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Abstract: The detection of a fallen person (FPD) is a crucial task in guaranteeing individual safety.
Although deep-learning models have shown potential in addressing this challenge, they face sev-
eral obstacles, such as the inadequate utilization of global contextual information, poor feature
extraction, and substantial computational requirements. These limitations have led to low detection
accuracy, poor generalization, and slow inference speeds. To overcome these challenges, the present
study proposed a new lightweight detection model named Global and Local You-Only-Look-Once
Lite (GL-YOLO-Lite), which integrates both global and local contextual information by incorpo-
rating transformer and attention modules into the popular object-detection framework YOLOv5.
Specifically, a stem module replaced the original inefficient focus module, and rep modules with
re-parameterization technology were introduced. Furthermore, a lightweight detection head was
developed to reduce the number of redundant channels in the model. Finally, we constructed a large-
scale, well-formatted FPD dataset (FPDD). The proposed model employed a binary cross-entropy
(BCE) function to calculate the classification and confidence losses. An experimental evaluation
of the FPDD and Pascal VOC dataset demonstrated that GL-YOLO-Lite outperformed other state-
of-the-art models with significant margins, achieving 2.4–18.9 mean average precision (mAP) on
FPDD and 1.8–23.3 on the Pascal VOC dataset. Moreover, GL-YOLO-Lite maintained a real-time
processing speed of 56.82 frames per second (FPS) on a Titan Xp and 16.45 FPS on a HiSilicon Kirin
980, demonstrating its effectiveness in real-world scenarios.

Keywords: fallen person detection; deep learning; computer vision; object detection; lightweight
neural networks; binary cross-entropy

1. Introduction

A report by the World Health Organization (WHO) [1] highlighted falls as the main
cause of health concerns among seniors, with an alarming 4–15% of falls resulting in serious
injury and a significant 23–40% of elderly fatalities being attributed to falls. Given the
severity of the consequences associated with falls in the elderly population, it is imperative
that proactive measures are taken to detect these incidents. Accordingly, there is a pressing
need for algorithms capable of accurately recognizing and assessing human falls.

Fallen person detection (FPD) technology has been categorized into three primary im-
plementation methods: scene perception, wearable devices, and visual-based approaches.
Scene-perception-based FPD algorithms [2,3] have utilized non-video sensors, such as pres-
sure and acoustic sensors, placed around pedestrian walking areas to capture human body
feature information. This method suffers from limited applicability due to its high cost and
susceptibility to environmental interference, such as noise, which leads to high detection
error rates. Wearable-device-based FPD research [4,5] has typically embedded sensors in
user-worn devices, such as smart bracelets and mobile phones. However, wearing various
sensors over long periods has caused discomfort for some users, and complex activities
have been misinterpreted as falls. Additionally, the size and the portability of these devices
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present their own challenges, including battery life, maintaining connectivity, and data
transmission.Visual-information-based FPD technology [6,7] collects image or video data
through fixed image or video acquisition equipment at the detection site, and then it identi-
fies the human body using traditional image-processing technology or deep-learning-based
methods. The accuracy of FPD systems has improved significantly [6,8–11] due to the
emergence of deep learning and neural network models in computer vision. However,
limitations still exist within the deep learning paradigm, including the inadequate uti-
lization of global contextual information [12,13], sub-optimal feature extraction [10], and
large floating-point operations (FLOPs) and model parameters [11,14]. These shortcomings
have resulted in poor overall accuracy, limited robustness and generalization, and slow
detection speeds.

This study proposed a novel lightweight detection model, Global and Local You-Only-
Look-Once Lite (GL-YOLO-Lite), to address the challenges of low detection accuracy and
slow detection speeds associated with current deep-learning object-detection algorithms.
GL-YOLO-Lite leveraged transformer modules [15] and an attention module [16] to cap-
ture the global contextual information and employed convolutional layers to extract local
information, thus enhancing feature representation. Furthermore, GL-YOLO-Lite replaced
the original inefficient focus module in YOLOv5 [17] with a stem module [18] that com-
prised standard convolutional units and utilized rep modules [19] with re-parameterization
technology, enabling the model to employ both multi-branch and single-path methods.

Additionally, we created and labeled a large-scale, well-structured FPD dataset (FPDD)
by collecting online images and taking photos. By conducting comparison experiments
on the FPDD and the Pascal VOC dataset [20,21], we demonstrated that GL-YOLO-Lite
had superior performance. According to the mean average precision (mAP@0.5), frames
per second (FPS), and the technique for order preference by similarity to an ideal solution
(TOPSIS) metrics, GL-YOLO-Lite outperformed other state-of-the-art lightweight models.
We present a streamlined comparison of the highlights and the limitations of various FPD
technologies in Table 1.

Table 1. Comparison of various methods of FPD technologies.

FPD Technology Main Technical Principles Highlights Limitations

Scene perception
Infrared sensors, Non-intrusiveness The device has a single deployment environment
radar technology, Real-time performance High false alarm rate;

millimeter wave radar, etc. Scalability The device is expensive

Wearable device
Accelerometers Easy to use Long-term wear reduces comfort

Gyroscopes Strong applicability Battery life issues
Magnetometers Lower cost High hardware and software requirements

Visual information
Camera captures data Non-intrusiveness Poor quality of anchor box generation

Machine learning Easy installation Inadequate utilization of global features
Deep learning Visual effectiveness Huge parameters and FLOPs

GL-YOLO-Lite
Automatically generating high-quality anchors

Combining global contextual information and local features using transformer and attention modules to improve model detection accuracy, robustness
Reducing parameters and FLOPs while increasing detection speed using stem module, rep modules, and redesigned lightweight detection head

To sum up, the contributions of this study were four-fold, as follows:

• Drawing from YOLOv5, GL-YOLO-Lite introduced transformer and attention mod-
ules, which were capable of capturing long-range dependencies and enabled the
model to better integrate global and local features. This improved the detection
accuracy significantly.

• We improved GL-YOLO-Lite by using a stem module instead of the focus module,
adding rep blocks for re-parameterization, and designing a light-weight detection
head. These changes made GL-YOLO-Lite faster.

• We created and labeled a large-scale, well-structured dataset, FPDD, by collecting
online images and taking photos. This filled the gap in existing FPD datasets.
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• The efficacy of the proposed GL-YOLO-Lite was validated through experiments on
the FPDD and the Pascal VOC dataset. Our results showed that GL-YOLO-Lite
had a 2.4–18.9 mAP improvement over the state-of-the-art methods on FPDD and
a 1.8–23.3 mAP improvement on the Pascal VOC dataset. Furthermore, our model
achieved top-tier TOPSIS scores.

2. Related Works
2.1. Fallen Person Detection Based on Scene Perception

The application of fall detection technology based on scene perception involves the
deployment of a variety of sensors, including vibration, sound, pressure, infrared, and
WiFi sensors, to monitor and collect human-specific data in and around objects, such as
walls, floors, and beds. The different characteristics of a target person in various states
are subsequently used to determine whether a fall has occurred. Notably, Yazar et al. [22]
employed two vibration sensors and two infrared sensors to collect data and analyze
the movement state of a person. Luo et al. [23] developed a large-scale pressure pad
and indoor motion detection device and identified falls using a decision-tree algorithm.
Mazurek et al. [24] utilized an infrared depth sensor to acquire the position information
of a person and applied a Bayesian algorithm to determine whether a fall had occurred.
Wang et al. [25] proposed a human behavior recognition method based on an infrared
sensor array that classified human motion using temperature information obtained by the
sensor. Zhang et al. [26] proposed a fall detection method based on the Doppler effect of
ultrasound. This method relied on the frequency offset of reflected ultrasound to determine
whether a person’s motion reflected a fall.

Despite these achievements in scene-perception-based fall detection technology, sig-
nificant challenges remain. First, this technology is limited to relatively stable indoor
environments to minimize environmental interference and ensure accurate fall recognition,
rendering it unsuitable for more complex scenarios. Second, it is highly susceptible to
external environmental influences, with weak anti-interference and a high error rate in
detection. Lastly, the equipment used for collecting information based on scene perception
is often expensive and requires multi-sensor-fusion processing, resulting in higher use costs
that may not be feasible.

2.2. Fallen Person Detection Based on Wearable Devices

Fall detection technology based on wearable devices involves integrating sensors into
devices worn by users, such as smart bracelets or mobile phones, to collect the relevant
data. The data collected by these sensors are then transmitted to a fall determination model
for the purpose of detecting falls. Peng et al.’s approach [27] involved using a simple
threshold for body acceleration and angular velocity values collected by a belt, followed by
further analysis of the data through algorithms in the main controller’s processor. Similarly,
Rakhman et al. [28] utilized the high-precision three-axis accelerometers and gyroscopes
built into modern smartphones to identify fall actions by selecting an appropriate threshold.
Shahiduzzaman [29] set a threshold to determine whether a fall had occurred based on
motion signals collected by an accelerometer and heart-rate signals obtained by a heart
rate variability (HRV) sensor. Jefiza et al. [4] proposed a back-propagation fall detec-
tion algorithm based on accelerometer and gyroscope data. This approach constructed a
10-dimensional motion feature from the data acquired by a three-axis accelerometer and
gyroscope and input it into a back-propagation neural network to obtain a fall detec-
tion model.

Despite their increasing popularity, wearable-device-based fall detection technology
has limitations. Firstly, prolonged use of multiple sensors has significantly affected user
comfort and has also led to the misidentification of complex human activities, such as falls.
Secondly, the limited size and portability of these wearable devices has been a major barrier
to their adoption. Finally, efficient connectivity and data transmission must be maintained
at all times, which imposes higher demands on the hardware and software.
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2.3. Fallen Person Detection Based on Visual Information

The installation of surveillance devices in pedestrian areas to collect real-time video
images has provided a foundation for fall detection technology based on visual information.
Traditional image-processing and deep-learning-based computer vision technologies can
then be employed to identify, detect, and determine the position and movement of a body
and whether a fall has occurred. For example, Cui et al. [30] divided the human body into
multiple parts and used interpolation to extract three-dimensional coordinates associated
with the key joints. They then utilized a support-vector machine (SVM) to detect human
body joints and record the motion changes of the joints according to their spatial positions
to determine a falling action. Similarly, Wang et al. [31] first utilized OpenPose [32] to
obtain human skeleton information and then input this information into a 3D convolutional
neural network (CNN) to extract spatiotemporal features and determine falling actions.
Zhu [33] used YOLOv5 [17] to detect pedestrians and programmed a detection box into
the DeepSort [34] algorithm to track pedestrians and obtain the temporal characteristics
of human behaviors.They used a CNN to extract movement features within the tracking
box, and then they employed a bidirectional long short-term memory (LSTM) algorithm
based on an attention mechanism for fall detection. Despite these potential advancements,
several challenges remain for the successful implementation of visual information-based
falling detection technology. Firstly, the lack of a large-scale, well-formatted, and accurately
labeled public dataset is a significant obstacle to deep learning-based FPD algorithms.
Secondly, current FPD algorithms require improvements in recognition accuracy, model
robustness, and generalization. Lastly, current deep neural networks are computationally
expensive, resulting in slow detection speeds and an inability to meet real-time detection
requirements.

3. GL-YOLO-Lite
3.1. Overview

Figure 1 illustrates the model structure of GL-YOLO-Lite, which was based on
YOLOv5 [17]. To address the issue of low accuracy resulting from an inadequate use
of global contextual information in the original YOLOv5, this study introduced transformer
and attention modules [10,35,36]. By combining convolutional modules from the original
YOLOv5 with transformer and attention modules, the model could effectively utilize both
local and global contextual information. Furthermore, to improve the detection accuracy,
K-means++ [37] was employed to generate new anchor boxes instead of K-means [38],
which overcame the strong dependence of K-means on cluster-center initialization. These
operations resulted in a highly accurate model, GL-YOLO. Stem modules [18] composed of
standard convolutional units replaced the original focus module; rep modules [19] based on
re-parameterization technology were used to improve the model’s performance and speed.
The detection head of the model was optimized to further reduce the model’s FLOPs. This
improvements results in the proposed GL-YOLO-Lite.

3.2. Loss Function in GL-YOLO-Lite

GL-YOLO-Lite utilized a binary cross-entropy (BCE) [39] function to calculate the
classification and confidence losses. The BCE function was defined as follows:

Loss(g, p) = −g log p− (1− g) log (1− p) =
{
− log p, g = 1

− log (1− p), g = 0
(1)

where g represents the true label, which could take on a value of 0 or 1; p represents the
predicted probability of the positive class; and log is the natural logarithm.
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Figure 1. Architecture of GL-YOLO-Lite. The number of each layer is marked in black numbers.

3.3. More Accurate Anchors Generation

Recently, deep CNN-based object-detection algorithms [40,41] have made significant
advances, with an anchor mechanism being widely adopted in state-of-the-art object-
detection frameworks. These approaches have demonstrated remarkable performances
on commonly used public datasets, such as Pascal VOC [20,21]. The existing anchor
generation methods have been classified into two categories: manual and clustering,
with K-means as one of the most commonly used clustering algorithms. YOLOv2 [42],
YOLOv3 [43], and YOLOv5 have also used K-means clustering to generate anchors on
the MS COCO dataset [44]. However, K-means suffers from a critical drawback, as its
convergence is heavily dependent on the initialization of the cluster center. Therefore, the
final result is affected by initial point selection, leading to localized optima. To address
this issue, this study proposed the use of K-means++ to generate anchors. As compared to
K-means, K-means++ selects center points that tend towards global optima, rather than
localized optima. This generated higher-quality anchors and improved detection accuracy.
Subsequent experiments have confirmed the efficacy of this approach.

3.4. Stronger Feature Extract

Convolutional neural networks (CNNs) have demonstrated superior performance in
various computer-vision tasks, such as image classification [45,46] and object
detection [47,48], due to their powerful visual representation learning capabilities. How-
ever, CNNs also suffer from limitations, such as a small receptive field in their convolutional
layers and their inefficiency in stacking convolutional layers to increase the receptive field.
This has resulted in the inadequate capture of global contextual information. In recent
years, transformers [49–51] have been widely used in various natural language processing
(NLP) tasks due to their powerful global modeling capabilities. Models such as ViT [52] and
DETR [53] have also adopted a transformer structure for long-distance modeling, which
could effectively utilize the global information of images. However, the self-attention
structure in the original transformer only considers the interaction between a query and a
key, thereby ignoring the connections between adjacent keys. As a result, transformers excel
at capturing long-distance dependencies but are inadequate for utilizing local features.

This study explored the potential of combining the advantages of both CNNs and
transformers to improve detection accuracy. By leveraging local features extracted by
CNNs and global contextual information captured by transformers, this study aimed to en-
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hance detection effectiveness. While attention mechanisms for modeling global contextual
data have shown good performance, they have also resulted in increased computational
burdens when applied to smaller networks. Therefore, the focus of this study was to
investigate more effective methods for integrating transformer and attention modules
into YOLOv5 for capturing global contextual information while avoiding any increases in
computational demand.

3.4.1. Transformer Block

The traditional multi-head self-attention mechanism widely adopted in the visual
model backbone in transformer-based approaches [52], as shown in Figure 2b, is capa-
ble of triggering feature interactions between different spatial locations. However, this
mechanism has limited capacity to perform visual representation learning on 2D feature
maps, as it does not explore the rich contextual information between query–key pairs,
which are learned independently through isolated query–key pairs. To address this is-
sue, Li et al. [15] proposed a new transformer-based module, the contextual transformer
(CoT) block (Figure 2c), which integrated contextual information mining and self-attention
learning into a unified architecture.

Multi-Head
Attention

Embedded
Patches

MLP

(a) ViT

LayerNorm

Dropout

LayerNorm

Dropout

(c) Contextual Transformer (CoT) Module

(b) Conventional Multi head self attention module
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*

Figure 2. A variety of transformer stylized self-attention modules.

Given an input 2D feature map X of size H×W×C (C: channel, H: height, W: width),
the keys, queries, and values were obtained according to Q = X, K = X, and V = XWv.
Wv means the embedding matrix which is implemented as a 1× 1 convolution in space.
As opposed to a traditional self-attention mechanism, the CoT module first applied a
group convolution of k× k to extract contextual information. The obtained Kstatic reflected
the contextual information between adjacent key values, which was referred to as static
contextual representation. Subsequently, after concatenating Kstatic and Q, the following
attention matrix A was obtained through two consecutive 1× 1 convolutional operations,
where Wθ indicates that the ReLU activation function was used, whereas Wδ does not. The
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[] in Equation (2) indicate concatenation, which is accomplished by joining two matrices
along a certain dimension. Just as in Figure 2c, after the concat module, H×W×C becomes
H ×W × 2C.

A = [Kstatic, Q]WθWδ (2)

At each position, the local correlation matrix was learned from the queries and keys,
rather than the independent query–key pairs, which enhanced the learning capacity of the
self-attention mechanism by exploiting the static contextual information, thus leading to
feature-mapping (~ represents the local matrix multiplication operation):

Kdynamic = V ~ A (3)

where Kdynamic is a dynamic context representation, capturing feature interactions between
inputs. The output of the CoT block was a fusion of static (Kstatic) and dynamic contexts
(Kdynamic) by an attention mechanism. As compared to traditional multi-head self-attention
modules, the CoT block was able to fully implement the input contextual information to
guide the training of the dynamic attention matrix, thereby enhancing its visual expression
ability. Additionally, the CoT block was a plug-and-play module, which enabled the direct
replacement of convolutional modules in existing neural network models. In this paper,
three CoT blocks were used to construct the CoT3 in Layers 2, 4, 6, and 9 (see Table 2). This
combination of convolutional and CoT3 layers enabled the model to benefit from the local
feature extraction of the convolutional modules and the contextual information capture of
transformer modules, thus enabling better integration of the local and global information.

Table 2. Backbones of YOLOv5 and GL-YOLO.

YOLOv5 GL-YOLO

Input Module Number of Modules Args Input Module Number of Modules Args

Layer 0 Image Focus 1 (64, 3) Image Focus 1 (64, 3)
Layer 1 Layer 0 Conv 1 (128, 3, 2) Layer 0 Conv 1 (128, 3, 2)
Layer 2 Layer 1 C3 3 (128) Layer 1 CoT3 3 (128)
Layer 3 Layer 2 Conv 1 (256, 3, 2) Layer 2 Conv 1 (256, 3, 2)
Layer 4 Layer 3 C3 9 (256) Layer 3 CoT3 9 (256)
Layer 5 Layer 4 Conv 1 (512, 3, 2) Layer 4 Conv 1 (512, 3, 2)
Layer 6 Layer 5 C3 9 (512) Layer 5 CoT3 9 (512)
Layer 7 Layer 6 Conv 1 (1024, 3, 2) Layer 6 Conv 1 (1024, 3, 2)
Layer 8 Layer 7 SPP 1 (1024, (5, 9, 13)) Layer 7 SPP 1 (1024, (5, 9, 13))
Layer 9 Layer 8 C3 3 (1024, False) Layer 8 CoT3 3 (1024, False)

3.4.2. Attention Block

The transformer’s self-attention mechanism has had considerable success in the field
of computer vision due to its ability to capture internal correlations in the data and fea-
tures without relying on external information. However, attention mechanisms are not
limited to self-attention, and this section explores the potential of introducing other at-
tention mechanisms into the model in order to further improve its capacity to capture
global information.

Existing attention modules in computer vision have largely focused on the channel
and spatial domains, which are analogous to the feature- and spatial-based attention in
human brains. Channel attention is a one-dimensional approach, whereby each channel
is treated differently while all positions are treated equally. Spatial attention, on the other
hand, is two-dimensional, with each position being treated differently while all channels are
treated equally. Several studies, such as BAM [54] and CBAM [55], have proposed parallel
or serialized approaches to spatial and channel attention. However, in human brains,
these two attention aspects often work collaboratively. To address this, Yang et al. [16]
proposed a unified weight-attention module, a simple attention module (SimAM), to
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perform operations similar to those of human brains, enabling each neuron to be assigned
a unique weight. SimAM defined the energy function of each neuron as follows:

et(wt, bt, y, xi) = (yt − t̂)2 +
1

M− 1

M−1

∑
i=1

(yo − x̂i)
2 (4)

The linear transformations of the target neuron and other neurons in the single chan-
nel of the input feature X ∈ RC×H×W (C: channel, H: height, W: width) are, respectively,
denoted as t̂ = wtt + bt and x̂i = wtxi + bt, where t and xi are the indices in the spatial
dimension and M = H ×W represents the number of neurons in the channel. The vari-
ables wt and bt are the weights and biases of the linear transformation, respectively. In
Equation (4), the minimum value was achieved when the value of t̂ was equal to yt, and all
other values of x̂i were equal to yo, where yt and yo are two distinct values.

The existing attention modules that operate within the channel and spatial dimensions
suffer from two significant limitations: firstly, they refine features only in one dimension
of a channel or space; and secondly, their structures often necessitate complex operations,
such as pooling. In contrast, SimAM represented a conceptually simple yet highly effec-
tive attention mechanism for CNNs. Specifically, SimAM assigned a three-dimensional
attention weight that did not increase the number of parameters needed. To evaluate its
efficacy, we introduced a SimAM layer after the 23rd layer in our detector, as indicated in
Table 3. Through this approach, our model could capture comprehensive global contextual
information after the convolutional layer and COT3 layer were connected.

Table 3. Head in YOLOv5 and GL-YOLO.

YOLOv5 GL-YOLO

Input Module Number of Modules Args Input Module Number of Modules Args

Layer 21 Layer 20 Conv 1 (512, 3, 2) Layer 20 Conv 1 (512, 3, 2)
Layer 22 Layer 21 + Layer 10 Concat 1 (1) Layer 21 + Layer 10 Concat 1 (1)
Layer 23 Layer 22 C3 3 (1024,False) Layer 22 C3 3 (1024,False)
Layer 24 - - - - Layer 24 SimAM 1 (1024)

By integrating CNN layers with CoT3 layers and a SimAM layer, we developed the
GL-YOLO model, which enabled the integration of global contextual information with
local information for improved object detection. To achieve this, we first obtained the
proposed GL-YOLO architecture via the previously mentioned research. Additionally,
we utilized K-means++ to cluster the dataset and generate suitable anchors, resulting in
further enhancements to the model’s detection performance. Ultimately, the combination
of these design elements contributed to the superior performance of the GL-YOLO model
in object-detection tasks.

3.5. Lightweight Model Structure Design

The combination of the transformer and attention modules with GL-YOLO has been
demonstrated to substantially enhance the detection performance of the model. However,
the detection speed of the model was also a crucial factor. This section describes the
methods considered to optimize the model’s structure in order to achieve a better balance
between accuracy and detection speed.

3.5.1. Stem Block

Recent studies have shown that the focus module utilized in YOLOv5 [17] was not
optimal in terms of efficiency and implementation in most deep learning frameworks [11].
To address this, we opted to replace it with a stem module [18] entirely composed of
standard convolutional units. Prior to discussing the parameters and FLOPs associated
with both the standard convolutional and focus operations, we provide the following
formulas for their calculations. Specifically, consider a convolutional layer with dimensions
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of h×w× c× n, where h and w represent the height and width, respectively, while c and n
denote the input and output channels, respectively.

No. of Parameters = n× (h× w× c + 1) (5)

FLOPs = H ×W × n× (h× w× c + 1) (6)

where H and W represent the height and width of the resulting feature map, respectively,
measured in pixels. To determine the number of parameters and operations required for
both the convolutional operation and the focus module, we employed a single image with
dimensions of 640 × 640 × 3.

• Convolution. The convolutional operation employed a 3 × 3 kernel, a stride of 2,
and an output channel of 32, resulting in a feature map of 320 × 320 × 32 after
down-sampling.

No. of Parameters (Convolution) = 32× (3× 3× 3 + 1)

= 3× 3× 3× 32 + 32

= 896

(7)

FLOPs (Convolution) = 320× 320× 32× (3× 3× 3 + 1)

= 3× 3× 3× 320× 320× 32 + 320× 320× 32

= 91, 750, 400

(8)

• Focus. The focus module operated on an input image by slicing it before it entered
the backbone of the network. Specifically, this involved selecting a value for every
other pixel in the image, similar to the nearest-neighbor down-sampling method,
resulting in four images that retained all original information. Through this approach,
W and H could be concentrated in the channel space, expanding the input channels
by a factor of 4, or 12 channels when using an RGB 3-channel image. Ultimately, the
newly obtained image was subjected to a convolutional operation, yielding a feature
map that was twice the down-sampling result without any loss of information. By
inputting a 640 × 640 × 3 image into the focus module and applying the slicing
operation, the image was first transformed into a 320 × 320 × 12 feature map, which
then underwent additional convolutional operations and, ultimately, resulted in a
320 × 320 × 32 feature map. By utilizing these steps, we obtained the parameters and
FLOPs associated with the focus module, as follows:

No. of Parameters (Focus) = 32× (3× 3× 12 + 1)

= 3× 3× 12× 32 + 32

= 3488

(9)

FLOPs (Focus) = 320× 320× 32× (3× 3× 12 + 1)

= 3× 3× 12× 320× 320× 32 + 320× 320× 32

= 357, 171, 200

(10)

A comparison between the focus module and single-layer convolution revealed that
the former had about 400% more parameters and FLOPs. Additionally, while the standard
convolution could be readily adapted to various formats, such as ONNX, TensorFlow, and
TensorFlow Lite, the same could not be said for the focus module, which was not a generic
structure and was not widely supported by many deep-learning frameworks. Given the
factors of parameter count, FLOPs, and model applicability, this study proposed replacing
the focus module with a stem module [18]. As opposed to the focus module, the stem
module provided a plug-and-play solution that offered richer feature expression without
incurring additional computational overhead. Figure 3 shows the specific structure of the
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stem module, which consisted of a 3 × 3 convolution with a stride of 2 for rapid reductions
in dimensionality, followed by a dual-branch structure, with one branch using a 3 × 3
convolution with a stride of 2, and the other branch using a max-pooling layer.

3×3, 32, Stride=2, CONV

112×112×32

Filter Concatenate

56×56×64

1×1, 16, Stride=1, CONV

3×3, 32, Stride=2, CONV

2×2, Stride=2, 

Max Pooling

1×1, 32, Stride=1, CONV

56×56×32

Input

224×224×3

Figure 3. Stem module’s structure.

3.5.2. Rep Block

Recent developments in computer vision have resulted in the emergence of deep
learning models that outperform traditional CNNs by utilizing complex structural de-
signs [48,56]. However, such models often include limitations, including challenges related
to implementation and customization due to their multi-branch design incurring slower
inference speeds and reduced memory utilization. Additionally, some model components,
such as the depth convolution in Xception [57], the channel shuffle operation in Shuf-
fleNet [58], and the depthwise separable convolution in MobileNets [46], have increased
memory access costs and lack support for various devices. To overcome these challenges,
networks such as ACNet [59] and RepVGG [19] have been proposed, both of which employ
a technique known as structural re-parameterization. This enables a multi-branch struc-
ture during training and a single-path model during deployment and inference, thereby
combining the high performance of multi-branch structures with the speed of single-path
models. Building upon prior research [11,19], we introduced rep modules with structural
re-parameterization capabilities into GL-YOLO (see Table 4). This enabled us to decou-
ple training and inference via structural re-parameterization, leveraging a multi-branch
structure to enhance performance during training while re-parameterizing to a single 3 × 3
convolutional structure to accelerate inference.

Table 4. Backbones in GL-YOLO and GL-YOLO-Lite.

GL-YOLO GL-YOLO-Lite

Input Module Number of Modules Args Input Module Number of Modules Args

Layer 0 Image Focus 1 (64, 3) Image Stem block 1 (64, 3)
Layer 1 Layer 0 Conv 1 (128, 3, 2) Layer 0 Rep block 1 (128, 3, 2)
Layer 2 Layer 1 CoT3 3 (128) Layer 1 CoT3 3 (128)
Layer 3 Layer 2 Conv 1 (256, 3, 2) Layer 2 Rep block 1 (256, 3, 2)
Layer 4 Layer 3 CoT3 9 (256) Layer 3 CoT3 9 (256)
Layer 5 Layer 4 Conv 1 (512, 3, 2) Layer 4 Rep block 1 (512, 3, 2)
Layer 6 Layer 5 CoT3 9 (512) Layer 5 CoT3 9 (512)
Layer 7 Layer 6 Conv 1 (1024, 3, 2) Layer 6 Rep block 1 (1024, 3, 2)
Layer 8 Layer 7 SPP 1 (1024, (5, 9, 13)) Layer 7 SPP 1 (1024, (5, 9, 13))
Layer 9 Layer 8 CoT3 3 (1024, False) Layer 8 CoT3 3 (1024, False)
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3.5.3. Lightweight Detection Head

To reduce the complexity of our model, we simplified the neck and head components,
as depicted in Table 5. Through this modification, we removed a considerable number of
channels, leading to a substantial reduction in the computational cost of the model.

Table 5. Heads in GL-YOLO and GL-YOLO-Lite.

GL-YOLO GL-YOLO-Lite

Input Module Number of Modules Args Input Module Number of Modules Args

Layer 10 Layer 9 Conv 1 (512, 1, 1) Layer 9 Conv 1 (128, 1, 1)
Layer 11 Layer 10 Up-Sample 1 (None, 2, ’nearest’) Layer 10 Up-Sample 1 (None, 2, ’nearest’)
Layer 12 Layer 6+Layer 11 Concat 1 (1) Layer 6+Layer 11 Concat 1 (1)
Layer 13 Layer 12 C3 3 (512, False) Layer 12 C3 3 (128, False)
Layer 14 Layer 13 Conv 1 (256, 1, 1) Layer 13 Conv 1 (128, 1, 1)
Layer 15 Layer 14 Up-Sample 1 (None, 2, ’nearest’) Layer 14 Up-Sample 1 (None, 2, ’nearest’)
Layer 16 Layer 4+Layer 15 Concat 1 (1) Layer 4+Layer 15 Concat 1 (1)
Layer 17 Layer 16 C3 3 (256, False) Layer 16 C3 3 (128, False)
Layer 18 Layer 17 Conv 1 (256, 3, 2) Layer 17 Conv 1 (128, 3, 2)
Layer 19 Layer 14+Layer 18 Concat 1 (1) Layer 14+Layer 18 Concat 1 (1)
Layer 20 Layer 19 C3 3 (512, False) Layer 19 C3 3 (128, False)
Layer 21 Layer 20 Conv 1 (512, 3, 2) Layer 20 Conv 1 (128, 3, 2)
Layer 22 Layer 10+Layer 21 Concat 1 (1) Layer 10+Layer 21 Concat 1 (1)
Layer 23 Layer 22 C3 3 (1024, False) Layer 22 C3 3 (128, False)
Layer 24 Layer 23 SimAM 1 (1024) Layer 23 SimAM 1 (128)

In summary, we have presented GL-YOLO-Lite, the final model proposed in this
paper. GL-YOLO-Lite incorporated the stem module as a replacement for the original
focus module, as well as the rep modules with re-parameterization technology to optimize
the neck and head components of the model. Through these modifications, we achieved
a notable reduction in parameters and FLOPs while maintaining an excellent balance
between detection accuracy and inference speed.

4. Datasets
4.1. Fallen Person Detection Dataset

In the field of FPD, having access to a reliable dataset is crucial for improving the
performance of detection modeling. However, collecting fallen person images in real-world
scenarios presents significant difficulties, and most existing public datasets for FPD have
been captured in simple experimental environments that did not accurately reflect the
complexity of real-life scenarios. Therefore, it was necessary to construct an FPD dataset
that was representative of real-world scenarios to meet research needs. This study used two
methods to obtain the required images: (1) the conversion of videos containing fall scenes
taken by surveillance systems into images; and (2) the use of web-crawler technology to
obtain online images of human falls in real-life scenarios. The authors obtained a total
of 4569 images through these two methods, and then they utilized an open-source tool,
LabelImg [60], to uniformly label the dataset images and generate the corresponding labels.
The label set for the FPD was “fall”, with a total of 4576 objects labeled as such in the
dataset. Finally, the authors divided the FPD dataset (FPDD) into training, testing, and
validation sets using an 80/16/4 ratio.

4.2. PASCAL VOC Dataset

Pascal VOC [20,21] is a widely employed benchmark dataset for visual target classifica-
tion, recognition, and detection tasks. It comprised two versions: VOC2007 and VOC2012.
The former consisted of 9963 annotated images with a total of 24,640 objects annotated,
which were divided into training, testing, and validation sets. VOC2012 was an upgraded
version of VOC2007 containing 11,530 images and 27,450 objects in the training, testing,
and validation sets. Notably, VOC2012 was mutually exclusive of VOC2007. To train our
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model, we utilized the commonly applied 07+12 method [10,11], which employed the
VOC2007 training and validation sets, as well as the VOC2012 training and validation sets
for training; and the VOC2007 testing set for testing. Figure 4 displays samples from both
the FPDD and Pascal VOC datasets.

(a) Label: fall (b) Label: fall (c) Label: fall (d) Label: fall (e) Label: fall (f) Label: fall

(g) Label: 2 boats (h) Label: 2 persons (i) Label: car (j) Label: 4 buses (k) Label: cat (l) Label: horse

Figure 4. Examples of the FPDD and Pascal VOC datasets, (a–f) and (g–l), respectively. Please note
that we resized these images so that they could be better displayed.

5. Experiments
5.1. Metrics and Implementation
5.1.1. Metrics

In the field of object detection, mAP and FPS are widely accepted metrics for assessing
the accuracy and speed, respectively, of detection algorithms.In addition to these metrics,
practical applications of the algorithms studied in this paper required the inclusion of
evaluation indicators such as parameters and giga-FLOPs (GFLOPs). To comprehensively
evaluate the proposed model, the authors employed the technique for order of preference by
the similarity to ideal solution (TOPSIS) method, whereby the four indicators were weighted
as follows: mAP, 40%; FPS, 20%; parameters, 20%; and GFLOPs, 20%. Among these, mAP
and FPS are extremely large indicators, while parameters and GFLOPs are extremely
small indicators. TOPSIS is a commonly used comprehensive evaluation approach that
fully leverages the original data information, generating results that accurately reflect the
discrepancies between various evaluation schemes.

5.1.2. Implementation

This study was conducted on a workstation equipped with an Intel E5-2620 v4 @ 2.10
GHz CPU, an NVIDIA Titan XP (12 GB) GPU, and 16 GB RAM. To regenerate new anchors
for the FPDD dataset, the K-means++ clustering algorithm was applied, which yielded
anchor sizes of (137 × 119), (190 × 224), (223 × 377), (304 × 155), (331 × 288), (359 × 459),
(459 × 219), (513 × 358), and (549 × 545). For the Pascal VOC dataset, the new anchors
were (48 × 78), (73 × 204), (134 × 336), (142 × 126), (224 × 450), (256 × 223), (361 × 505),
(480 × 298), and (567 × 545). The detailed configurations of the training and testing
environments, as well as the hyperparameter settings for GL-YOLO-Lite, are provided in
Table 6.
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Table 6. Workstation configuration and the hyperparameters of GL-YOLO-Lite.

Workstation Hyperparameters of GL-YOLO-Lite

CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz Initial Learning Rate 0.01

GPU TITAN Xp(12 GB) Optimizer Adam

Memory 16 GB Momentum 0.937

Operating System ubuntu18.04 Weight Decay 0.0005

Deep Learning Framework PyTorch 1.7.0 IoU Threshold 0.45

CUDA version 11 Training Epochs 300

5.2. Comparison with the State-of-the-Art Modeling

This study compared the performance of the proposed GL-YOLO-Lite to that of other
state-of-the-art lightweight object-detection models, including MobileNetV3 [46], Shuf-
fleNetV2 [58], and GhostNet [61], on the FPDD. Furthermore, to assess the generalization
capacity of GL-YOLO-Lite, comparison experiments were conducted on the more challeng-
ing and publicly available Pascal VOC dataset. Tables 7 and 8 present the comparison results
among GL-YOLO-Lite and seven other advanced lightweight object-detection methods
on the FPDD and Pascal VOC datasets, respectively. The best performance is in bold font
for a particular index, while the second-best performance is underlined. The results from
Tables 7 and 8 revealed the following:

• The proposed GL-YOLO series algorithms exhibited superior model detection accu-
racy, as determined by mAP@0.5, on both the FPDD and the Pascal VOC datasets. On
the FPDD, GL-YOLO achieved the highest mAP@0.5 of 89.1%, while GL-YOLO-Lite
achieved 88.5%. Even though YOLOv5-s attained the highest mAP@0.5 of 85.7%,
among other advanced object-detection models, it still lagged behind GL-YOLO-Lite
by 2.8%. Similarly, on the Pascal VOC dataset, GL-YOLO again achieved the highest
mAP@0.5 of 82.5%, while GL-YOLO-Lite attained an mAP@0.5 of 80%. The highest
mAP@0.5 of 78.2% was obtained by YOLOv5-Lite-g [62] on this dataset, but this result
still fell short of GL-YOLO-Lite by 1.8%. These findings suggested that the transformer
and attention modules in GL-YOLO-Lite effectively enhanced the feature extraction
capability of the model by fully utilizing global contextual information and, thereby,
improving its object-detection performance.

• While GL-YOLO achieved the highest mAP@0.5 values on both datasets, its sub-
optimal speed performance was limited by its model structure. However, GL-YOLO-
Lite (FPDD: 88.5% mAP@52.63 FPS, Pascal VOC: 80% mAP@56.82 FPS) ranked high in
terms of mAP (second in the FPDD and the Pascal VOC dataset) and was in the middle
tier in terms of FPS. As compared to the baseline model YOLOv5-s, GL-YOLO-Lite
was a significant improvement in terms of the parameters GFLOPs, mAP@0.5, and
FPS-CPU, with only a slight reduction in FPS-GPU, indicating the effectiveness of the
proposed algorithms presented in this paper.

• The comprehensive rankings in the last column of Tables 7 and 8 illustrated that
GL-YOLO-Lite outperformed the baseline YOLOv5-s model, achieving the highest
TOPSIS scores (FPDD: 0.573961, Pascal VOC: 0.563583). These results demonstrated
that GL-YOLO-Lite was a significant advancement, as compared to YOLOv5-s, due
to its robust feature extraction and efficient structural design with significantly fewer
parameters and GFLOPs, while still maintaining a high object-detection precision
(mAP). Furthermore, its real-time processing speed (FPS greater than 30 FPS) on the
desktop GPU Titan Xp indicated its potential for handling FPD on typical workstations.
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Table 7. Results on FPDD. The best results are presented in bold, and the second-best results
are underlined.

Methods Backbone Input Size Parameters GFLOPs mAP@0.5(%) FPS-GPU FPS-CPU TOPSIS Score Ranking

1 YOLOv5-mbv3-small MobileNetv3-small [46], ICCV

640 × 640

3.54 6.3 80.1 55.25 13.40 0.458764 6
2 YOLOv5-mbv3-large MobileNetv3-large [46], ICCV 5.2 10.3 83.9 47.62 7.50 0.485195 3
3 YOLOv5-ShuffleNetv2 ShuffleNetv2 [58], ECCV 0.44 1.3 70.9 52.91 18.32 0.457568 7
4 YOLOv3-Tiny Darknet-53 [43] 8.67 12.9 69.6 243.90 6.83 0.457558 8
5 YOLOv5-s CSPDarknet-SPP [17] 7.05 16.3 85.7 73.53 7.03 0.440520 9
6 YOLOv5-lite-g RepVGG [19], CVPR 5.3 15.1 85.5 62.89 6.98 0.468680 5
7 YOLOv5s-Ghost GhostNet [61], CVPR 3.68 8.1 86.1 56.18 7.71 0.555261 2

8 GL-YOLO GL-YOLO
640 × 640

7.03 16.2 89.1 49.75 5.51 0.469409 4
9 GL-YOLO-Lite GL-YOLO 4.41 3.3 88.5 52.63 9.89 0.573961 1

Table 8. Results on PASCAL VOC dataset. The best results are presented in bold, and the second-best
results are underlined.

Methods Backbone Input Size Parameters GFLOPs mAP@0.5(%) FPS-GPU FPS-CPU TOPSIS Score Ranking

1 YOLOv5-mbv3-small MobileNetv3-small [46], ICCV

640 × 640

3.59 6.4 69.1 61.35 15.11 0.438815 8
2 YOLOv5-mbv3-large MobileNetv3-large [46], ICCV 5.25 10.3 77 54.95 8.01 0.500519 3
3 YOLOv5-ShuffleNetv2 ShuffleNetv2 [58], ECCV 0.45 1.4 56.7 61.35 19.19 0.453154 7
4 YOLOv3-Tiny Darknet-53 [43] 8.71 13 57.7 277.78 7.58 0.462992 6
5 YOLOv5-s CSPDarknet-SPP [17] 7.11 16.4 77.8 69.93 8.08 0.431950 9
6 YOLOv5-lite-g RepVGG [19], CVPR 5.32 15.3 78.2 70.42 7.86 0.471702 4
7 YOLOv5s-Ghost GhostNet [61], CVPR 3.73 8.3 77 61.73 8.29 0.549522 2

8 GL-YOLO GL-YOLO
640 × 640

7.08 16.4 82.5 51.55 6.43 0.467550 5
9 GL-YOLO-Lite GL-YOLO 4.42 3.4 80 56.82 11.07 0.563583 1

In FPD, precision, recall, and F1 score serve as commonly employed metrics to evaluate
model performance. Precision, a vital metric that concerns predicted outcomes, quantifies
the likelihood of true-positive samples among all samples forecasted as positive. Its
mathematical expression is formulated as follows:

Precision =
TP

TP + FP
(11)

where true positive (TP) signifies the correct classification of positive examples as positive,
whereas false positive (FP) denotes the incorrect labeling of negative samples as positive.

Recall pertains to the original sample and signifies the likelihood of positive sam-
ples being predicted as positive. The mathematical expression for this probability was
determined as follows:

Recall =
TP

TP + FN
(12)

where false negative (FN) denotes the false labeling of positive examples as negative.
The F1 score is a metric that considers both precision and recall, with the aim of

achieving an equilibrium between the two factors while maximizing their values. The
expression for calculating the F1 score was the following:

F1 score =
2× Precision× Recall

Precision + Recall
(13)

Table 9 presents a detailed assessment of the precision, recall, mAP@0.5, and F1 score
of GL-YOLO-Lite and YOLOv5s, offering a comprehensive evaluation of their performance.
GL-YOLO-Lite demonstrated a significant improvement in both its F1 score (i.e., an increase
of 0.026) and mAP@0.5 (i.e., an increase of 0.028) relative to YOLOv5s, providing additional
evidence of its exceptional performance.
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Table 9. Comparison of additional metrics between GL-YOLO-lite and YOLOv5s.

Methods Precision Recall F1 Score mAP@0.5

YOLOv5-s 0.812 0.838 0.825 0.857
GL-YOLO-Lite 0.843 0.859 0.851 0.885

5.3. Ablation Study and Visualization

In this study, we analyzed the effectiveness of various components by incorporating
them into a baseline model YOLOv5s, which attained a mAP@0.5 of 77.7% on the Pas-
cal VOC dataset. The examined components included newly generated anchors using
K-means++, a lightweight detection head, as well as transformer, attention, stem, and rep
modules. Table 10 displays the performance of different staged models. Our findings
indicated that the mAP@0.5 was enhanced from 77.7% to 82.5% when the new anchors had
been generated using K-means++ with the transformer and attention modules simultane-
ously integrated, resulting in a GL-YOLO model with 7.07 parameters and 16.4 GFLOPs.
Building upon the GL-YOLO, we further appended the stem and rep modules, along
with the use of a lightweight detection head, to obtain the GL-YOLO-Lite model. This
model achieved a mAP@0.5 of 80%, with 4.42 parameters and 3.4 GFLOPs. As compared
to the baseline YOLOv5s model, GL-YOLO-Lite demonstrated a reduction of 37.83% in
parameters and 79.27% in GFLOPs. The outcomes of our experiments underscored the
significant contributions of each individual component in the GL-YOLO-Lite architecture.

Table 10. Ablation study of GL-YOLO-Lite on the PASCAL VOC dataset.

Methods
Components

Input Size Parameters GFLOPs mAP@0.5(%)

1 YOLOv5s 640 × 640 7.11 16.4 77.7

2 K-means++ X

640 × 640

7.11 16.4 79.5
3 Transformer block X X 7.08 16.4 82
4 Attention block X X X 7.07 16.4 82.5
5 Stem block X X X X 7.09 4.5 80.9
6 Rep block X X X X X 7.09 4.5 80.3
7 Lighter head X X X X X X 4.42 3.4 80

Figure 5 displays the partial visualized results of the comparison of GL-YOLO-Lite
to other advanced lightweight detection models on the FPDD. Our study emphasized the
effectiveness of GL-YOLO-Lite in accurately detecting the targets in the images, which was
achieved by incorporating global contextual information with local features. This combina-
tion led to a significant improvement in detection accuracy. Furthermore, in contrast to the
other models, GL-YOLO-Lite demonstrated superior robustness in detection accuracy even
when utilizing images beyond those in the FPDD (Rows 3–7). This observation highlighted
the model’s robustness and exceptional generalization capability.

5.4. Experiments on a Mobile Phone

This study also presented a comprehensive evaluation of the deployability of the
proposed GL-YOLO-Lite algorithm. To conduct this evaluation, we deployed various
lightweight algorithms on an Honor V20 device utilizing the NCNN [63] framework and
compared their actual detection speeds. As demonstrated in Table 11, the computational
capacity of the Honor V20 device was not particularly robust. To execute the assessments,
we developed a detection application, as shown in Figure 6, that supported the loading of
different model weights onto the application. The algorithm’s weight was loaded onto the
application, and both the CPU and GPU of the device were utilized to perform 15 detection
operations per image. Subsequently, the duration for each detection was recorded, and the
average of the 15 detection times was computed to determine the final time requirements for
the algorithm’s detection. The results of this analysis are presented in Table 12. As shown
in Table 12, as compared to other lightweight detection models, GL-YOLO-Lite achieved
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the quickest detection speed (60.80 ms). After analyzing Tables 7, 8 and 12, our findings
indicated the GL-YOLO-Lite proposed in this paper achieved an improved compromise
between FPS and mAP relative to other advanced lightweight models, regardless of the
platform utilized (desktop GPU, workstation CPU, or mobile platform).

(a) Original images (b) ShuffleNetv2 (c) YOLOv5-Lite-g (d) GhostNet (e) GL-YOLO-Lite

Figure 5. Detection results by GL-YOLO-Lite and other representative algorithms. The ground truth
for each image was fall. The images in the Rows 3–7 were collected from the web separately and
were not included in the FPDD.
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Table 11. Configuration of Honor V20.

Configuration of Honor V20

Brand Honor
Model V20

System on Chip HiSilicon Kirin 980
CPU 2 × A76 2.6 GHz + 2 × A76 1.92 GHz + 4 × A55 1.8 GHz
GPU Mali-G76 MP10 (720 MHz): 691 GFLOPs

Random Access Memory 8 GB
Operating System Android 11

Table 12. Comparison of the detection speed of GL-YOLO-Lite and other algorithms on Honor V20.
The best results are presented in bold, and the second-best results are underlined.

Methods Honor V20 Time (ms) Trimmed Mean (ms)

YOLOv5s
CPU 116.24 104.46 113.28 102.41 107.4 122.67 96.46 96.81 105.21 106.73 123.78 97.17 104.6 84.76 95.3 105.29
GPU 200.13 130.42 192.44 188.62 205.3 125.33 193.83 195.48 189.53 182 200.83 130.57 193.9 128.19 130.06 173.54

YOLOv5s-Ghost
CPU 104.46 87.67 75.2 75.62 68.19 79.98 67.59 82.66 71.47 73.07 71.9 78.42 80.02 89.8 69.55 77.20
GPU 258.94 79.87 72.82 92.29 75 93.2 74.6 125.18 75.82 95.62 76.5 109.59 75.37 93.58 74.84 87.80

GL-YOLO
CPU 61.78 117.57 48.19 57.03 59.07 56.84 48.55 62.62 49.53 64.03 52.03 64.90 49.12 59.97 108.68 63.99
GPU 69.58 67.91 104.79 75.90 64.19 100.88 104.79 74.05 106.31 105.62 83.42 78.41 107.60 76.49 89.47 87.29

GL-YOLO-Lite
CPU 76.75 41.56 46.27 48.02 52.74 70.15 68.94 59.48 73.90 75.24 72.70 44.00 44.27 71.11 66.88 60.80
GPU 122.67 84.06 78.43 49.24 92.05 58.79 57.74 50.87 49.44 77.70 63.86 66.05 59.75 82.78 64.28 70.51

(a) (b) (c)

Choose 
images

Detect images 
using CPU

Detect images 
using GPU

Figure 6. The Android application: (a) the app user interface, (b) images detected by the CPU, and
(c) images detected by the GPU.

6. Conclusions

This work presented a novel model, GL-YOLO-Lite, specifically designed for FPD to
address the limitations of existing deep-learning-based object-detection algorithms. These
algorithms have been restricted to utilizing information solely from within the candidate
object region and lack the ability to capture global information, which has limited their
detection accuracy while also having considerably high computational costs. In contrast,
the integration of transformer and attention modules into our model enabled the effective
learning and fusion of global–local feature information, resulting in improved detection
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accuracy and generalization capability. The GL-YOLO-Lite architecture achieved reductions
in parameters and FLOPs by excluding the initial focus module, adopting stem and rep
modules, and employing a novel detection head. Although this compromised detection
accuracy slightly, it significantly improved the detection speed, achieving an excellent
balance between speed and accuracy. To evaluate the performance and efficiency of GL-
YOLO-Lite, we constructed the FPDD of various real-world scenarios of human falls. The
results of numerous experiments demonstrated the remarkable performance and efficiency
of GL-YOLO-Lite, as it achieved good performance on the FPDD and the PASCAL VOC
dataset with relatively low computational overhead. Using mAP@0.5, FPS, FLOPs, and
parameters as the evaluation indicators, as well as TOPSIS as the comprehensive evaluation
method, our model obtained the highest TOPSIS score, fully demonstrating the excellence
of GL-YOLO-Lite.
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