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Abstract: Vehicle re-identification across multiple cameras is one of the main problems of intelligent
transportation systems (ITSs). Since the differences in the appearance between different vehicles
of the same model are small and the appearance of the same vehicle changes drastically from
different viewpoints, vehicle re-identification is a challenging task. In this paper, we propose a model
called multi-receptive field soft attention part learning (MRF-SAPL). The MRF-SAPL model learns
semantically diverse vehicle part-level features under different receptive fields through multiple
local branches, alleviating the problem of small differences in vehicle appearance. To align vehicle
parts from different images, this study uses soft attention to adaptively locate the positions of the
parts on the final feature map generated by a local branch and maintain the continuity of the internal
semantics of the parts. In addition, to obtain parts with different semantic patterns, we propose a
new loss function that punishes overlapping regions, forcing the positions of different parts on the
same feature map to not overlap each other as much as possible. Extensive ablation experiments
demonstrate the effectiveness of our part-level feature learning method MRF-SAPL, and our model
achieves state-of-the-art performance on two benchmark datasets.

Keywords: vehicle re-identification; multi-receptive field; part-level features

1. Introduction

The vehicle re-identification (Re-ID) task identifies the same vehicle from multiple
nonoverlapping cameras in surveillance systems. This task is particularly useful when
a car’s license plate is occluded or cannot be seen clearly. In these scenarios, the vehicle
Re-ID method can effectively locate the vehicle of interest from the monitoring database,
which has important applications in intelligent transportation, public safety, smart cities,
and other fields. In recent years, vehicle Re-ID has received increasing attention from the
computer vision community.

Due to drastic changes in illumination, occlusion, resolution, viewing angle, and
background, vehicle Re-ID is still a very challenging task, particularly when the vehicle
images are obtained from a large number of different cameras. To address this Re-ID
task, many deep learning models [1–3] for extracting global vehicle information have
been proposed in recent years. Although these works have achieved remarkable success
in vehicle Re-ID tasks, since global feature learning only captures the most important
information representing different identities, the identification ability of global features
tends to decline severely when the differences in vehicle appearance are not significant. As
shown in Figure 1, different vehicles belonging to the same model may look quite similar.
We can distinguish these challenging vehicle image samples by subtle clues, such as the
annual inspection signs and decorations marked by the circle shown in Figure 1. Therefore,
learning rich fine-grained local features is crucial for vehicle Re-ID tasks.
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Figure 1. The four cars are divided into two groups: the silver-white cars at the top and the red
cabs at the bottom. Each group is comprised by different vehicles of the same model. The detailed
information distinguishing each vehicle is marked with red circles; for example, the car in the lower
left has rows of stickers including annual inspection signs and a small red screen, while the car in the
lower right has three stickers and a yellow item. These details can completely distinguish the two
red cars.

Recently, part-based models [4–7] have made great progress in learning effective local
feature representations for pedestrian Re-ID and have obtained highly promising results.
By horizontally dividing one feature map into multiple parts in space, these models can
mine fine-grained discriminative features on each part. Aggregating all part-level features
can effectively identify pedestrians. Since person and vehicle Re-ID tasks are conceptually
similar and both of them belong to the image retrieval problem, techniques from one task
can usually be adapted to the other. To solve the problem of high similarity in Figure 1,
Ref. [8] divided the feature maps of vehicle images along various directions to extract
rich fine-grained local features. They applied the most advanced methods of pedestrian
Re-ID to vehicle Re-ID. However, on the one hand, the change in vehicle appearance from
different perspectives is much larger than that of pedestrians. As shown in Figure 2, the
texture or color of the clothes worn by a person does not change drastically under different
viewing angles, meaning that the images of the same person from different cameras will
always have more in common and can be roughly spatially aligned, so that the body can
be vertically segmented into several parts to extract part-level features. By contrast, the
appearance of the same vehicle can change drastically due to the change in viewpoint,
and the misalignment of parts is more severe than that of pedestrians, such that a simple
rigid spatial division cannot align vehicle parts well enough to learn the part-level features
effectively. On the other hand, the simple rigid division of feature maps breaks the semantic
continuity within parts.

To overcome the above-described challenges, some methods [9–12] focus on enabling
the networks to identify the vehicle perspective and learn the fine-grained information
related to the perspective through vehicle key point detection, parsing networks, and
pose estimation. These methods solve the above problems to some extent but increase
complexity and rely on additional annotations. In addition, other methods use attention
mechanisms to effectively mine identity-related salient information. Ref. [13] enhanced the
discriminative power of the features on two branches by using nonlocal spatial attention
and channel attention. Although these methods can effectively discover salient information
globally, they cannot find rich detailed clues. Analytically, we find that an effective part-
level feature learning mechanism for vehicle Re-ID should follow three criteria: (1) the
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detected parts/regions should be aligned and maintain internal consistency; (2) the detected
parts/regions should be semantically diverse to cover as much discriminant information as
possible in vehicle images; (3) The detected part semantics should be multilevel because
receptive fields of different sizes can capture part information with different semantic
levels. To meet these demands, we propose a model called multi-receptive field soft
attention part learning (MRF-SAPL) for part-level feature learning. Without the need for
additional annotations, MRF-SAPL locates parts under multiple receptive fields and learns
rich, multi-semantic-level part-level features associated with vehicle identities.

different different

same

same

different

different

Figure 2. The two images on the left are of the same pedestrian taken from different viewpoints. It
can be intuitively seen that the color of the clothes worn by the pedestrian does not change drastically
from different viewpoints, and when the pedestrian images are divided vertically into three parts,
there are still many commonalities between the corresponding parts of the two images. The two
images on the right are of the same vehicle taken from different viewpoints, and it can be seen that
the change in viewpoint causes drastic changes in the appearance of the same vehicle, and that the
misalignment between the corresponding parts is more severe.

In the MRF-SAPL model, the backbone network is extended to a series of ordered
branches, one of which is a global branch for learning global features, and the rest are
local branches for learning part-level features. Each local branch mines multiple part-level
features with a specific semantic level under a receptive field, so that multiple local branches
can obtain enough part-level features with different semantic levels from the entirety of
the vehicle image. Within each local branch, we use the soft attention part learning (SAPL)
module to learn to locate part positions and extract part features. Specifically, first, the
final feature map output by a local branch is adaptively divided into several internal
semantically continuous parts/regions using soft attention. The adaptive division of
regions can automatically align the corresponding vehicle parts from different images.
Second, to ensure that the multiple parts extracted by the same branch are semantically
irrelevant, we propose a new loss function called the overlapping region penalty (ORP) to
force the corresponding regions of different parts on the feature map to not overlap each
other as much as possible in order to obtain parts with different semantic patterns. Finally,
after positioning the regions where the parts are located, we use a part feature extractor to
extract the corresponding part features from each part region. Our contributions can be
summarized as follows:

(1) We propose a multi-receptive soft attention part learning (MRF-SAPL) model for
vehicle Re-ID that does not require rigid space partitioning or additional labeling and
can flexibly discover enough part-level features with multiple semantic levels;

(2) To align the vehicle part features from different images, we exploit soft attention to
adaptively divide the space of the feature map to obtain the locations of parts with
internal semantic continuity;

(3) Extensive experimental results show that a higher performance can be obtained
compared to that of other state-of-the-art methods on two large datasets, where a new
loss function, ORP, is proposed to force each local branch of MRF-SAPL to semantically
learn complementary part-level features.
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2. Related Work
2.1. Local-Based Re-ID

The design of existing Re-ID methods is mainly based on handcrafted features [14,15],
metric learning [16–18] and deep learning networks [5,9,19–27]. Some recent approaches
learn features at the part level and achieve state-of-the-art performance in Re-ID tasks.
Existing part-based Re-ID methods can be generalized into two categories: methods with
external cues and partition-based methods.

Refs. [10,12,28] used external cues utilize human parsing, pose estimation, and object
segmentation to precisely align body parts under the supervision of additional semantic
labels. Miao et al. [12] learned the visibility of body parts using pose landmarks and ex-
tracted useful features for pedestrians using the generated attention masks. Gao et al. [10]
learned part features with the help of attention maps guided by pose estimation and trained
the visibility of parts through pseudolabels generated by graph matching. He et al. [28]
introduced an object detection network to generate the ROI (region of interest) for each
vehicle part and then projected the ROIs into the global feature map generated by a global
module to capture local information. However, the required external cues limit the usage
and robustness of their method in practical deployments. By contrast, our model can
align the corresponding parts of different vehicles using only identity labels under the
supervision of the overlapping region penalty (ORP) constraint.

Common segmentation-based models mainly align body parts by rigidly segmenting
images/feature maps. Sun et al. [5] horizontally partitioned the final feature map output
by the network to learn fine-grained part-level features of pedestrians from each region.
Chen et al. [8] divided the feature maps of vehicle images in various directions to fully
mine fine-grained local features. Although these methods match part features by region
partitioning without using external labels and models, they assume that the same part
appears at the same location in different images, making it difficult to overcome the serious
spatial misalignment problem inherent in vehicle Re-ID. Recently, Li et al. [29] adaptively
learned discriminative body part features for occluded person re-identification tasks by
enhancing interpart associations from a global perspective through a transformer encoder-
decoder architecture. Both our method and the method of Ref. [29] can adaptively align
parts to suppress the spatial misalignments. Different from Ref. [29], MRF-SAPL can
generate aligned parts without relying on the complex transformer architecture.

2.2. Multiscale Features

Convolutional neural networks extract the features of the target in a layer-by-layer
abstract manner through the convolution layer and the pooling layer. The design of the
receptive field size has an important impact on the performance of the networks. Small
receptive fields can only observe local information; in contrast, large receptive fields can
only observe global information. Therefore, researchers have designed various multiscale
model architectures to capture features at different semantic levels. He et al. [30] proposed
a spatial pyramid pooling network that can obtain fixed-size feature maps and capture
information at different scales through different downsampling steps. Zhao et al. [31]
proposed the pyramid scene parsing network (PSP Net) that utilizes downsampling and
upsampling operations to extract local and global information, making scene recognition
more reliable. The Inception module proposed by Szegedy et al. [32] consists of four
parallel channels, namely, 1 × 1 convolution, 3 × 3 convolution, 5 × 5 convolution, and
3 × 3 maximum pooling, which are combined to extract the features of the previous
layer of different scales. Tolstikhin et al. [33] proposed a multilayer perceptron Mixer
(MLP-Mixer) architecture for computer vision that uses a depthwise separable filter with
a maximum receptive field and interchannel parameter sharing to mix tokens to capture
global information. Li et al. [34] facilitated visual representation learning via 3 × 3
convolutional static context and contextual self-attention-based dynamic context. In this
paper, we let each local branch focus on capturing discriminative information under a
specific receptive field through a downsampling operation.
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3. Method
3.1. Network Structure

Figure 3 shows the overall network architecture of the MRF-SAPL model, which
includes a ResNet-50-based backbone, a global branch for extracting global information,
and three local branches (LB1, LB2, LB3) for extracting part-level information. For the
backbone network, we use ResNet-50 [35] as the basis for the construction of feature map
extraction. As with previous works [13,36], we further remove the original fully connected
layer for multi-loss training and replicate the res_conv4_2 and subsequent blocks to build
four independent branches. One branch is the global branch, and the others are local
branches.

Part locator
1×1 conv
Softmax

Input
images

ResNet-50
backbone
(Before

res_conv4_2)

Part of
res_conv4_x&conv5_x

Global Average Pooling(GAP)
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Figure 3. Network architecture of the MRF-SAPL model. It consists of a ResNet-50-based backbone,
a global branch for extracting global information, and three local branches (LB1, LB2, LB3). The three
local branches extract part features with different semantic levels under different perceptual fields by
the soft attention part learning (SAPL) module that consists of a part locator, an overlapping region
penalty (ORP) constraint, and a part feature extractor.

The global branch learns a compact global feature representation. In this branch, we
use the downsampling convolution layer with a step size of 2 in the res_conv5_1 block and
conduct the global average pool (GAP) [37] operation on the final output feature map to
obtain a 2048-dimensional feature vector. The dimension of the vector is further reduced
to 256 through a dimensionality reduction module that consists of a 1 × 1 convolution
layer, a batch normalization layer and a ReLU layer. We use the subnetwork composed
of the backbone network and the global branch as the baseline network (baseline) in
our experiments.

Intuitively, with the change in the receptive field size, human beings naturally observe
an object from different semantic levels. Integrating discriminative information at different
semantic levels can help people better identify objects. Therefore, in our network, we
introduce three local branches to capture the semantics at different levels to obtain a large
amount of discriminative information related to vehicle identities. To preserve enough
detailed information, in all local branches, we do not use the downsampling operation
in the res_conv5_1 block to provide appropriate space for the change in the receptive
field. For each local branch, we first change the resolution of the final feature map to
obtain the feature map under a specific receptive field. On the obtained feature map, a
part locator uses soft attention to locate the internal semantic continuous parts and uses
the ORP constraint to make the semantic patterns between parts different. Then, a part
feature extractor generates the corresponding part features according to the positions of
the parts on the feature map. Finally, we use the GAP operation on a part feature to obtain
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a 2048-dimensional feature vector, and the dimension of the vector is further reduced to
256 by a similar dimension reduction module in the global branch for cross entropy loss
and triple loss.

The 256-dimensional feature vectors from the global and the three local branches are
combined as the final feature representation for the vehicle Re-ID task. The global branch
learns the overall discriminative information of vehicles, and the local branches learn the
local information at different semantic levels. The global and local branches complement
and cooperate with each other to improve their performance. Combining global features
with local features can construct a more robust feature representation.

3.2. Soft Attention Part Learning Module

Some methods [10,12,38–40] train detection models with part labels to detect part
locations and extract part-level features. However, it is difficult to collect the additional
labels required by these methods. Our proposed SAPL module does not require any labels
related to parts and can adaptively learn the locations of the parts on the feature map
and extract the part features. It consists of a part locator, an overlapping region penalty
constraint and a part feature extractor. After the final feature map of a local branch passes
through the SAPL module, we obtain the position of each part on the feature map and a
constant number of part-level features.

We define the feature map generated by an image via a backbone and a local branch
as a three-dimensional tensor T with the size of h×w× c (h, w, and c represent the channel
height, width, and channel number, respectively). We define the activation vector viewed
along the channel dimension as pixel z, which indicates the semantic information of its
location. The purpose of the part locator is to locate the spatial positions of the parts on
the T and to ensure the continuity and consistency of the internal semantics of the parts.
Therefore, according to the semantic similarity between pixels, we use soft attention to
assign them to each part. Specifically, the part locator is implemented by a fully connected
layer followed by a softmax function, which is given by:

P(Pi | z) = softmax
(

WTz
)
=

exp
(
WT

i z
)

∑
p
j=1 exp

(
WT

j z
) , (1)

where P(Pi | z) is the prediction probability of part Pi at the z of the feature map T and W
is the weight matrix of the fully connected layer. p is the number of vehicle parts.

After applying the part locator on each pixel of T, we obtain a set of attention maps
A = {Ai | i = 1, . . . , p}, where Ai ∈ Rh×w indicates the position of the i-th part on the
feature map T and can be reshaped into a vector with dimension hw. To obtain multiple
parts with different semantic patterns in a branch, rather than just focusing on the main
discriminant area, the corresponding positions of different semantic parts should have
a small overlap in space. Therefore, the overlapping region penalty (ORP) constraint is
proposed to measure the area of the overlapping region of A that is defined as:

Lorp = ∑
i 6=j

AT
i Aj

‖Ai‖2 ·
∥∥Aj

∥∥
2

, (2)

where ‖·‖2 is the L2 norm. The ORP constraint adaptively softly divides the semantic
space and generates multiple parts with different semantics. The combination of the part
locator and ORP constraint has two beneficial effects for part segmentation. On the one
hand, semantically similar features from a particular part are encouraged to be grouped
together so that a strong part locator can be learned and corresponding parts from different
images can be aligned. On the other hand, different semantic patterns between parts are
encouraged to obtain multiple semantic complementary parts.

After obtaining the attention map of each part on the feature map, the part feature ex-
tractor generates the corresponding features for each part. Given that pixel z on the feature
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map belongs to the prediction probability of part Pi, the part feature extractor generates
feature fi of the part by weighted pooling that is calculated using the following formula:

fi =
∑z∈T P(Pi | z)× z

Ci + ε
, (3)

where divisor Ci is the accumulation of P(Pi | z) on T and represents the salience of each
part on the image. It should be noted that if a vehicle part is not visible in an image, all
values of the attention map generated by the part locator for the part are close to 0. Hence,
to avoid using 0 as a divisor when Ci is 0, ε is a small constant, which is set to 0.05 in
our implementation.

3.3. Multi-Receptive-Field Granularity

Humans can capture different levels of semantics of a vehicle (such as vehicle type,
lamp shape, and annual inspection sign) under different receptive fields (such as viewing
distance or image resolution). Some types of semantics (e.g., with or without annual
inspection) may be easier to capture in small receptive fields, while others (e.g., car door
style) may be easier to capture in large receptive fields. Inspired by this, we propose a multi-
receptive field soft attention part learning (MRF-SAPL) model to capture discriminative
information on different semantic levels.

In MRF-SAPL, each local branch corresponds to a receptive field granularity, and
we distinguish different receptive field granularities through different resolutions of
the final feature maps of the local branches. According to the previous description,
when a vehicle image passes through all local branches, we obtain a set of feature maps
Tall = {Tm | i = 1, 2, 3}, where Ti ∈ Rh×w×c includes h × w pixels (h, w, c represent the
height, width, and number of channels, respectively). For the mth granularity, we per-
form spatial average pooling with a downsampling factor m on the mth feature map
of Tall and obtain the downsampled feature map T

′
m ∈ Rhm×wm×c of hm × wm pixels,

where hm = h − 4(m − 1) and wm = w − 4(m − 1). The factorized feature map set is
T
′
all =

{
T
′
m | i = 1, 2, 3

}
. We apply the SAPL module separately on all feature maps of T

′
all

to obtain multiple part features on different semantic levels.

3.4. Multitask Training

Multitask learning combines several related subtasks for overall learning and has
been shown to be effective in Re-ID problems. We train our network by three types of
supervision, i.e., the cross-entropy loss, the triplet loss, and the ORP loss Lorp in Equation (2).
The cross-entropy loss is expressed as:

Lid = −Ik=y log(h), (4)

where Ik=y returns 1 only when the predicted class k of a sample is equal to its supervised
class y; otherwise, it returns 0. h is the probability that the sample is predicted to be class k.

The triplet loss separates the distance between examples of the same vehicle and the
distance between examples of different vehicles by a certain threshold. We adopt the triplet
loss with hard mining of Ref. [36]. During model training, P vehicles and K images of each
vehicle are randomly sampled for each mini-batch to meet the triplet loss requirement. The
triplet loss can be defined as:

Ltp =
P

∑
i=1

K

∑
a=1

[
α + max

p=1,...,K
‖ai − pi‖2

− min
n=1,...,K,j=1,...,P,j 6=i

∥∥ai − nj
∥∥

2

]
+

,

(5)
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where α is the margin hyperparameter that controls the differences of intra and inter
distances, and ai, pi, and nj are the feature representations extracted from anchor, positive,
and negative samples, receptively.

The cross-entropy loss and the triplet loss are used to supervise the network to learn
identity-related global and local features. The overall training loss is formulated by:

L = Lorp + Lid + Ltp, (6)

where Lorp prefers that the activated regions of different parts are nonoverlapping, and Lid
and Ltp guide the model MRF-SAPL to activate the image discriminative regions rather
than the background.

4. Experiments
4.1. Datasets and Evaluation Metric

We evaluate our proposed model on the VeRi-776 and VehicleID datasets, which are
two mainstream datasets used in vehicle re-identification tasks.

VeRi-776 is the benchmark dataset of the vehicle Re-ID task. It consists of 49,357 images
of 776 different vehicles captured by 20 nonoverlapping cameras in various directions and
lighting conditions. The training and test sets contain 37,781 images of 576 vehicles and
11,579 images of 200 vehicles, respectively. According to the evaluation protocol in Ref.
[2], we employ an image-to-trajectory cross-camera search, that is, using a vehicle image
of a camera to search the trajectory of the same vehicle in other cameras. We measure the
performance of our proposed model using mean average precision (mAP) and the Top-1
and Top-5 accuracies of cumulative matching curves (CMC).

VehicleID is another data-heavy benchmark consisting of 221,567 images from 26,328
different vehicles, of which 113,346 images from 13,164 vehicles are used for training and
the rest are used for testing. The test set is further divided into three subsets of different
sizes (small, medium, and large). In the inference phase, for each subset, one image is
randomly selected from the images of each vehicle to form the gallery set, and the other
images are used as query images. The average result of 10 repeated random samplings is
regarded as the performance of our model on the VehicleID dataset. The evaluation indices
of the VehicleID dataset are the Top-1 and Top-5 accuracies of CMC.

4.2. Implementation Details

Prior to feeding the vehicle images into the MRF-SAPL model, we resize them to
256 × 256 for more detailed information. The weights of the backbone and branches of
MRF-SAPL are initialized with ResNet-50 [35] pretrained on ImageNet. During the training
phases, we only randomly flip the input images horizontally for data augmentation. By
randomly selecting 16 vehicles with 4 images per vehicle, the batch size is set to 64. We
set the margin parameter of the triplet loss to 1.2 in all experiments. We choose stochastic
gradient descent (SGD) as the optimizer. The initial learning rate is set to 0.01 and decays
to 1 × 10−3 after 300 epochs and 1 × 10−4 after 400 epochs. The total training process
lasted for 500 epochs. During testing, we concatenate all dimensionality-reduced feature
vectors as a feature representation for each image in the query and gallery sets. The feature
representations extracted from the original and horizontally flipped images are summed
and normalized as the final vehicle feature embedding for the input image. Our model is
implemented on two NVIDIA RTX 2080Ti GPUs using the PyTorch framework.

4.3. Comparison with State-of-the-Art Methods

We compared the proposed model MRF-SAPL in this paper with the current methods
on the VeRi-776 and VehicleID datasets with the corresponding evaluation indices.

VeRi-776: Table 1 presents the comparison of previous methods and our model on
the VeRi-776 dataset. Among these methods, Siamese+Path [1] relies on the temporal and
spatial information of the vehicle images in the VeRi-776 dataset. TCPM [25] divides the
final feature map from the horizontal and vertical directions and uses an external memory
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module to store partial features to model the global feature vector. Dual+SA [41] uses
self-attention to generate attention maps about the vehicle model and vehicle ID and inputs
the attention map to the part localization module to obtain the fine region features of ROIs.
Relying only on visual information, our proposed model MRF-SAPL achieves 81.5% mAP,
94.7% Top-1 accuracy, and 98.7% Top-5 accuracy. Our model is superior to these advanced
methods in terms of mAP and Top-1 accuracy. A good mAP score shows that MRF-SAPL
has a stronger ability to retrieve all corresponding images with the same identity in the
gallery set, both for different camera attributes and viewpoint changes.

Table 1. The mAP, Top-1, and Top-5 on VeRi-776.

Method mAP Top-1 Top-5

Siames+Path [1] 0.583 0.835 0.900
VAMI [11] 0.501 0.770 0.908
RAM [42] 0.615 0.886 0.940
EALN [43] 0.574 0.844 0.941

AAVER [44] 0.612 0.890 0.947
PRN [28] 0.743 0.943 0.989

VCAM [40] 0.686 0.944 0.969
SPAN [26] 0.689 0.940 0.976
TCPM [25] 0.746 0.940 0.971
VSCR [45] 0.755 0.941 0.979

LCDNet+BRL[46] 0.760 0.946 0.980
Dual+SA [41] 0.786 0.944 0.992

MRF-SAPL (Ours) 0.815 0.947 0.987

VehicleID: We compared the scores of Top-1 and Top-5 on this dataset because each
query vehicle has only one corresponding image in the gallery set. The comparison of the
results on the Vehicle-ID dataset is shown in Table 2. VAMI [11] utilizes an adversarial
training network and vehicle attributes to infer the features of the input vehicle under
different viewpoints. PRN [28] utilizes an object detection network to generate the ROI for
each vehicle part and extract part features. LRPT+TSAM+CP [47] lets a parameter generator
network capable of generating complex image transform regions and a recognizer compete
with each other to enhance images. An examination of the results presented in Table 2
shows that our MRF-SAPL outperforms SOTA TCPM by 2.3%, 0.8%, and 1.7% in Top-1
accuracy on small, medium, and large subsets, respectively. Compared with other models,
our MRF-SAPL model achieves the best performance. Without resorting to additional labels,
object detection, and parsing networks, our proposed model can learn rich fine-grained
local features for vehicle Re-ID.

Table 2. The Top-1 and Top-5 on Vehicle ID.

Method
Small Medium Large

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

DRDL [48] 0.490 0.735 0.428 0.668 0.382 0.616
OIFE [9] - - - - 0.670 0.829

VAMI [11] 0.631 0.833 0.529 0.751 0.473 0.703
RAM [42] 0.752 0.915 0.723 0.870 0.677 0.845

AAVER[44] 0.747 0.938 0.686 0.900 0.635 0.856
EALN [43] 0.751 0.881 0.718 0.839 0.693 0.814
PRN [28] 0.784 0.923 0.750 0.883 0.742 0.864

SAVER[17] 0.799 0.952 0.776 0.911 0.753 0.883
TCPM [25] 0.820 0.964 0.788 0.943 0.746 0.907

Dual+SA[41] - - - - 0.738 0.835
SN++ [49] 0.767 0.870 0.748 0.842 0.739 0.836

LRPT + TSAM + CP[47] 0.779 0.935 0.779 0.907 0.745 0.865
MRF-SAPL (Ours) 0.843 0.977 0.796 0.941 0.763 0.916
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4.4. Ablation Study

We conducted extensive experiments on the VeRi-776 dataset and compared the per-
formance of different structures to determine the optimal structure of the proposed model.

Soft attention part learning module. In Table 3, “+” indicates the combination of
different branches. Baseline+LB1, Baseline+LB2, and Baseline+LB3 outperform Baseline
by 6.9%, 6.8%, and 4.7% in mAP, respectively. Baseline+LB1 (W/O SAPL) means re-
moving the SAPL module from Baseline+LB1 and dividing the final feature map of the
LB1 branch evenly into four parts vertically. We observe a 1.1% decrease in mAP with
Baseline+LB1(W/O SAPL) compared to Baseline+LB1. This demonstrates the effectiveness
of our proposed soft-attention part learning module.

Table 3. Performance comparison of MRF-SAPL with different architecture on VeRi-776.

Method mAP Top-1 Top-5

Baseline 0.726 0.918 0.973
Baseline+LB1 0.795 0.932 0.985

Baseline+LB1(W/O SAPL) 0.784 0.928 0.980
Baseline+LB2 0.794 0.938 0.982
Baseline+LB3 0.773 0.924 0.983

Baseline+LB1+LB2 0.813 0.935 0.983
Baseline+LB1+LB3 0.805 0.935 0.982
Baseline+LB2+LB3 0.795 0.945 0.982

LB1+LB2+LB3 0.802 0.938 0.982
Baseline+Single(LB1+LB2+LB3) 0.771 0.923 0.979

MRF-SAPL (Ours) 0.815 0.947 0.987

Multi-receptive field granularity. Our framework contains three local branches with
different receptive field granularities, namely fine-grained, medium-grained, and coarse-
grained branches, which are responsible for part segmentation and feature extraction under
different receptive fields. We investigate the role of multiple receptive field granularities
in MRF-SAPL by progressively combining local branches based on the baseline. From
Table 3, we can observe that combining two local branches with different receptive field
granularities can further improve the performance, and MRF-SAPL using three receptive
fields of different sizes to learn part-level features achieves the best performance; this shows
that learning part-level features with different semantic-level preferences using different
granularities of receptive fields is effective.

Global branch. In Table 3, LB1+LB2+LB3 means that the global branch is removed
from MRF-SAPL, and only three local branches are used to train the network. At test time,
feature vectors from the three local branches are extracted and concatenated to compute a
similarity score. Compared with MRF-SAPL, the accuracy of LB1+LB2+LB3 decreases by
1.3% in mAP. This is because the global branch with a larger receptive field can learn the
overall discriminant information of vehicles, complementing the local branches that learn
fine-grained local discriminant information.

Multiple local branches. In our method, we use three local branches to learn part
features with different semantic levels from vehicle images; therefore, we would like to
know whether it is possible to learn part features with different semantic levels using a
single branch. To verify this hypothesis, we can perform spatial soft segmentation on the
final feature map of the same local branch under multiple receptive fields and apply the
corresponding constraints of the method proposed in this paper. From Table 3, we can
observe that Baseline+Single(LB1+LB2+LB3) relying on a single local branch has a 4.4%
performance drop in mAP compared to MRF-SAPL. This may because using different
receptive field granularities to softly divide the space of the same feature map will have
different or even the opposite effects on its res_conv5 layer.

Influence of the number of parts. To study the impact of the number of parts on the
Re-ID accuracy, we introduce several divisions with different numbers of parts. Specifically,
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we conduct experiments with the 2, 3, 4, and 5 parts. In each experiment, the feature maps
on the three local branches are divided into the same number of regions. The experimental
results are summarized in Table 4. With an increasing number of parts, mAP first increases,
but does not always increase. When the number of parts is equal to 5, mAP starts to decrease.
This is because when the spatial of a feature map is too finely divided, some semantic
information that is meaningful for vehicle Re-ID will be decomposed into segments that do
not have general discriminative abilities. In our proposed method, the number of parts of
the final feature maps of all local branches is set to 4.

Table 4. Influence of the number of parts on VeRi-776.

The Number of Parts mAP Top-1 Top-5

2 0.801 0.944 0.985
3 0.807 0.939 0.984
4 0.815 0.947 0.987
5 0.802 0.938 0.982

Vehicle sorting and attention map visualization. Figure 4 shows the qualitative
results of our MRF-SAPL model on the vehicleID dataset, where each query image only has
one target image in the gallery set. In Figure 4, the images on the left are the query images,
and the images on the right are the Top-5 nearest neighborhoods from the gallery. Figure 5
shows the attention map visualization of the SAPL module in the LB1 branch when the
number of parts is 4. From Figure 5, we can observe that the four attention maps learned by
the SAPL module focus on four different regions: the main area consisting of the lower part
of the windshield and the hood, the roof area, the annual inspection mark area in the upper
part of the windshield, and the fog lamp area. For the first row in Figure 4, the query image
and the Top-3 image are two different vehicles belonging to the same manufacturer and
model, with extremely similar appearances. The SAPL module accurately distinguishes
them by focusing on the annual inspection mark area. For the third row in Figure 4, Top-4
and Top-5 have large color differences in the main area compared to the query, so they
are ranked lower. Although Top-1 and the query are the same vehicle captured under
different views, and Top-2 and Top-3 are extremely similar to the query, the SAPL module
can distinguish them by focusing on the roof area and the main area, respectively. For the
fourth row in Figure 4, the query and Top-1 are two different vehicles belonging to the
same manufacturer and model, both of which were captured from a rear view. Top-2 and
the query are the same vehicle captured from different perspectives. In this case, the SAPL
module has difficulty distinguishing between Top-1 and Top-2 because there is no obvious
difference in appearance information between Top-1 and the query. This demonstrates that
MRF-SAPL is able to effectively distinguish vehicles with extremely similar appearances in
most cases.
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query 1 2 3 4 5

Figure 4. Visualization of the ranking list on the vehicleID dataset. The images in the first column are
the vehicle images to query. The remaining images in each row are the Top-5 ranking results retrieved
from the gallery that are most similar to the corresponding query image. The retrieved images with
the same ID as the query image are shown with the green border, while the error samples are shown
with the red border. Note: Some vehicle images in the VehicleID dataset contain Chinese characters
for the shooting time and location, such as the characters in the top left corner of the Top-2 image in
the second line, and their impact on vehicle recognition can be negligible.

Top-1query1 Top-1query2 Top-1query3

Figure 5. Visualization of attention maps. Each column displays four attention maps generated by
the LB1 branch of MRF-SAPL for a image. The first and second columns correspond to the attention
maps of the query image and the Top-1 image in the first row of Figure 4, respectively. The third
and fourth columns correspond to the attention maps of the query image and the Top-1 image in the
second row of Figure 4, respectively. The fifth and sixth columns correspond to the attention maps of
the query image and the Top-1 image in the third row of Figure 4.
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5. Conclusions

In this paper, we propose a model for part-level feature learning, the Multi-Receptive
Field Soft Attention Part Learning (MRF-SAPL) model. The model can learn fine-grained
features at multiple semantic levels to effectively distinguish different vehicles with similar
appearances. In particular, the soft-attention part learning module (SAPL) in this model
does not require any part-related labels and can adaptively learn to localize the locations
of the parts on the feature map to suppress severe spatial misalignments in vehicle Re-
ID. Furthermore, we obtain parts with different semantic patterns by forcing the regions
corresponding to the parts on the final feature map of a local branch to be as nonoverlapping
as possible. Our Multi-Receptive Field Soft Attention Part Learning model achieves state-
of-the-art performance on two public datasets.
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