2 ∪ · · · ∪ Vk = V, then the union of subsets
is referred to as a k-way partition of graph G. Considering a given balance factor β, the
k-way partition is considered to be load balancing if it satisfies the following:

For any Vp ∈ V, 1 < = p < = k,
∣∣ Vp

∣∣ represents cardinality, that is, the number of nodes
in Vp, which needs to satisfy Equation (1):

(1/k)·(1 − β)∑k
i=1|Vi | ≤

∣∣ Vp
∣∣ ≤ (1/k) (1 + β) ∑k

i=1|Vi| (1)
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Betweenness centrality provides a general standard for the measurement of graph
centrality. For any node vp ∈ V, the betweenness centrality c

(
vp

)
represents the probability

sum of the shortest path through node vp:

c
(
vp

)
= ∑vi ,vj∈V

σ
(
vi, vj | vp

)
σ
(
vi, vj

) ; p 6= i 6= j (2)

where σ
(
vi, vj

)
is the number of shortest paths between any node vi and vj, and σ

(
vi, vj

∣∣vp
)

is the number of shortest paths that contain node vp. Nodes with high betweenness
centrality play the role of a broker, or gatekeeper, to connect the nodes and sub-groups [36].
In other words, it is a “bridge connection” of circuit clusters. A simple example is shown in
Figure 1.
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Figure 1. Schematic diagram of betweenness centrality. The betweenness centrality of nodes 1–9 is
{0.107, 0.018, 0.554, 0.107, 0.571, 0.107, 0.554, 0.018, 0.107}, and node 5 has the highest betweenness.
That is, node 5 connects two clusters, {1, 2, 3, 4} and {6, 7, 8, 9}.

For ease of expression, we define the concepts of the high betweenness node set and
the non-high betweenness maximum degree node to identify the boundary and starting
node of the clustering algorithms, as follows:

Definition 1. Given a gate-level circuit G = (V, E), a node set Y ⊆ V is called the high betweenness
node set, if it satisfies the following two conditions:

1. |Y| = k − 1;
2. For ∀ v′ ∈ V\Y, ∀ v ∈ Y, it has c(v) ≥ c(v′).

In detail, the high betweenness node set Y contains k − 1 nodes with the highest
betweenness centrality.

Definition 2. Given a gate-level circuit G = (V, E), and a high betweenness node set Y, node vmax
is called a non-high betweenness maximum degree node if it satisfies the following two conditions:

1. vmax /∈ Y;
2. ∀v ∈ V\Y, d(vmax) ≥ d(v).

The node vmax is mainly used as the starting node for each round of clustering, and it
is necessary to ensure that this node is not in the high betweenness node set Y.

3. Gate-Level Circuit Partitioning Algorithm Based on Cluster and an Improved
Genetic Algorithm

The goal of circuit partitioning is to divide large-scale circuits into similar-sized subsets,
with a minimum cutsize. First, a real gate-level circuit stored in the netlist file was modeled
into an undirected graph through preprocessing. Next, a two-level partition structure was
adopted to obtain the smallest cutsize and guarantee a certain load balancing. In detail,
we proposed a clustering algorithm based on betweenness centrality to realize coarse
partitioning of the original gate-level circuit and to guarantee a certain load balancing. On
this basis, a constraint-based genetic algorithm is proposed to realize a fine partition for
the minimum cutsize. The various phases of the three-way partition of the circuit under a
two-level partition structure are shown in Figure 2.
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Figure 2. Schematic diagram of the three-way partition of the circuit under a two-level partition
structure. During the preprocessing phase, all the electronic components in the circuit are unified,
and the undirected graph G0 is outputted. During the coarse partition phase, the clustering algorithm
reduces the scale of G0 and outputs cluster set Vc and minimum graph Gk. During the fine partition
phase, the improved genetic algorithm assigns nodes in Gk to each cluster and outputs the circuits
with the minimum cutsize.

The proposed algorithm, that is, the gate-level circuit partitioning algorithm based on
the clusters and the improved genetic algorithm, works only for undirected graphs, and is
not directly applicable to circuits. The algorithm mainly includes the following two parts:

1. The clustering algorithm based on betweenness centrality. It applies BFS (breadth-first
search) to identify the clusters in a graph and realize the coarse partition. These
clusters can ensure a certain load balancing and greatly reduce the scale of the graph;
that is, the solution space of the subsequent fine partitioning algorithm is reduced.

2. The constraint-based genetic algorithm. It adopts the absolute genetic strategy for
nodes in clusters and the probabilistic genetic strategy for other nodes, so as to achieve
the rapid convergence of the algorithm and to match with the coarse partition. The
genetic algorithm takes the minimum cutsize as the optimal goal and outputs the best
partition scheme.

3.1. Gate-Level Circuit Modeling and Preprocessing

A gate-level circuit is typically stored in a text file containing instantiated logical gates
and port-map-based connections. Circuit partitioning, generally formulated as a graph
partitioning problem, is an important step in the physical design of circuits [38]. The
connection matrix is one of the storage forms of undirected graphs, so the key to convert a
circuit to an undirected graph is to convert the circuit to a connection matrix.

Definition 3. The connection matrix M = {mij} of a gate-level circuit is defined as follows:

mij =

{
1, σ(vi, vj) > 0 & i 6= j

0, else
(3)

The size of the connection matrix is N*N; N is the number of electronic components,
each row and column correspond to an electronic component, and mij represents the
connection relationship between electronic components vi and vj. For ease of partitioning,
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we remove the self-loop and discrete node situations, unify the electronic components, and
use 1 to represent the connection relationship between the electronic components, while
0 represents no connection. A simple example of the gate-level circuit conversion to an
undirected graph is shown in Figure 3.
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gates, where U1, U2, and U4 are NOT gates, and U3 is the AND gate. The corresponding connection
matrix is M. U1 and U4 have no direct connection relationship; thus, the corresponding elements
m14 and m41 are 0. If there is a connection relationship between other electronic elements, the
corresponding element value is 1.

3.2. Clustering Algorithm Based on Betweenness Centrality

The clustering algorithm proposed in this paper is mainly used to realize the coarse
partition of the original graph. It outputs all the identified clusters Vc and the minimum
graph Gk. Different from the traditional random search, we adopt the non-high betweenness
maximum degree value vmax as the starting node of the BFS algorithm. In addition, the
nodes with high betweenness centrality are applied as the search boundary because they
play the role of connecting different clusters in the graph. Additionally, the search process
ends when one of the following conditions is satisfied: (1) BFS algorithm searches a node
belonging to Y, and the number of searched nodes is greater than the lower limit LR. (2) The
number of searched nodes is greater than the upper limit UR.

Finally, all the nodes searched in each round are regarded as cluster Vi. The above
process is repeated until k clusters are found; then, the clustering algorithm terminates and
outputs a minimum graph.

The main process of the clustering algorithm based on betweenness centrality is shown
in Algorithm 1.

Algorithm 1: A clustering algorithm based on betweenness centrality

Input: G0, the number of subsets k, high betweenness node set Y, lower limit of a cluster LR,
upper limit UR, cluster set Vc
Output: Vc, minimum graph Gk.
Variables: a cluster Vi

1. for i in k do
2. vmax = maxdegree_search (G0\Vc); //vmax does not belong to Vc
3. Vi = [];
4. Vi = BFS (vmax, G0, Vc, Vi Y, LR, UR);
5. Vc. append (Vi); //Store a cluster
6. if i == k−1:
7. Gk = G0\Vc;

return Gk;
8. end for

Analysis of the following parameters: (1) The lower limit of a cluster LR (lower range).
If vmax node is directly connected to a node in set Y, or is particularly close, then BFS would
be terminated too early, resulting in the current cluster being too small. Therefore, set
a lower limit LR. This threshold is a ratio of the number of searched nodes to the total
number of nodes, and is dependent on k. We set LR as (0.3~0.4) in the two-way partition
and (0.18~0.28) in the three-way partition. When the nodes in set Y are searched, the
related BFS algorithm can be terminated if the number of nodes reaches LR. In the related
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experiments in Section 4, we tested all the possible LR using the step size 0.02, selecting
the best parameter. For example, in the two-way partition, we set LR as 0.3, 0.32, 0.34, 0.36,
0.38, and 0.40 in turn, selecting the best LR. (2) The upper limit UR (upper range). If the
starting node vmax is particularly far from the nodes in set Y, then the BFS algorithm may
delay convergence, resulting in the related cluster being too big, which is not conducive to
load balancing. Therefore, we set the upper limit UR depending on the number of nodes.
We set the limit to 0.45 in the two-way partition and 0.3 in the three-way partition. That
is, if the number of nodes in Vi is greater than UR, BFS is terminated. By setting the lower
and upper limits of the number of search nodes, the clustering algorithm is helpful for
achieving load balancing.

The related judgment logic is described in Figure 4.
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First of all, detect whether the node searched by BFS is in the set Vc; if yes, continue
the search process; if no, determine whether it is in set Y; if yes, determine whether the
number of nodes is greater than LR; if yes, the algorithm ends; if not, continue the BFS
search. If the high betweenness node is not searched, determine whether the number of
nodes in Vi is greater than UR; if it is greater, the algorithm ends, and if it is not greater,
continue the BFS search.

3.3. Constraint-Based Genetic Algorithm

The classic genetic algorithms suffer from two problems when they are applied to
circuit partitioning task. First, the convergence speed and final output results would be poor
because of the big solution spaces caused by a large size circuit. Second, the probabilistic
genetic strategy of traditional genetic algorithms may destroy the clusters in a circuit,
thereby negating the result of the coarse partition.

In view of the above two points, we proposed a new genetic strategy using genes on
chromosomes. In detail, we define the genes corresponding to the nodes identified by the
coarse partition as absolute genetic genes, which do not participate in the crossover and
mutation operation and are guaranteed to be inherited into the next generation. On the
other hand, the other nodes are treated as traditional probabilistic genetic genes. Because
the length of short chromosomes after removing absolute genetic genes is often only about
20–30% of the complete chromosome, the related solution space is only about 5–10% of the
traditional area. This is effective for improving the calculation speed and achieving rapid
convergence.
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Moreover, to ensure that crossover and mutation do not impact the absolute genetic
genes, the absolute genetic genes in the complete chromosomes are removed before the
next round of evolution, and the remaining genetic information is copied as a new short
chromosome to achieve crossover and mutation. This process is realized by the Split
function. On the other hand, we also define the Joint function to add absolute genetic genes
to a short chromosome to recover a complete chromosome. The flowchart of the entire
genetic algorithm is shown in Figure 5.

The main process of the BFS algorithm with judgment logic is shown in Algorithm 2.

Algorithm 2: The BFS algorithm with judgment logic

Input: vmax, G0, Vc, ViLR, UR
Output: Vi
Variable: The initial value of the queue is an empty list, stopping condition: whether the BFS search
algorithm has searched for a node that belongs to set Y.

1. def BFS (vmax, G0, Vc, Vi Y, LR, UR):
2. Initialize the queue;
3. while queue:
4. node = queue.pop(0);
5. for each in node’s all neighbor nodes do
6. if each in Vc: //Perform the avoidance of duplicate check operation
7. continue;
8. if stopping condition: //Statement determines whether to terminate or not
9. if len(Vi) > LR:
10. return Vi;
11. break;
12. elif each not in Vi; //Perform the avoidance of duplicate check operation
13. the node joins the queue and joins the Vi;
14. else:
15. if len(Vi) > UR:
16. return Vi;
17. break;
18. elif each not in Vi:
19. the node joins the queue and joins the Vi;
20. end for
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3.3.1. Chromosome Encoding and Population Initialization

In this paper, a gene represents a node in a graph or an electronic component in a
circuit. Each gene has two important parameters: value and subscript. The value of the gene
represents which subset the node belongs to, and the subscript corresponds to the mark
of the node with the range of values [0, k − 1]. For the output of the clustering algorithm,
minimum graph Gk and cluster set Vc, there are different encoding rules, as follows:

For the nodes in cluster set Vc, their related gene values come from their cluster marks.
For example, all the nodes of cluster Vi have the same gene value i.

For the nodes in minimum graph Gk, they are randomly initialized as P_size short
chromosomes of population P0. The length of short chromosomes is Nk, which is the
number of nodes in minimum graph Gk. The P0 initialization process is as follows: (1) Select
each integer in [0, k − 1] in turn and add it to a short empty chromosome until the
chromosome is full. At this time, the number of each integer in the chromosome is basically
the same, about Nk/k. (2) Shuffle the chromosome to obtain random short chromosomes.
(3) Repeat the above operation to obtain P_size short chromosomes with a length of Nk,
which is the primary population P0. The flowchart of chromosome encoding is shown in
Figure 6.
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Figure 6. Schematic diagram of chromosome encoding. The nodes of undirected graph G are divided
into 3 subsets V0: {1,7,9}, V1: {2,8,11}, V2: {4,10,12} and minimum graph Gk : {3,5,6,13}. The values
of all genes on Chromosome_Vi are the same, 0 on Chromosome_V1, 1 on Chromosome_V2 , and 2 on
Chromosome_V2. The values of genes on short chromosomes Chromosome_1 and Chromosome_2 in the
population are random. The subscripts of all chromosomes in Figure 6 are set according to the marks
of their corresponding nodes in G.

3.3.2. Crossing, Mutation Operators

Crossover: The offspring chromosome first receives all the genes of the father; here,
the gene refers to the number [0, k − 1]. Then, another chromosome is selected as the
mother, randomly generating the crossover point, and the child receives the mother’s gene
located at this point. It should be noted that crossovers do not always occur when offspring
chromosomes are produced, but they do occur with a certain probability.

Mutation: Each offspring may mutate, and for the k-way partition, the probability that
each gene in [0, k − 1] mutates into any integer in [0, k − 1] (except itself) is the same.

3.3.3. Joint Function

Joint function mainly adds absolute genetic genes to short chromosomes and obtains
complete chromosomes for the fitness calculation, as shown in the following equation:

V0 ∪V1 ∪ · · · ∪Vk−1 ∪Vk = Vall (4)

where Vc = {V0, V1, · · · , Vk−1} means k clusters identified by the clustering algorithm.
Vk contains all the nodes of minimum graph Gk, that is, the genes of short chromosomes.

Joint function takes the current population Pi as input, and initializes P_size empty
chromosomes with a length of Nall (the number of nodes in Vall). The subscripts of the
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chromosomes are arranged from 1 to Nall , from smallest to the largest, and the assignment
of the values of genes on ith complete chromosome CompleteChromosome_i are as follows:

(1) All genes related to the nodes in Vc will be copied to the complete chromosomes,
according to subscript. That is, they are absolute genetic genes.

(2) For any chromosome CompleteChromosome_i, the other genes are copied from the
related short chromosome Chromosome_i in the population.

When all values of genes on the P_size complete chromosomes are assigned, the new
population is outputted.

Taking the three-way partition as an example, the effect of the Joint function is shown
in Figure 7.
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Figure 7. Schematic diagram of the Joint function. Chromosome_1 and Chromosome_2 represent
two short chromosomes in the current population, P_size = 2, and set V0, V1, and V2 are three
clusters identified by the clustering algorithm. This function joins the absolute genetic genes with
short chromosomes Chromosome_1 and Chromosome_2 and outputs two complete chromosomes
CompleteChromosome_1, CompleteChromosome_2.

3.3.4. New Fitness Function

The fitness function is applied to score and evaluate all the chromosomes. Since
the coarse partition process has achieved a certain balance, the minimum cutsize is only
considered by the fitness function for the fine partition, which is defined as follows:

f itnessi = Cmax − Ci (5)

where Cmax is the maximum cutsize of chromosomes in the current population, Ci is the
cutsize of ith chromosome, and f itnessi is the fitness of the ith chromosome.

We use the conventional roulette method to select the optimized chromosome, and
the selected probability peri is defined as follows:

f itness_sum = ∑P_size
i=1 f itnessi (6)

peri = f itnessi/ f itness_sum (7)

where P_size is the size of the population, and per_i represents the probability that the
ith chromosome would be selected. Obviously, Chromosomes with high probability are
more likely to be selected, and their genetic factors would gradually expand in the pop-
ulation. This fitness function is beneficial to obtain the fine partition result with the
minimum cutsize.

3.3.5. Split Function

To degrade the solution space of the genetic algorithm, before the next round of genetic
algorithms begins, it is necessary to perform Split operations on the chromosomes in the
population to obtain new short chromosomes and to perform linear transformations on
Equation (4) to obtain:

Vk = Vall\V0\V1\ . . . \Vk−1 (8)
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According to the above mathematical relationship, the Split function takes the current
population as input. The main function is to remove absolute genetic genes from each
complete chromosome in the current population.

For the ith complete chromosome CompleteChromosome_i, all absolute genetic genes in
this chromosome are deleted through subscripts stored in Vc, where Vc = {V0, V1, · · · , Vk−1}.
In detail, for any gene in CompleteChromosome_i, if its subscript is same as a node mark
in Vc, then it is deleted. The function outputs P_size short chromosomes, which is the
next generation population, and these are used as input to start the next round of genetic
evolution. This operation can reduce the solution space of the overall genetic algorithm
and effectively improve the computing efficiency.

Taking the three-way partition as an example, the effect of the Split function is shown
in Figure 8.
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3.3.6. Constraint-Based Genetic Algorithm

This algorithm takes the number of iterations as the main termination condition, when
the number of iterations exceeds the maximum number of iteration generation_max, the
algorithm terminates. Moreover, when the fitness of all chromosomes in the population
is equal, it represents the convergence of the algorithm; at this time, any chromosome in
the population is the best partition scheme for the original graph G0, and the algorithm is
also terminated.

The main process of the constraint-based genetic algorithm is shown in Algorithm 3.

Algorithm 3: Constraint-based genetic algorithm

Input: G0, Vc
Output: The partition scheme
Variable: The current population Pi, the maximum evolution generation of population
generation_max, i is the generation number, Crossover_rate, Mutation_rate.

1. for i in generation_max do
2. Crossover (Pi, Crossover_rate);
3. Mutation (Pi, Mutation_rate);
4. Joint (Pi, Vc);

5. selection (Pj
i );

6. if stopping condition:
7. return Pi[0];
8. break;
9. else:
10. Pi+1 = Split (Pi, Vc);
11. end for
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3.4. Complexity Analysis on the Complete Circuit Partitioning Algorithm

For the clustering algorithm, the time complexity of searching the adjacent nodes of a
node is O(n), and n is the number of nodes in a circuit graph. Then, the time complexity of
searching all the adjacent nodes is O(n2).

For the genetic algorithm, there are P_size chromosomes in a population; because
of the clustering algorithm, there are about 0.2*n genes on each chromosome, the time
complexity of gene exchange and mutation is O(0.2n), the time complexity of selection is
set to O(n), the probability of chromosome crossover is p (p ≈ 1), and the probability of
mutation is q (0 < q << 1). Then, in the process of inheritance of a generation, the time
complexity is O(p* P_size *0.2n + q* P_size + n). Suppose the iteration is b; thus, the total
time complexity is O(b*p*P_size *0.2n + b*q* P_size + b*n). Considering the fact that P_size
*b is always set as O(n), the final time complexity is O(n2).

Therefore, the complete time complexity of the proposed algorithm is O(n2).
For space complexity, the clustering algorithm needs to use an auxiliary queue, and in

the worst case scenario, all nodes need to enter the queue once, and the space complexity
is O(n). Additionally, in the worst case scenario, the genetic algorithm requires P_size
lists with length n, so the space complexity is O(P_size*n), and total space complexity is
O(P_size*n).

4. Experimental Results and Analysis

In order to verify the efficiency of the proposed algorithm, we conducted a series of
performance evaluations and comparison experiments. The algorithm is implemented in
Python, and all tests are completed on a laptop with a CPU basic frequency of 1.4 GHz,
8 GB memory, and a Windows 10 operating system. There are 12 circuits: (1) Cjtag is
the timing conversion circuit of JTAG; (2) Mmu is the memory interface management
circuit; (3) Other circuits come from ISCAS ‘89, ISCAS ‘85 standard test cases. In the
preprocessing phase, we remove the self-loop, discrete node situation. The number of logic
gates and signal lines are listed in Table 1. Moreover, the connection matrix before and
after gate-level circuits preprocessing for all test circuits can be found at the link below (the
gate-level circuit connection matrix file of the circuit samples can be obtained from https:
//gitee.com/beacon97/circuit_partition, accessed on 28 March 2023). The experimental
goal is to verify the efficiency of the proposed algorithm for finding the minimum cutsize
through two sets of experiments: two-way partition and three-way partition.

Table 1. Information table of circuits before and after preprocessing.

Circuit The Number of Logic Gates
before and after Preprocessing

The Number of Signal Lines
before and after Preprocessing

Cjtag 68/66 141/140
Mmu 302/236 391/360
s298 142/139 237/237
s349 196/180 227/221
s382 188/180 286/285
s344 195/188 241/241
s953 463/426 729/722
s1238 554/532 565/554
c1355 619/617 1089/1089
c1908 938/936 1519/1519
c2670 1642/1389 2288/2117
c3540 1741/1741 2958/2958

4.1. Analysis of the Results of the Two-Way Partition

The proposed algorithm is compared with the famous partition tool Metis, the classic
KL algorithm, and the Gene (traditional gene) algorithm. Among these, Metis was obtained
from Karypis Lab [21], and the KL algorithm was obtained from the literature [5]. In order
to improve the validity of the experiment, all the above algorithms were carried out 20 times,

https://gitee.com/beacon97/circuit_partition
https://gitee.com/beacon97/circuit_partition
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and the minimum cutsize (Min) and the average cutsize (Avg) were recorded. All experi-
mental results were recorded under the premise of controlling the balance factor β within
0.2. The parameters were set as: k = 2, LR ∈ (0.3 ∼ 0.4), UR = 0.45, generation_max = 100,
Crossover_rate = 0.8, and Mutation_rate = 0.003. The cutsize results of the two-way partition
experiment on 12 test circuits are shown in Table 2. The smallest Min and Avg in each set
of experiments are marked in bold.

Table 2. Cutsize results table in two-way partition.

Circuit
Metis KL Gene Proposed

Algorithm

Min Avg Min Avg Min Avg Min/LR Avg

Cjtag 6 6 7 21 16 25 6/0.3 8
Mmu 1 1 108 123 1 18 1/0.3 1
s298 21 21 58 61 26 43 17/0.3 26
s349 8 8 41 72 33 62 7/0.3 12
s382 16 16 84 96 36 41 13/0.3 21
s344 11 11 44 56 31 97 10/0.3 23
s953 26 26 195 216 128 143 28/0.32 36

s1238 36 36 114 176 85 93 32/0.34 43
c1355 51 51 416 432 126 285 64/0.34 72
c1908 48 48 583 634 175 243 45/0.34 53
c2670 38 38 682 704 269 302 41/0.36 47
c3540 87 87 864 971 338 376 84/0.40 91

Figure 9A shows the results of the two-way partition using the proposed algorithm
and Metis, and Figure 9B shows the results of the proposed algorithm and the KL and Gene
algorithms. The y-axis represents the minimum cutsize Min. The y-axis on the other side
represents improvement.
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Figure 9. Schematic diagram of two-way partition results. The polyline in (A) represents the
performance improvement rate of the proposed algorithm compared to Metis, which increases of
{0, 0, 19.05%, 12.50%, 18.75%, 9.09%, −7.69%, 11.11%, −9.80%, 6.25%, −7.89%, 3.45%}, respectively.
The black polyline in (B) represents increases of {14.29%, 99.97%, 70.69%, 82.93%, 84.52%, 77.27%,
85.60%, 71.90%, 84.62%, 92.29%, 93.99%, 90.28%}. The red polyline in Figure B represents increases
of {62.50%, 0, 34.62%, 78.79%, 63.89%, 67.74%, 78.13%, 62.35%,49.21%, 74.29%, 84.76%, 75.15%}. The
given bar charts illustrate the result of the algorithm applied to the test circuits in terms of the Min.

According to Table 3, the proposed algorithm obtained the best result (Min) 9 times
in 12 circuit samples, and the best performance can be improved by up to 19.05%. In
Figure 9A, the polyline is generally above the zero-dot line, and is improved by an average
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of 4.57% compared with Metis. The above experimental results show that compared with
the Metis algorithm, the proposed algorithm exhibits a good advantage in finding the Min.
On the other hand, the stability of the proposed algorithm (Avg) is weaker than that of
Metis, which is related to the random crossover and mutation of the genetic algorithm, so
the proposed algorithm must be carried out multiple times to obtain the optimal results.

Table 3. Cutsize results table in the three-way partition.

Circuit
Metis Gene Proposed Algorithm

Min Avg Min Avg Min/LR Avg

Cjtag 13 13 25 33 8/0.18 10
Mmu 53 53 82 86 33/0.18 37
s298 41 41 51 68 37/0.18 49
s349 10 10 81 92 9/0.18 10
s382 39 39 113 126 30/0.18 41
s344 10 10 70 87 9/0.18 11
s953 40 40 148 189 47/0.20 51

s1238 57 57 220 248 60/0.24 65
c1355 93 93 288 317 91/0.26 96
c1908 81 81 343 403 92/0.28 102
c2670 60 60 529 581 76/0.28 79
c3540 141 141 692 743 203/0.28 224

Compared with the KL and Gene algorithms, the proposed algorithm obtains the best
results in all 12 samples. The black and red polylines represent the performance improve-
ment rate of the algorithm compared to KL and Gene, respectively, and the two polylines
are both above the zero-dot line. Among the 12 samples, the proposed algorithm improved
by an average of 78.95%, compared with the KL algorithm, and 60.95%, compared with the
Gene algorithm. From the above experimental results, it is concluded that compared with
the KL and Gene algorithms, the proposed algorithm shows great advantages in finding
the minimum cutsize Min. The stability of the proposed algorithm is also advantageous
over those of the KL and Gene algorithms.

4.2. Analysis of the Results of the Three-Way Partition

The KL algorithm only supports two-way partition experiments, so in the three-way
partition experiment, only the proposed algorithm, the Gene algorithm, and the Metis
algorithm are compared. The parameters are set as: k = 3, LR ∈ (0.18 ∼ 0.28), UR = 0.4,
generation_max = 100, Crossover_rate = 0.8, and Mutation_rate = 0.003. The cutsize results of
the three-way partition experiments on 12 test circuits are shown in Table 3.

Figure 10 shows the results of the three-way partition of the algorithm compared with
the Metis and Gene algorithms in finding the Min.

According to Table 3, compared with the Metis and Gene algorithms, the algorithm
proposed in this paper obtains 7 times better results for finding the minimum cutsize
Min. In Figure 10, the black polyline is generally above the zero-dot line. Among the
12 circuit samples, the proposed algorithm improved by an average of 2.02% over Metis.
The red polyline is also above zero, and the average improvement rate is 70.29%. The above
experimental results show that the proposed algorithm shows a good advantage for finding
the minimum cutsize in the three-way partition.
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Figure 10. Schematic diagram of three-way partition results. The black polyline in Figure 10 rep-
resents the performance improvement rate of the proposed algorithm compared to Metis, which
increases by {38.46%, 37.74%, 9.76%, 10.00%, 23.08%, 10.00%, −17.50%, −5.26%, 2.15%, −13.58%,
−26.67%, −43.97%}, respectively, and the red polyline in Figure 9 represents the improvement to the
Gene algorithm, which is {68.00%, 59.76%, 27.45%, 88.89%, 73.45%, 87.14%, 68.24%, 72.73%, 68.40%,
73.18%, 85.63%, 70.66%}. The bar chart of figure shows the partitioning results of Metis, the Gene
algorithm, and the proposed algorithm applied to the 12 circuit samples.

5. Conclusions

Aiming at the gate-level circuit partitioning problem faced by EDA simulation, we
propose a gate-level circuit partitioning algorithm based on clustering and an improved
genetic algorithm. By introducing the betweenness centrality, the clustering algorithm is
designed to quickly identify clusters in a circuit and realize the coarse partition. In the fine
partition phase, a constraint-based genetic algorithm is proposed which realizes a seamless
connection with the coarse partition and is effective in obtaining a better partition result.
The test results of 12 circuits show that the proposed algorithm exhibits better performance
than Metis and traditional genetic algorithms in searching for the minimum number of
connections between subsets, which is effective for improving the partition quality.

The algorithm in this paper is relatively insufficient in terms of processing the circuit
scale, and the next step will be based on the big data development platform to further
improve the overall performance of the algorithm.
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