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Abstract: Recent success stories in reinforcement learning have demonstrated that leveraging struc-
tural properties of the underlying environment is key in devising viable methods capable of solving
complex tasks. We study off-policy learning in discounted reinforcement learning, where some
equivalence relation in the environment exists. We introduce a new model-free algorithm, called
QL-ES (Q-learning with equivalence structure), which is a variant of (asynchronous) Q-learning
tailored to exploit the equivalence structure in the MDP. We report a non-asymptotic PAC-type sample
complexity bound for QL-ES, thereby establishing its sample efficiency. This bound also allows us
to quantify the superiority of QL-ES over Q-learning analytically, which shows that the theoretical
gain in some domains can be massive. We report extensive numerical experiments demonstrating
that QL-ES converges significantly faster than (structure-oblivious) Q-learning empirically. They
imply that the empirical performance gain obtained by exploiting the equivalence structure could be
massive, even in simple domains. To the best of our knowledge, QL-ES is the first provably efficient
model-free algorithm to exploit the equivalence structure in finite MDPs.

Keywords: reinforcement learning; Markov decision process; Q-learning; equivalence structure

1. Introduction

Reinforcement learning (RL) aims to develop computer systems with the ability to
learn how to behave optimally, or nearly so, in an unknown dynamic environment. An RL
task typically involves an agent interacting with the environment, which is often modeled
as a Markov decision process (MDP), and the agent’s goal is to find a policy maximizing
some notion of reward. In most settings in RL, the MDP is initially unknown beyond its
state and action spaces. Hence, the agent aims to learn a near-optimal policy using the
experiences collected from the environment.

A classical setting in RL is off-policy learning [1], where one tries to learn the optimal
action–value function (i.e., Q-function) through the data collected under some behavior or
logging policy. Perhaps the most famous off-policy learning algorithm is the celebrated
Q-learning algorithm [2], whose improved variants, combined with deep neural networks
as function approximators, played key roles in many recent breakthroughs in RL [3,4].
More precisely, Q-learning and its variants fall under the category of model-free methods, in
which one tries to directly estimate the optimal value function—without estimating the true
model (MDP)—from the collected experience, from which a near-optimal policy could be
straightforwardly derived. This approach is in stark contrast to the model-based counterpart,
where one first attempts to estimate the unknown model parameters (i.e., MDP parameters
that include transition probabilities and rewards) from the collected experience and then
finds an optimal policy in the estimated model.

Off-policy learning in finite MDPs is by now well understood, and the existing liter-
ature (e.g., [5–9]) exhibit algorithms that admit PAC-type sample complexity guarantees.
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Precisely speaking, these algorithms are guaranteed to return a near-optimal policy, with
respect to a prescribed accuracy, with high probability if the amount of collected experience
exceeds a certain (algorithm-dependent) function of the MDP parameters (and relevant
input parameters). Most of these works study unstructured tabular MDPs, where the
advertised sample complexity bounds scale, among other things, with the size of the
state–action space. Thus, despite their appealing performance guarantees, most of these
algorithms only work reasonably well when the size of the underlying MDP is small. On
the other hand, many practical tasks can be modeled by MDPs with huge state spaces (or
even infinite), but they often exhibit some structural properties. Ignoring such structural
properties and directly applying the above algorithms would lead to a prohibitively large
sample complexity bound, which may imply a huge learning phase in the worst case.
Alternatively, one could leverage the structure in the MDP to speed up the exploration. In
fact, exploiting the structure allows the agent to use the collected observations from the
environment to reduce the uncertainty in the model parameter for many similar state–action
pairs at each time slot. As a result, the learning performance would depend on the effective
size of the state space (or the effective number of unknown parameters). Various notions
of structures have been studied in MDPs, which include the Lipschitz continuity of MDP
parameters (e.g., rewards and transition functions) [10–13], factorization structure [14–16],
and equivalence relations [17–22]. These works reveal that exploiting the underlying struc-
ture in the environment in various RL tasks leads to massive empirical performance gain
(over structure-oblivious algorithms) and to significantly improved performance bounds.
However, exploiting structure often poses additional challenges.

This work is motivated by tabular RL problems, where the (potentially large) state–
action space admits a natural partitioning such that within each element of the partition (or
class), the state–action pairs have similar transition probabilities. There exist several ways
to characterize the similarity between the transition distribution of two state–action pairs.
Here, we consider a notion implying that they are (almost) identical up to some permutation.
As we shall see in later sections, this notion of structure induces an equivalence relation
in the state–action space. This model has been considered in prior work [18,23,24], where
model-based algorithms were presented to exploit such a structure in the context of regret
minimization in episodic or average-reward MDPs. However, their proposed ideas and
techniques are specific to a model-based approach, where the model parameters are directly
estimated, and cannot be used to incorporate the knowledge of the equivalence structure
into a model-free algorithm. Model-free algorithms have played a pivotal role in the recent
success of RL to solving complex tasks arising in real-world applications (e.g., autonomous
driving and continuous control [25]). Hence, it sounds promising to study the gain one
could obtain using model-free methods when leveraging the equivalence structure, thereby
extending the theoretical analysis in [18,24] beyond model-based methods.

Contributions. We make the following contributions. We study off-policy learning in
discounted finite MDPs, admitting some equivalence structure in their state–action space.
We introduce a new model-free algorithm, called QL-ES (Q-learning with equivalence
structure), which is a variant of (asynchronous) Q-learning tailored to exploit the equiva-
lence structure in the MDP, when a prior knowledge on the structure is provided to the
agent. We report a non-asymptotic PAC-type sample complexity bound for QL-ES, thereby
establishing its sample efficiency. This bound also allows us to quantify the superiority of
QL-ES over Q-learning analytically. As it turns out, the sample efficiency gain of QL-ES
over Q-learning is captured by an MDP-dependent quantity ξ that is defined in terms of the
associated covering times in the MDP; see Section 5 for details. Analytically establishing
the dependence of the gain ratio ξ on the number S of states in a given MDP seems difficult,
although it is possible to numerically compute it. Nonetheless, we present a simple example
where ξ = O(S), thus showcasing that QL-ES in some domains may require much fewer
(by a factor of S) samples than Q-learning. Furthermore, we numerically compute ξ for
a few families of MDPs built using standard environments (with increasing S), thereby
showcasing the theoretical superiority of QL-ES over Q-learning. Through extensive nu-
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merical experiments on standard domains, we show that Q-function estimates under QL-ES
converge much faster than those obtained from (structure-oblivious) Q-learning. These
results demonstrate that the empirical performance gain from exploiting the equivalence
structure could be massive, even in simple domains. To our best knowledge, QL-ES is the
first provably efficient model-free algorithm to exploit the equivalence structure in MDPs.

2. Related Work

Similarity and equivalence in MDPs. There is a rich literature on learning and
exploiting various notions of structure in MDPs, where the aim is to leverage structure to
alleviate the computational cost of finding an optimal policy (in the known MDP setting)
or to speed up exploration (in the RL setting). Many such algorithms fall into the category
of state abstraction (or aggregation) [26,27]. Approximate homomorphism is proposed to
construct beneficial abstract models in MDPs [28]. In the known MDP setting, Refs. [29,30]
appear to be the first presenting the notion of equivalence between states based on stochastic
bi-simulation. The authors of [31,32] use bi-simulation metrics as quantitative analogues of
the equivalence relations to partition the state space by capturing similarities. In the RL
setting, Refs. [18–20,33,34] investigate model-based algorithms that rely on the grouping of
similar states (or state–action pairs) to speed up exploration. Ref. [20] is the first to present
an average-reward RL algorithm (in the regret setting), where the confidence intervals
of similar states are aggregated. Ref. [18] studies regret minimization in average-reward
MDPs with equivalence structure and presents the C-UCRL algorithm, which is capable of
exploiting the structure. The regret bound for C-UCRL depends on the number of classes
in the MDP rather than the size of the state–action space. A similar equivalence structure
was studied in [17] in the context of multi-task RL, where similarities of the transition
dynamics across tasks were extracted and exploited to speed up learning. Ref. [24] studies
the efficiency of hierarchical RL in the regret setting in scenarios where the hierarchical
structure is defined with respect to the notion of equivalence; more precisely, it assumes
that the underlying MDP can be decomposed into equivalent sub-MDPs—i.e., smaller MDPs
with identical reward and transition functions up to some known bijection mappings.
Closest to our work, in terms of the structure definition, is [18]. However, we restrict
ourselves to a model-free approach where the model-based machinery presented in [18]
does not apply. Finally, we mention that there is some literature on exploiting equivalence
in deep RL (e.g., [21,22]). However, none of these works study provably efficient learning
methods to our best knowledge.

Q-learning and its variants. We provide a very brief overview of the works studying
theoretical analysis of Q-learning and its variants. Q-learning [2] has been around for more
than three decades as a cheap and popular model-free method to solve finite, unknown
discounted MDPs without estimating the model. Its convergence was investigated in an
asymptotic flavor [35,36], and more recently in the non-asymptotic (finite-sample) regime
in a series of work, including [9,37–40]. To the best of our knowledge, Ref. [9] reports the
sharpest PAC-type sample complexity bound for the classical Q-learning. Some of these
works present variants of Q-learning with improved sample complexity bounds using a
variety of techniques, such as acceleration and variance reduction [9,40,41]. Although the
concept of equivalence in MDPs is not new, there is no work reporting PAC-type sample
complexity bounds for model-free algorithms combined with equivalence relations, to our
knowledge.

3. Problem Formulation

In this section, we present some necessary background and formulate the reinforce-
ment learning problem considered in this paper. We use the following notations throughout.
For a set B, ∆(B) denotes the set of all probability distributions over B. For an event E, IE
denotes the indicator function of E: namely, it equals 1 if E holds, and 0 otherwise.
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3.1. Discounted Markov Decision Processes

Let M = (S ,A, P, R, γ) be an infinite-horizon discounted MDP [42], where S denotes
a discrete state space with cardinality S, A denotes a discrete action space with cardinality
A, and γ ∈ (0, 1) is a discount factor. P : S ×A → ∆(S) represents the transition function
such that P(s′|s, a) denotes the probability of transiting to state s′ when action a ∈ A is
chosen in state s ∈ S . Further, R : S ×A → [0, 1] denotes the reward function supported
on [0, 1] such that R(s, a) denotes the reward distribution when choosing action a ∈ A in
state s ∈ S . We denote by R(s, a) the mean of R(s, a). A stochastic (or randomized) policy
π : S → ∆(A) is a mapping that maps a state to a probability distribution over A. For a
policy π, the value function of π is a mapping Vπ : S → R defined as

Vπ(s) := E
[ ∞

∑
t=0

γtrt

∣∣∣s0 = s
]

, s ∈ S ,

where for all t ≥ 0, at ∼ π(st), st+1 ∼ P(·|st, at), and rt ∼ R(st, at), and where the
expectation is taken with respect to the randomness in rewards, next states, and actions
sampled from π. The action–value function of a policy π, denoted by Qπ : S ×A → R, is
defined as

Qπ(s, a) := E
[ ∞

∑
t=0

γtrt

∣∣∣s0 = s, a0 = a
]

, s ∈ S , a ∈ A.

The optimal value function is denoted by V? and satisfies V?(s) = maxπVπ(s) for
all s ∈ S . It is well known that in any finite MDP, there exists a stationary deterministic
policy π? : S → A such that Vπ?

= V?, which is called an optimal policy [42]. Similarly,
the optimal state–action value function is defined as Q?(s, a) = maxπ Qπ(s, a) for all
(s, a) ∈ S × A. An optimal policy π? satisfies π?(s) ∈ arg maxa Q?(s, a) for all s ∈ S .
Furthermore, Q? is the unique solution to the optimal Bellman equation [42]:

Q?(s, a) = R(s, a) + γ ∑
s′∈S

P(s′|s, a)max
a′∈A

Q?(s′, a′) , s ∈ S , a ∈ A.

3.2. The Off-Policy Learning Problem and Q-Learning

We consider the off-policy learning problem as follows. The agent is provided with
some datasetD collected according to some behavior or logging policy πb. Precisely speaking,
D takes the form of trajectory {(st, at, rt)}t≥0, where s0 is some initial state, and where for
each t ≥ 0, at ∼ πb(st), st+1 ∼ P(·|st, at), and rt ∼ R(st, at). The agent is given an accuracy
parameter ε > 0 and a failure probability parameter δ ∈ (0, 1), and its goal is to find an
ε-optimal policy using as few samples as possible from D.

We need to impose some assumptions on the behavior policy πb to ensure that it is
possible to learn a near-optimal policy only using D efficiently with PAC-type guarantees.
To state the assumptions, we introduce some necessary definitions, which are borrowed
from standard textbooks on Markov chains (e.g., [43]) but are also standard in the theoretical
analysis of Q-learning (e.g., [9,39]). Let X be a finite set. The total variation distance between
two distributions µ and ν defined over X is dTV(µ, ν) := 1

2 ∑x∈X |µ(x)− ν(x)|. Now,
consider an ergodic Markov chain (Xt)t≥1 with state space X and transition function
p ∈ ∆(X ), and let µ be the unique stationary distribution of the chain. The Markov chain
is said to be uniformly ergodic if there exist some ρ < 1 and M < ∞ such that for all t > 0,

sup
x∈X

dTV(µ, pt(·|x)) ≤ Mρt,

where pt(·|x) is the distribution of Xt given X0 = x.
Similar to [9], we assume that the Markov chain induced by πb is uniformly ergodic.

This property ensures that all the states are visited infinitely often, and that convergence to
the stationary distribution is performed at a geometric pace. This property is needed for
the result presented in Section 5.
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The Q-learning algorithm. The Q-learning algorithm [35] is perhaps the most famous
model-free algorithm for learning an optimal policy in unknown tabular MDPs. As a
model-free method, it directly learns the optimal Q-function Q? of the MDP (without
estimating P and R), which can be used to derive a policy. The algorithm maintains an
estimate Qt of the optimal Q? at each time step t. Specifically, it starts from an arbitrary
choice for Q0 ∈ RS×A and updates Qt, at each t ≥ 0, as

Qt+1(st, at) =

(1− αt)Qt(s, a) + αt

(
rt + γ maxa′∈A Qt(st+1, a′)

)
, (s, a) = (st, at),

Qt+1(s, a) = Qt(s, a), (s, a) 6= (st, at),
(1)

where αt is a suitably chosen learning rate. Precisely speaking, the update Equation (1)
corresponds to the asynchronous variant of Q-learning. The classical asymptotic perfor-
mance analysis of Q-learning (in, for example, [36]) indicates that if (i) πb is exploratory
enough such that all state–action pairs are visited infinitely often and (ii) (αt)t≥0 satisfies
the following conditions, known as the Robbins–Monro conditions [36,44]:

αt ≥ 0,
∞

∑
t=0

αt = ∞,
∞

∑
t=0

α2
t < ∞,

then Qt →t→∞ Q? almost surely, for any choice of Q0 ∈ RS×A. For example, one such
choice of the learning rate is as follows: for all t ≥ 0, αt =

1
Nt(st ,at)+1 , where for any (s, a),

Nt(s, a) denotes the number of visits to (s, a) up to time t: Nt(s, a) = ∑t−1
τ=0 I{(sτ , aτ) =

(s, a)}. The pseudo-code of Q-learning is described in Algorithm 1, where the learning rate
sequence (αt)t≥0 is considered as input.

Algorithm 1 Q-learning [2].

Input: dataset D, maximum iterations T, learning rates (αt)t≥0
Initialization: Q0 = 0 ∈ RS×A

for t = 0, 1, . . . , T do
Sample action at ∼ πb(st) and observe rt ∼ R(st, at) and st+1 ∼ P(·|st, at).
Compute Qt+1 using (1).

end for

It is worth remarking that some studies consider off-policy learning in the online
setting, where data are collected from the environment while executing the algorithm. In
such online settings, it is possible to choose at according to an adaptive (randomized) policy
πt (usually defined as a function of the current estimate Qt), instead of sampling it from a
fixed behavior policy. In doing so, the aim is to balance exploration and exploitation so as
to collect higher rewards while learning the Q-function. A notable example is the ε-greedy
policy, where at time t, at is chosen greedily with respect to Qt(st, ·) with probability 1− ε,
and chosen uniformly at random (from A) with probability ε. In the theoretical part of this
paper, we consider a fixed behavior policy.

3.3. Similarity and Equivalence Classes

We now present a definition of the equivalence structure considered in this paper. We
start by stating the following definition of similarity in finite MDPs as introduced in [18]. A
similar definition is provided in [23].

Definition 1 (Similar state–action pairs [18]). Two state–action pairs (s, a) and (s′, a′) are called
θ-similar if there exist mappings σs,a : {1, . . . , S} → S and σs′ ,a′ : {1, . . . , S} → S such that∥∥P(σs,a(·)|s, a)− P(σs′ ,a′(·)|s′, a′)

∥∥
1 ≤ θ.
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We refer to σs,a as the profile mapping (or for short, profile) for (s, a), and denote by
σ = (σs,a)s,a the set of profile mappings across S ×A.

We stress that σs,a in Definition 1 may not be unique in general. The case of 0-similarity
is of particular interest: it is evident from Definition 1 that if (s, a) and (s′, a′) are 0-similar,
then P(·|s, a) and P(·|s′, a′) are identical up to some permutation from S ×A to S ×A. Further-
more, 0-similarity induces a partition of the state–action space S ×A as formalized below.

Definition 2 (Equivalence structure [18]). 0-similarity is an equivalence relation and induces
a canonical partition of S ×A. We refer to such a canonical partition as equivalence structure
and denote it by C. We further define C := |C|.

We provide an example to help understand Definition 2. Consider the RiverSwim
environment [45] with 6 states and A = {L, R} (see Figure 1). The two pairs (s1, R) and
(s6, R) are 0-similar since P(·|s1, R) = [0.6, 0.4, 0, 0, 0, 0] and P(·|s6, R) = [0, 0, 0, 0, 0.6, 0.4],
so there exist permutations σs1,R and σs6,R such that P(σs1,R(·)|s1, R) = P(σs6,R(·)|s6, R).
Additionally, all pairs (si, L), i = 1, . . . , 6 are 0-similar, and so are (si, R), i = 2, . . . , 5.
We thus identify an equivalence structure C of S × A as follows: C = {c1, c2, c3} with
c1 = {(s1, R), (s6, R)}, c2 = {(si, R), i = 2, . . . , 5}, and c3 = {(si, L), i = 1, . . . , 6}.

Note that for any finite MDP, Definition 2 trivially holds with C = S ×A. There are
many interesting environments that non-trivially admit the notion of equivalence structure
in Definition 2. In such MDPs, it is often the case that the size C of the structure is much
smaller than the size of the state–action space, i.e., C � SA. For example, in a generic
RiverSwim with S states, one has C = 3. Another example admitting an equivalence
structure is the classical grid-world MDP, which is detailed in Section 6.2.

sLsL−1

0.6
(r = 1)0.55

0.4

1

0.4

0.05

1

0.4
s1

0.6

0.4

0.05

1

0.55

1
(r = 0.05)

s2

0.4

0.05

1

s3

0.55

0.4

0.05

1

Figure 1. The L-state RiverSwim environment [45].

Off-policy learning in MDPs with equivalence structures. In this work, we assume
that the underlying MDP M admits an equivalence structure C as introduced above. In
other words, the transition function P is such that S ×A can be partitioned into C := |C|
classes, where the pairs in each class c ∈ C are 0-similar. We make the following assumption
regarding the agent’s prior knowledge about C.

Assumption 1. The agent has prior knowledge on C.

Let c(s, a) denote the class that the pair (s, a) belongs to. Assumption 1 implies that
the agent knows c(s, a) for any pair (s, a) and the associated profile mapping σs,a. Note,
however, that the agent does not know the actual transition probabilities. Armed with such
prior knowledge, we are interested in devising a model-free algorithm that is capable of
leveraging the structure in M to improve the learning performance. We expect that the
corresponding speed-up in learning the optimal Q-function could be significant in MDPs
with C � SA.

We also make the following assumption regarding the reward function to ease the
presentation. (This assumption has often been made in the literature on theoretical RL
(e.g., [6,46]) since the main challenge in RL arises from unknown transition probabilities.)

Assumption 2. The agent knows the reward function R.
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4. The QL-ES Algorithm

In this section, we present a variant of Q-learning that exploits the equivalence struc-
ture in the environment to speed up the learning of the optimal Q-function. We call this
algorithm QL-ES, which is short for ‘Q-learning with equivalence structure’.

QL-ES follows the same machinery of QL but is also built on the idea that the knowl-
edge on C and the corresponding profile mappings allows for using the triplet (st, at, st+1)
collected at each time t to update potentially multiple entries of Qt. Precisely speaking, the
Q-function update for a given pair (s, a) requires a sample from R(s, a) and a sample from
P(·|s, a). Since the agent perfectly knows C, it can determine c(st, at), i.e., the class (st, at)
belongs to. Hence, it knows all other pairs belonging to the same class as (st, at). Then
using st+1 (sampled from P(·|st, at)) at time t, the agent can construct samples for all other
pairs in c(st, at) as follows. If (s, a) ∈ c(st, at), then there is a mapping σs,a and a state s(sa)

t+1

such that P(σst ,at(st+1)|st, at) = P
(
σs,a(s

(sa)
t+1)|s, a

)
. In other words, the sample st+1 obtained

from P(·|st, at) is equivalent to obtaining a fresh sample s(sa)
t+1 from P(·|s, a). As σs,a and

σst ,at are known, the agent finds s(sa)
t+1 := σ−1

s,a (σst ,at(st+1)), where σ−1 denotes the inverse

mapping of σ. In other words, s(sa)
t+1 acts as a counterfactual next-state for (s, a) ∈ c(st, at)

thanks to the knowledge on C.
The agent thus uses (st, at, st+1) to update Qt for all (s, a) ∈ c(st, at). In summary, we

update Qt as follows: For all t ≥ 0,

Qt+1(st, at) =

(1− αt)Qt(s, a) + αt

(
R(s, a) + γ maxa′∈A Qt(s

(sa)
t+1 , a′)

)
, (s, a) ∈ c(st, at),

Qt+1(s, a) = Qt(s, a), (s, a) /∈ c(st, at),
(2)

where (αt)t≥0 is a sequence of suitably chosen learning rates, as in (1). The pseudo-code of
QL-ES is provided in Algorithm 2.

Algorithm 2 QL-ES

Input: dataset D, maximum iterations T, learning rates (αt)t≥0, equivalence structure C
Initialization: Q0 = 0 ∈ RS×A.
for t = 0, 1, 2, . . . , T do

Sample action at ∼ πb(st) and observe st+1 ∼ P(·|st, at).
Find c(st, at).
for (s, a) ∈ c(st, at) do

s(sa)
t+1 = σ−1

s,a (σst ,at (st+1))
Compute Qt+1 using (2)

end for
end for

When the underlying MDP admits some equivalence structure, QL-ES performs
multiple updates of Q-function at any slot, in contrast to structure-oblivious Q-learning
that updates only the Q-function of the current state–action pair. Thus, we expect learning
the optimal Q-function under QL-ES to be faster than Q-learning; this will be corroborated
by the numerical experiments in Section 6. It is also worth mentioning that QL-ES is never
worse than Q-learning, as for the trivial partition C = S ×A, which holds for any finite
MDP, QL-ES reduces to Q-learning.

Remark 1. The multiple updates used in QL-ES can be straightforwardly combined with many
other variants of Q-learning, such as Speedy Q-learning [46] and UCB-QL [41].

We finally remark that some works in the literature on Q-learning use learning rates of
the form αt = f (Nt(st, at)), where Nt(s, a) = ∑t−1

τ=0 I{(sτ , aτ) = (s, a)} and where f is some
suitable function f satisfying the Robbins–Monro conditions, e.g., αt =

1
Nt(st ,at)+1 . Such
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learning rates in the case of QL-ES can be modified to αt = f
(

Nt(c(st, at))
)
, where for any

c ∈ C, Nt(c) := ∑t−1
τ=0 I{(sτ , aτ) ∈ c}.

5. Theoretical Guarantee for QL-ES

In this section, we investigate the theoretical guarantee of QL-ES in terms of sample
complexity in the PAC setting. Specifically, we are interested in characterizing the deviation
between the optimal Q-function Q? and its estimate QT computed by QL-ES after T time
steps. A relevant notion of deviation often studied in the literature (see, e.g., [37,38]) is the
`∞-distance between QT and Q?:

‖Q? −QT‖∞ = max
s,a
|Q?(s, a)−QT(s, a)| (3)

which captures the worst error (with respect to Q?) among various pairs. One may study
the rate at which the error function ‖Q? −QT‖∞ decays as a function of T. Alternatively,
one may characterize the PAC sample complexity defined as the number T of steps needed
until QT satisfies ‖Q? −QT‖∞ ≤ ε with probability at least 1− δ, for pre-specified ε and δ.
We consider the latter case.

Let us first recall the classic definition of cover time tcover, which is a standard notion
in the literature on Markov chains as well as those studying theoretical guarantees of
Q-learning (and its variants) [9,38,39]. Let t1 ≥ 0 and let t2 > t1 denote the first time step
such that all state–action pairs are visited at least once with probability at least 1

2 . Then, the
cover time tcover is defined as the maximum value of t2 − t1 over all initial pairs (st1 , at1).
Note that tcover depends on both the MDP M and the behavior policy πb. More precisely, it
depends on the mixing properties of the Markov chain induced by πb on M. Further, we
have tcover ≥ SA.

Next, we introduce a notion of cover time for equivalence classes, which is relevant to
the performance analysis of QL-ES. We believe it can be of independent interest.

Definition 3. Let M be a finite MDP and C be an equivalence structure in M. Given t1 ≥ 0, let
t2 > t1 denote the first time step such that for each c ∈ C, some state–action pair in c is visited at
least once with probability at least 1

2 . Then, the cover time with respect to the equivalence structure
C in M, denoted by tcover,C , is defined as the maximum value of t2 − t1 over all initial choices of
c(st1 , at1) (i.e., the class the initial pair (st1 , at1) belongs to).

The following theorem provides a non-asymptotic sample complexity for QL-ES. It
concerns constant learning rates, i.e., αt = α for all t ≥ 0, where α may depend on ε and δ,
among other things.

Theorem 1. There exist some universal constants κ0, κ1 such that for any δ ∈ (0, 1) and ε ∈
(0, 1

1−γ ], we have ‖Q? −QT‖∞ ≤ ε with probability greater than 1− δ, provided that the number
T of steps and learning rate α jointly satisfy

T ≥ κ0tcover,C
(1− γ)5ε2 log2

(
CT
δ

)
log
(

1
(1− γ)2ε

)
, α = min

{
κ1(1− γ)4ε2

γ2 log(CT/δ)
,

1
2

}
.

A proof of this theorem is provided in Appendix A. Our proof is an adaptation of the
of the proof of Theorem 2 in [9], which concerns the sample complexity of Q-learning.

Comparison with sample complexity of Q-learning. Theorem 1 tells us that the
number of steps to have ‖Q? −QT‖∞ ≤ ε with high probability depends on tcover,C ε−2(1−
γ)−5 (up to some logarithmic factors), where tcover,C , defined in Definition 3, is the cover
time with respect to C. Comparing this result against the sample of complexity of Q-
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learning (e.g., Theorem 2 in [9]) reveals that using QL-ES yields an improvement over
Q-learning by a factor of const.× ξ, where

ξ := ξ(M, C, πb) :=
tcover

tcover,C
.

This ratio ξ is a problem-dependent constant (depending on both M and (C, σ)). It
also depends on the behavior policy πb in view of the definitions of the cover times. It is
evident that ξ ≥ 1 for any choice of M and C. For a given MDP M, the ratio ξ(M, C, πb)
can be numerically computed; we report numerical values of ξ for several domains in
Section 6.3. On the other hand, deriving the analytical bounds on the ratio ξ(M, C, πb) for
any M appears to be complicated and tedious, if possible at all. Nonetheless, it is possible
to construct simple problem instances, where one can derive analytical bounds on ξ.

Figure 2 portrays one such example; this example is a simple Markov chain but can
be easily extended to become an MDP. Easy calculations show that tcover = (S− 1)/δ and
tcover,C = 1 so that ξ = (S− 1)/δ. Hence, one here has ξ = O(S). This simple example
demonstrates that the gain of QL-ES over Q-learning in some domains could be as large as
O(S), the size of the state space. Additionally, Theorem 1 reveals that in such domains, the
theoretical sample complexity bound of QL-ES does not depend on S but on C, the number
of classes in C.

Figure 2. An illustrative example where ξ = O(S).

We refer the reader to the results in Section 6.3, where we present numerical bounds
on ξ in some MDPs, which serve as the standard domain in the RL literature.

6. Simulation Results

This section is devoted to reporting numerical experiments conducted to examine the
performance of QL-ES against the (structure-oblivious) Q-learning algorithm. First, we
present the considered evaluation metrics and environments. Then we present numerical
assessment of ξ for these environments. Finally, we report empirical sample complexities
of QL-ES and Q-learning in the environments.

6.1. Evaluation Metrics

We consider two evaluation metrics in the experiments:

(i) Max-norm Q-value Error defined as ‖Q? −Qt‖∞;

(ii) Total Policy Error defined as ‖π? − πgreedy
t ‖1, where πgreedy

t denotes the greedy policy

w.r.t. Qt, i.e., πgreedy
t (s) := arg maxa Qt(s, a) for all s.

The metric (i), which is in line with the definition of sample complexity studied in
Section 5, captures the maximum difference between Qt and Q? over all state–action pairs
and allows us to empirically study the convergence speed of Qt toward Q?. The second
metric captures the quality of the estimate Qt in terms of inferred policies. Evidently,
the quantity ‖π? − πgreedy

t ‖1 returns the number of states at which πgreedy
t prescribes a

sub-optimal action. Hence, the metric (ii) may capture how bad the policy derived from Qt

(i.e., πgreedy
t ) would be, compared to π?, had we stopped at time step t. Equivalently, we

may compute the metric (ii) via

∑
s∈S

I
{

Qt(s, π?(s))− max
a 6=π?(s)

Qt(s, a) < 0
}

. (4)
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Working with (4) is preferred, as then, one may not worry about how ties (in arg max)
are broken when either πt or π? is not unique.

6.2. Environments

We consider two environments: RiverSwim and GridWorld. These are classical MDPs
widely used in the RL literature. Both render suitability to demonstrate the numerical
performance of QL-ES since each allows us to define a family of MDPs with progressive
difficulty levels.

RiverSwim and variants. A generic RiverSwim MDP with L states is shown in
Figure 1, which extends the classical 6-state RiverSwim presented in [45]. This MDP is
constructed so that efficient exploration is required to obtain the optimal policy. The larger
the number L of states, the more exploration is required. The L-state RiverSwim (with
L ≥ 3) admits an equivalence structure with C = 3 regardless of L. We consider RiverSwim
instances with various L so as to have MDPs with progressive difficulty levels while having
a fixed number of classes. In some experiments, we consider a slightly modified version of
RiverSwim, which we shall call Perturbed RiverSwim. It is identical to RiverSwim (Figure 1)
except that in any state si, where i < L is even, p(si|si, R) = 0.65 and p(si+1|si, R) = 0.3. It
is clear that there are C = 4 classes in a L-state Perturbed RiverSwim.

GridWorld. We also consider 2-room and 4-room grid-world MDPs with different
grid sizes. Figure 3 shows a 7× 7 2-room and a 9× 9 4-room grid-worlds, respectively. In
both environments, the agent starts at the upper-left corner (in red) and is supposed to
reach the lower-right corner (in yellow), where it is given a reward of 1 and then sent back
to the initial red state. At each step, the agent has four possible actions (hence, A = 4):
Going up, left, down, or right. Black squares indicate the wall where the agent is not able
to penetrate through. After executing a given action, the agent has a probability of 0.1 to
stay in the same state, has a probability of 0.7 to move to the desired direction, and has a
probability of 0.06 and 0.14 to move to the other two possible directions. If the wall blocks
the agent, it stays where it is, and the transition probability of the next state is added to
that of the current state.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 2 4 6 8
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1

2

3

4

5

6

7

8

Figure 3. The 2-room grid world (left) and 4-room grid world (right) with walls in black, initial state
in red, and goal state in yellow.

It is clear that the grid-world MDPs above admit some equivalence structure. In the
case of 2-room (respectively, 4-room), the state–action space is of size 84 (respectively, 160),
while the number of classes remains 8 in both. In Table 1, we also present six examples of
grid-world environments with walls defined according to the way mentioned above. In the
introduced 2-room and 4-room MDPs, the number of state–action pairs changes with the
increase in the grid size, while the number of classes remains fixed.

Table 1. State–action space and equivalence classes comparison in grid-world MDPs.

Environment States 7 × 7 9 × 9 11 × 11 20 × 20 50 × 50 100 × 100

2-room SA 84 172 292 1228 9028 3.8× 104

2-room C 8 8 8 8 8 8
4-room SA 80 160 272 1172 8852 3.7× 104

4-room C 8 8 8 8 8 8
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6.3. Bounds on the Ratio ξ

We recall from Section 5 that the theoretical gain of QL-ES over Q-learning in terms
of sample efficiency is captured by the problem-dependent quantity ξ = tcover

tcover,C
. In this

subsection, we compute ξ for the introduced environments with the aim of providing
insights into the growth of ξ as the number S of states grows. Specifically, we consider
RiverSwim, Perturbed RiverSwim (introduced in Section 6.2), and GridWorld MDPs, each
with growing number of states. In each case, we report empirical values for tcover and
tcover,C together with the corresponding 95% confidence intervals. The empirical tcover
is computed as the median value (across 100 independent runs for every possible initial
state-action pair) of the number of steps it takes to discover all state-action pairs starting
from a given initial state-action pair. A similar procedure is used for tcover,C .

Tables 2–4 summarize empirical values of tcover and tcover,C (together with the associ-
ated 95% confidence intervals denoted by CI) for RiverSwim, Perturbed RiverSwim, and
2-room GridWorld, respectively, with varying number of states in each case. In the case of
GridWorld, we ran a uniform agent (sampling each action uniformly), wheres in RiverSwim
MDPs, the agent samples R (resp. L) with probability 0.8 (resp. 0.2).

These results reveal that tcover,C is much smaller than tcover in all cases. Furthermore,
they indicate that while tcover grows rapidly as S increases (in any family of the MDPs
considered), tcover,C experiences a much smaller growth. As for the ratio ξ, we report ξLCB
as the lower confidence bound obtained by dividing the lower value in the CI for tcover by
the upper value in the CI for tcover,C . This is a rather conservative estimate of the true ξ but
ensures that ξ ≤ ξLCB with probability at least 0.9. The reported values demonstrate that
in these environments, ξ grows rapidly as the size of state space grows. This observation
verifies that the theoretical gain of QL-ES over Q-learning can be significant.

Table 2. Empirical values of tcover, tcover,C , and ξLCB for RiverSwim with S states.

S 6 10 14 20

tcover 131, CI=[97, 158] 513, CI=[340, 658] 2529, CI=[1867, 3196] 12792, CI=[7577, 15688]
tcover,C 12, CI=[9, 16] 33, CI=[26, 38] 56, CI=[46, 66] 113, CI=[94, 133]
ξLCB

97
16 ≈ 6.1 340

38 ≈ 8.9 1867
66 ≈ 28.3 7577

133 ≈ 57.0

Table 3. Empirical values of tcover, tcover,C , and ξLCB for Perturbed RiverSwim with S states.

S 6 10 14 20

tcover 116, CI=[97, 136] 557, CI=[351, 655] 2011, CI=[1616, 2451] 11856, CI=[7282, 17103]
tcover,C 14, CI=[12, 17] 32, CI=[23, 37] 58, CI=[46, 67] 114, CI=[99, 130]
ξLCB

97
17 ≈ 5.7 351

37 ≈ 9.5 1616
67 ≈ 24.1 7282

130 ≈ 56.0

Table 4. Empirical values of tcover, tcover,C , and ξLCB for 2-room GridWorld with S states.

S 21 43 71 111

tcover 2164, CI=[1939, 2355] 5480, CI=[4890, 5889] 11310, CI=[9817, 12735] 22793, CI=[20571, 24882]
tcover,C 205, CI=[125, 251] 418, CI=[329, 481] 877, CI=[613, 1011] 1338, CI=[1101, 1551]
ξLCB

1939
251 ≈ 7.7 4890

481 ≈ 10.2 9817
1011 ≈ 9.7 20571

1551 ≈ 13.3

6.4. Experimental Results with Exact Equivalence Structure

We now turn to reporting experimental results for QL-ES and Q-learning in RiverSwim
and GridWorld. In the following figures, QL indicates the standard Q-learning algorithm
(Algorithm 1). We used a constant learning rate α = 0.05 and ε-greedy policy (with values
of ε to be specified later). Furthermore, all the results are averaged over 100 independent
runs, and the corresponding 95% confidence intervals are shown.

Figure 4 presents the max-norm Q-value error and total policy error under both QL-ES
and Q-learning in a 6-state RiverSwim, where we set γ = 0.9 and ε = 0.5. It is evident that
QL-ES significantly outperforms Q-learning. The Q-value error under Q-learning decays at
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a very slow rate until about about 4× 105 steps. After this step, the decay rate increases
tangibly. In contrast, the Q-value error under QL-ES decays at a much faster speed. Under
Q-learning, the total policy error remains above 5 until time step 4× 105, which implies
that only one state has learned its optimal policy. On the contrary, the total policy error
under QL-ES drops to the vicinity of 0 very quickly. These results verify that the empirical
gain of leveraging the equivalence structures in MDPs, in terms of the number of samples,
can be significant.

To demonstrate the scalability of QL-ES, in Figure 5, we present the Q-value error
under QL-ES in RiverSwim instances with 6, 20, and 40 states. As the figure shows, although
the error in the 6-state RiverSwim starts decaying much earlier than the others, all of them
exhibit a similar rate of decay. Moreover, the curves corresponding to 20-state and 40-state
instances are almost indistinguishable. This result showcases MDPs where the sample
complexity of QL-ES does not scale with the size of the state–action space and is mostly
determined by the number of classes.
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Figure 4. Results in 6-state RiverSwim.
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Figure 5. Comparison between RiverSwim domains.

We now turn to the results for GridWorld MDPs. Figures 6 and 7 show the results for
QL-ES and Q-learning in 2-room and 4-room GridWorld MDPs, where we used γ = 0.85
and ε = 0.2 in the 2-room and γ = 0.85 and ε = 0.3 in the 4-room.
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Figure 6. Results in 2-room grid world.
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Figure 7. Results in 4-room grid world.

As in RiverSwim MDPs, QL-ES significantly outperforms Q-learning in the grid-
world environments. For Q-learning, the Q-value error remains considerable, even for
106 samples. Although both QL-ES and Q-learning do not fully learn an optimal policy
by the end of the run, the total policy error decays much faster under QL-ES. Overall,
the results demonstrate that exploiting equivalence structure is beneficial in grid-world
MDPs. Comparing Figures 6 and 7, it is evident that QL-ES still obtains relatively better
performance than Q-learning with the increase in state space. Moreover, similar trends are
expected when conducting this experiment in larger grid-world MDPs.

6.5. The Gain in the Case of θ-Similar Pairs

We now investigate the case where the MDP may not admit any equivalence structure
but admits θ-similarity across its state–action space; see Definition 1. To this effect, we
introduce Modified RiverSwim and Modified GridWorld defined as follows. The Modified
RiverSwim is identical to 6-state RiverSwim (Figure 1), except that its non-zero transition
probabilities under (s2, R) and (s4, R) are changed from [0.05, 0.55, 0.4] to [0.15, 0.3, 0.55].
The Modified GridWorld is identical to 7× 7 2-room grid-world, except that the non-zero
transition probabilities under (s1,down), (s5,down), and (s7,down) are set to [0.6, 0.05, 0.2, 0.15]
instead of [0.7, 0.06, 0.14, 0.1]. Modified RiverSwim admits an equivalence structure, but we
remark that it satisfies θ-similarity with θ = 0.1. Similarly, Modified GridWorld satisfies
θ-similarity with θ = 0.1. Figure 8 shows the results in Modified RiverSwim (with γ = 0.95)
and Modified GridWorld (γ = 0.85). It is evident that in both cases, QL-ES still achieves
smaller Q-value error than Q-learning.
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Figure 8. Results with θ-similar pairs: Modified RiverSwim (left) and Modified GridWorld (right).

6.6. The Impact of Partially Using the Structure

Considering MDPs with huge state–action spaces, it is necessary to take into account
the feasibility of using only a few equivalent pairs. This thus naturally leads to the question
as to whether only using a few equivalent pairs would lead to a reasonable performance
gain. Therefore, here we investigate the convergence speed when choosing a subset of
equivalent state–action pairs at each time step, rather than considering all the state–action
pairs in the same class.

As shown in Figure 9, we can still obtain reasonable performance only considering a
few equivalent pairs. The numbers in brackets represent how many equivalent pairs are
used. In RiverSwim with 6 states (SA = 12), the performance of QLES(3) and QLES(4)
is comparable to QL-ES. Interestingly, we already observe a significant improvement
over Q-learning using QLES(1), i.e., when using only one additional observation in the
Q-learning update.
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Figure 9. Results in RiverSwim: S = 6.

Meanwhile, the total policy error is less than or close to one. This shows that the
optimal policy is correctly learned in almost all the states.

In 20-state RiverSwim (SA = 40), algorithms with few equivalent pairs can still achieve
excellent performance, albeit not as good as QL-ES. Additionally, as Figure 10 shows, using
more equivalent pairs leads to better sample efficiencies in MDPs with large state space.
Concerning QLES(3)-QLES(12), the Q-value error gets smaller when more equivalent pairs
are used.

From the perspective of policy, even QLES(3) and QLES(6) manage to find optimal
actions significantly faster than Q-learning. In addition, QLES(10) is far superior to QLES(6)
because of the quite smaller Q-value error and total policy error. The results show that
algorithms with a suitable number of equivalent pairs are sufficient to learn an optimal
policy in most states reasonably fast.
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Figure 10. Results in RiverSwim: S = 20.

7. Conclusions

We studied off-policy learning in discounted Markov decision processes, where some
equivalence structure exists in the state–action space. We presented a model-free algorithm
called QL-ES, which is a natural extension of the classical asynchronous Q-learning but
capable of exploiting the equivalence structure. We presented a high-probability sample
complexity bound for QL-ES, and discussed how it improves that of Q-learning. As
demonstrated, there exist problem instances on which the improvement over Q-learning
could be a multiplicative factor of S, the size of the state space. Through extensive numerical
experiments in standard domains, we demonstrated that QL-ES significantly improves
over (structure-oblivious) Q-learning. These results revealed that exploiting state–action
equivalence favors faster convergence of the Q-function and policy learning in large MDPs.
A limitation of our approach is the need for the prior knowledge on the structure. To
the best of our knowledge, existing methods for learning the equivalence structure are
all model-based. Hence, an interesting question is whether it is possible to exploit the
equivalence structure without prior knowledge on the structure using only model-free algorithms.
Devising such model-free algorithms (or otherwise establishing an impossibility result)
is an interesting yet challenging topic for future work. Another interesting direction for
future work is to investigate ways to combine the knowledge of the equivalence structure
with function approximation methods. Finally, another avenue for future work is to
study model-free algorithms for the regret minimization setting in average-reward MDPs
(e.g., [47,48]).
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Appendix A. Sample Complexity of QL-ES: Proof of Theorem 1

The following proof for Theorem 1 is a direct adaptation from Theorem 2 of [9]. We
closely follow the notations and definitions used in [9].

Appendix A.1. Notations

Before presenting the result and going into the details of the proof, some notations
must be introduced. In the following, letters in bold, such as Q, shall stand for matrices
and vectors, and for a matrix M ∈ RN×L, M(i) is the i-th row of M. Additionally, as long
as there is no confusion, applying operations such as

√
· or | · | to a matrix is the entry-wise

operation: for example, |M| = (|mij|)i,j. Finally, 1 is the vector full of ones, and I is the
identity matrix.

Moreover, the following quantities appear in the proof:

tcover,all = tcover,C log
(

T
δ

)
(A1)

tth = max
{

2tcover,all
α

log
(

1
(1− γ)2ε

)
, tcover,all

}
(A2)

ρ = (1− γ)(1− (1− α)
1
2 ) (A3)

Let us introduce the short-hand ct := c(st, at) for any t ≥ 0. In order to analyze the
update in QL-ES in a matrix-form way, we introduce

Λt((s, a), (s, a)) =

{
α if (s, a) ∈ ct−1

0 otherwise
(A4)

Pt((s, a), s′) =

{
1 if (s, a) ∈ ct−1 and s′ = σ−1

s,a (σst−1,at−1(st))

0 otherwise
(A5)

and we will use Qt for the Q-value matrix (of size S× A) and P for the transition matrix (of
size SA× S). Notice that Λt ∈ [0, 1)SA×SA is diagonal, and Pt ∈ [0, 1]SA×S. Then we have:

Qt = (I−Λt)Qt−1 + Λt(r + γPtVt−1) ,

where Vt ∈ RS is the vector of value estimates at time t, whose s-th element is given by
maxa Qt(s, a). Finally, we are interested in bounding ∆t = Qt −Q?.

The following lemma showcases the role of the cover time, and the proof is given in
Appendix B.1:

Lemma A1. Define the event

Kl = {∃c ∈ C s.t. c is not visited within iterations (ltcover,all, (l + 1)tcover,all]}

and L = b T
tcover,all

c. Then: P
(
∪L

l=0 Kl
)
≤ δ.

Appendix A.2. Proof of Theorem 1

As established in the proof of [9] (Theorem 2) (see Equation (39) there), we have

∆t = (I−Λt)∆t−1 + γΛt(Pt − P)V? + γΛtPt(Vt−1 −V?),

which, using an inductive argument, yields

∆t = γ
t

∑
i=1

t

∏
j=i+1

(I−Λj)Λi(Pi − P)V?

︸ ︷︷ ︸
β1,t

+ γ
t

∑
i=1

t

∏
j=i+1

(I−Λj)ΛiPi(Vi−1 −V?)

︸ ︷︷ ︸
β2,t

+
t

∏
j=1

(I−Λj)∆0︸ ︷︷ ︸
β3,t

.
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Hence, |∆t| ≤ |β1,t|+ |β2,t|+ |β3,t|, where ≤ holds element-wise. Furthermore, as in
the proof of [9] (Theorem 2),

‖Pi(Vi−1 −V?)‖∞ ≤ ‖Pi‖1‖Vi−1 −V?‖∞ = ‖Qi−1 −Q?‖∞ = ‖∆i−1‖∞,

since ‖Pi‖1 = 1 in view of the definition of Pi. Hence,

|β2,t| ≤ γ
t

∑
i=1
‖∆i−1‖∞

t

∏
j=i+1

(I−Λj)Λi1 . (A6)

The following two lemmas provide upper bounds on |β1,t| and |β3,t|.

Lemma A2. There exists a universal constant κ > 0 such that, for any 0 < δ < 1,

∀ 1 ≤ t ≤ T, |β1,t| ≤ τ1‖V?‖∞1 (A7)

with probability at least 1− δ, where τ1 = κγ
√

α log
(CT

δ

)
.

Lemma A3. For all t > 0, we have |β3,t| ≤ ‖∆0‖∞1. Furthermore, with probability at least 1− δ,

∀ t ∈ [tcover,all, T], |β3,t| ≤ (1− α)
t

2tcover,all ‖∆0‖∞1.

Lemma A2 is proven in Appendix B.2. The proof of Lemma A3 is the same as the
proof of [9] (Lemma 6) but using appropriate definitions of tcover,all and Kt(s, a) for the case
of QL-ES; it is thus omitted.

The two lemmas above together with (A6) imply that with probability greater than
1− 2δ,

|∆t| ≤
{

γ ∑t
i=1‖∆i−1‖∞ ∏t

j=i+1(I−Λj)Λi1 + τ1‖V?‖∞1 + ‖∆0‖∞1 t < tcover,all

γ ∑t
i=1‖∆i−1‖∞ ∏t

j=i+1(I−Λj)Λi1 + τ1‖V?‖∞1 + (1− α)t/(2tcover,all)‖∆0‖∞1 tcover,all ≤ t ≤ T
(A8)

Now, a refined recursive analysis is conducted (in Appendix B.3):

Lemma A4. Let

u0 =
‖∆0‖∞
1− γ

, ut = ‖vt‖∞ (A9)

vt =

{
γ ∑t

i=1 ∏t
j=i+1(I−Λj)Λi1ui−1 + ‖∆0‖∞1 1 ≤ t ≤ tth

γ ∑t
i=1 ∏t

j=i+1(I−Λj)Λi1ui−1 t > tth.
(A10)

Then with probability greater than 1− 2δ,

‖∆t‖∞ ≤
τ1‖V?‖∞

1− γ
+ ut + ε . (A11)

This lemma is the consequence of a direct computational induction from (A8), using

the fact that (1− α)
t

2tcover,all ≤ (1− γ)ε when t ≥ tth, and ‖∆0‖∞ = ‖Q?‖∞ ≤ 1
1−γ .

Lemma A5. Let wk = (1− ρ)k ‖∆0‖∞
1−γ for all k ∈ N. Then, with probability 1− 2δ:

ut ≤ wkt with kt = max
{

0,
⌊ t− tth

tcover,all

⌋}
(A12)
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The proof for Lemma A5 relies once again on computational arguments and an
induction, as showcased in Appendix B.4.

Finally, the following theorem is the last milestone of the proof, obtained from the two
previous lemmas.

Theorem A1. For any ε ∈ (0, 1
1−γ ], δ ∈ (0, 1), there exists a universal constant κ > 0 such that

with probability at least 1− 6δ, for all t ≤ T:

‖Qt −Q?‖∞ ≤ (1− ρ)k ‖Q0 −Q?‖∞

1− γ
+

κγ

1− γ
‖V?‖∞

√
α log

(
CT
δ

)
+ ε (A13)

with k = max
{

0, b t−tth
tcover,all

c
}

.

It is easy to upper bound the second term in (A13) with ε by setting α = (1−γ)4ε2

κ2γ2 log(CT/δ)
.

Then, using (1− ρ)k ≤ e−ρk and noting that ρ ≥ 1
4 (1− γ)α for α < 1

2 allow us to upper
bound the first term by ε, thanks to the definition of k, as long as

t ≥ tth + tcover,all +
4tcover,all
(1− γ)α

log
(
‖∆0‖∞

ε(1− γ)

)
= T, (A14)

which concludes this proof of Theorem 1.

Appendix B. Proofs of Technical Lemmas

Appendix B.1. Proof of Lemma A1

This proof reproduces the one of Lemma 5 in [9] but tailored to the case of QL-ES. We
set tl = tcover,C l, and define

Hl = {∃c ∈ C that is not visited within (tl , tl+1]}

for any integer l > 0. From the definition of tcover,C , for any c′ ∈ C,

P
(
Hl | ctl = c′

)
≤ 1

2
.

Hence, using the Markov property, for any integer L > 0,

P(H1∩ · · · ∩ HL) = P(Hl ∩ · · · ∩ HL−1)P(HL | H1 ∩ · · · ∩ HL−1)

= P(H1 ∩ · · · ∩ HL−1) ∑
c′∈C

P
(
HL | ctl = c′

)
P
(
ctl = c′ | H1 ∩ · · · ∩ HL−1

)
≤ 1

2
P(H1 ∩ · · · ∩ HL−1) ∑

c′∈C
P
(
ctl = c′ | H1 ∩ · · · ∩ HL−1

)
=

1
2
P(H1 ∩ · · · ∩ HL−1).

An easy recursive derivation gives P(H1 ∩ · · · ∩ HL) ≤ 2−L. Finally:

P(∃c ∈ C not visited between (0, tcover,all]) ≤ P
(
H1 ∩ · · · ∩ Hlog2

T
δ

)
≤ 1

2log2
T
δ

=
δ

T

from which we easily deduce the result by using a straightforward union bound.
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Appendix B.2. Proof of Lemma A2

The proof is an adaptation of the proof of Lemma 1 in [9] to the case of Q-value updates
in QL-ES. Similar to the proof of Lemma 1 in [9], we begin with looking at the (s, a)-th
element of β1,t:

β1,t(s, a) = γ
Kt(s,a)

∑
k=1

(1− α)Kt(s,a)−kα(Ptk(s,a)+1(s, a)− P(s, a))V? ,

where tk(s, a) denotes the time step when c(s, a) is visited for the k-th time, and where
Kt(s, a) denotes the number of times (s, a) is updated during the t first time steps: Kt(s, a) =
max{k | tk(s, a) ≤ t}. We simplify the notation below with tk(s, a) = tk. Now, we claim that

∀ (s, a) ∈ S ×A, |β1,t| ≤ γ

√
α log

(
CT
δ

)
‖V?‖∞ .

Firstly, the vectors Ptk+1(s, a), k = 1, . . . , K are independent and identically distributed
for any (s, a) ∈ S ×A and any K ∈ N?. Indeed, for any i1, . . . iK ∈ S ,

P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K
)

= P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K− 1 and σ−1
s,a (σstK ,atK

(stK+1)) = iK

)
= ∑

m∈N?

P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K− 1 and tK = m and σ−1
s,a (σsm ,am(sm+1)) = iK

)
(i)
= ∑

m∈N?

[
P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K− 1 and tK = m
)

× P
(

σ−1
s,a (σsm ,am(sm+1)) = iK,

∣∣∣ (s, a) ∈ cm

)]
(ii)
= Ps,a(iK) ∑

m∈N?

P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K− 1 and tK = m
)

= Ps,a(iK)P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K− 1
)

where (i) uses the Markov property, (stK , atK ) ∈ c(s, a) from the definition of tK = tK(s, a),
(ii) uses the equivalence property between (s, a) and (sm, am), and Ps,a is the transition
probability from (s, a). By induction, one obtains

P
(

σ−1
s,a (σstk ,atk

(stk+1)) = ik, ∀ 1 ≤ k ≤ K
)
=

K

∏
j=1

Ps,a
(
ij
)

which proves the sought independence. Then, following identical lines as in the proof of
Lemma 1 in [9] (Lemma 1), we can use Hoeffding’s inequality to bound β1,t, which yields∣∣∣∣∣ K

∑
k=1

(1− α)K−kα(Ptk+1(s, a)− P(s, a))V?

∣∣∣∣∣ ≤
√

α log
(

CT
δ

)
‖V?‖∞.

The proof is concluded by taking the union bound over all classes c ∈ C and all
1 ≤ K ≤ T.
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Appendix B.3. Proof for Lemma A4

The proof is a straightforward adaptation of the proof of [9] (Lemma 3), where we
reproduce most of the steps from [9] for completeness. We prove the lemma by induction
on t. The base case t = 0 holds trivially:

‖∆0‖∞ ≤
‖∆0‖∞
1− γ

≤ τ1‖V?‖∞
1− γ

+ u0 + ε.

Now let us assume that the recursive hypothesis holds for all i < t. Let us define

h(t) =

{
‖∆0‖∞ if t ≤ tth
(1− γ)ε if t > tth

and we remind that (1− α)
t

2tcover,all ≤ (1− γ)ε whenever t ≥ tth. Therefore, we have

|∆t| ≤ γ
t

∑
i=1

t

∏
j=i+1

(
I−Λj

)
Λi1

(
τ1‖V?‖∞

1− γ
+ ui−1 + ε

)
+ τ1‖V?‖∞1 + h(t)1

= γ
t

∑
i=1

t

∏
j=i+1

(
I−Λj

)
Λi1ui−1 + γ

t

∑
i=1

t

∏
j=i+1

(
I−Λj

)
Λi1

(
τ1‖V?‖∞

1− γ
+ ε

)
+ τ1‖V?‖∞1 + h(t)1.

Furthermore, define the diagonal matrix Mi = ∏t
j=i+1(I − Λj)Λi, and denote by

N j
i (s, a) the number of visits to the equivalence class of the state–action pair (s, a) between

the i-th and the j-th iterations (including i and j). Then the diagonal entries of Mi satisfy

Mi((s, a), (s, a)) =

{
α(1− α)Nt

i+1(s,a), if (s, a) ∈ ci−1,
0, if (s, a) 6∈ ci−1.

Introducing e(s,a) ∈ RSA as the standard basis vector whose only non-zero entry is the
(s, a)-th entry, one obtains the following:

t

∏
j=i+1

(I−Λj)Λi1 = Mi1 = Mie(si−1,ai−1)
= α(1− α)Nt

i+1(si−1,ai−1)e(si−1,ai−1)

and

t

∑
i=1

t

∏
j=i+1

(I−Λj)Λi1 =
t

∑
i=1

α(1− α)Nt
i+1(si−1,ai−1)e(si−1,ai−1)

= ∑
(s,a)∈S×A

{
t

∑
i=1

α(1− α)Nt
i+1(s,a)

I
{
(s, a) ∈ ci−1

}}
e(s,a)

≤ ∑
(s,a)∈S×A

∞

∑
j=0

α(1− α)je(s,a) =
∞

∑
j=0

α(1− α)j1 = 1. (A15)
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Using (A15), we obtain

|∆t| ≤ γ
t

∑
i=1

t

∏
j=i+1

(I−Λj)Λi1ui−1 +
γτ1‖V∗‖∞

1− γ
1 + γε1 + τ1‖V∗‖∞1 + h(t)1

=
τ1‖V∗‖∞

1− γ
1 + γε1 + γ

t

∑
i=1

t

∏
j=i+1

(I−Λj)Λi1ui−1 + h(t)1

=
τ1‖V∗‖∞

1− γ
1 + γε1 + vt + (1− γ)εI{t > tth}1

≤ τ1‖V∗‖∞

1− γ
1 + ε1 + vt .

With the definition of ut = ‖vt‖∞, we arrive at the desired result.

Appendix B.4. Proof for Lemma A5

This proof follows identical steps as in the proof of Lemma 4 in [9] except that the
quantities Nn

i (s, a) used there should be defined as the number of visits to the equivalence
class of the state–action pair (s, a) between iteration i and iteration n (including i and n).
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