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Abstract: This article proposes a decentralized controller for differential mobile robots, providing
autonomous navigation and obstacle avoidance by enforcing a formation toward trajectory tracking.
The control system relies on dynamic modeling, which integrates evasion forces from obstacles,
formation forces, and path-following forces. The resulting control loop can be seen as a dynamic
extension of the kinematic model for the differential mobile robot, producing linear and angular
velocities fed to the mobile robot’s kinematic model and thus passed to the low-level wheel controller.
Using the Lyapunov method, the closed-loop stability is proven for the non-collision case. Experi-
mental and simulated results that support the stability analysis and the performance of the proposed
controller are shown.

Keywords: autonomous navigation; multi-agent systems; decentralized control; bio-inspired control;
reaction control; formation

1. Introduction

Autonomous driving on a multi-agent system is a highly researched goal pursued in
robotics. Deliberative control techniques, which require precise recognition and knowledge
of the surroundings and well-defined hierarchical structures, show an efficient performance
in controlled environments; see [1], where a broad review of path planning strategies is
presented, including environment and robot interaction modeling. In contrast, reactive
control techniques, based on a robust stimulation–response behavior, yield a favorable
execution on unknown environments [2]. The location of the agents (mobile robots) about
a global frame of reference, navigation in unknown environments, and the introduction of
multiple robots in the same workspace make this a challenging problem to solve. Multiple
mobile robots systems present new challenges compared to single vehicle control, such
as the heterogeneity of the agents, mixed traffic, cooperative behaviors, collisions among
vehicles, static obstacles, and even pedestrians [3,4].

Mobile robots are electro-mechanical devices that can move on the bi-dimensional
plane, and this restriction leads to 3 degrees of freedom, which are its location and orienta-
tion coordinates. Mobile robots can be classified according to their grade of mobility and
directional capabilities. Type (2, 0) or differential robots have two wheels with individual
speeds and no directional actuator. Thus, differential mobile robots are underactuated
systems subject to non-holonomic constraints, which hinders the design of the navigation
controller. Although the navigation control of mobile robots is not new, novel applications
and developments are studied, due to the recent technological advances and cost reduc-
tion in electronics, as well as more powerful, highly integrated but smaller computing
devices [5,6]. In [5], the application of multi-robot systems for harvester assisting purposes
is presented such that a cooperative co-working set of robots must follow the farmer to help
with weeding, harvesting, crop scouting, etc., rendering a human–machine collaboration
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system. Other applications for multi-agent systems and social robots navigation, such as
delivery robots, warehouses, indoor service robots, surveillance robots, etc., are listed in [7].
An interesting application is presented in [8], where a multi-robot system is proposed for
defect detection and location on large surface metal plates; it is pointed out that there are
several trade-offs between the performance in terms of defect location accuracy and the
number of robots, their navigation capabilities, and ability to keep a formation.

The implementation of multi-agent swarm systems usually involves the usage of
several data acquisition devices, such as inertial sensors [9], simultaneous localization
and mapping (SLAM) [10], onboard cameras for computer vision [11], and relative radio
positioning [12], in order to provide data redundancy and diversity to model environmental
conditions properly [13]. There are even biomimetic sensors designed for navigation
purposes in multi-robot systems; see [14], where a micro lenses array is integrated to
aperture and field diaphragms to emulate an insect compound eye and later is combined
to SLAM techniques for the navigation of a set of outdoor light robots. In general, the
amount of data processing is directly proportional to the number of agents in the system,
increasing power consumption in onboard processing platform solutions. Centralized
swarm navigation schemes usually share all their gathered data through all the agents in
the system, making them utterly dependent on the communication system’s reliability [15].
To overcome the burden of data required to create a map, in [6], they propose using
OpenStreetMaps, which are user-generated maps, publicly available, whose information is
combined with lidar-based Naive-Valley-Path generation methodologies to render a local
path that is free of obstacle collisions with other vehicles and pedestrians, thus combining
deliberative and reactive techniques, providing a complete outdoor autonomous navigation
system for unstructured environments. Another application of integrating deliberative
and reactive techniques is found in [16], where a navigation controller that uses SLAM,
path-planning techniques and exteroceptive sensors is applied to small-scale vessels or
surface vehicles.

On the other hand, some species in nature have developed effective ways to achieve
evasion, following other members and shaping formation, yielding to behavior models
of biological systems, such as schools of fish, flocks of birds, or crowd dynamics, which
are examples of reactive control techniques, and can be used for its implementation on
robotic systems, more specifically, unicycle differential robots. In these reactive mod-
els, the individual actions of each agent are defined toward the fulfillment of a global
objective [17,18] so as to have the most number of animals in a reduced space or some
species of birds that can make more complex formations toward a leader.

Some advances in the research of crowd dynamics allow, with a set of simple rules, to
predict the agents’ behavior. For instance, in [19], potential functions and panel methods
are embedded into an algorithm to create a collision-free path for differential agents.
The simplicity, ease of implementation, and low computational requirements make this
modeling approach effective in robot navigation. However, potential functions may suffer
from several problems, such as local minima traps, dead locks between close obstacles,
oscillations in the presence of obstacles, and inside narrow passages.

Another kind of solution is obtained from observing the animal’s conduct when
moving and interacting with each other, according to its goal. In [20,21], Helbing et al.
(2000, 2005) analyzed crowd dynamics, describing a model of displacement behavior; if
an individual wants to move to a desired point, it moves in the shortest path with the
most comfortable speed; when an obstacle, like a wall or another individual appears, the
individual starts evading it as soon as a comfort zone is invaded, i.e., a private space. This
zone is preferred not to be invaded, so the individual tries to keep it clear.

There are other investigations, such as [17], which set navigation rules with the
purpose of the agents reaching geometric shape formations regarding the position of the
other agents in a sort of coordinated behavior. In humans, for example, making a line or a
circle implies knowing the location of everybody else in the group such that everyone sets
their position on the formation.
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More recently, reinforcement learning (RL) and deep reinforcement learning (DRL)
techniques have been applied for the navigation of autonomous vehicles; [4,7] present sur-
veys of advances on applying RL and DRL to problems such as obstacle avoidance, indoor
navigation, multi-robot navigation, and social navigation, considering heterogeneous fleets,
unmanned vehicles, aerial vehicles and ships, and possible interaction between agents
and humans. They point out that the results highly depend of the degree of cooperation
and shared information between the agents. Particular applications of RL to the case of
groups of autonomous vehicles give rise to the so-called multi-agent reinforcement learning
(MARL), which is a more distributed framework in which several agents simultaneously
learn cooperative or competitive behaviors [22]. This approach is being applied to mixed
traffic problems and heterogeneous group of agents.

In this article, a decentralized control strategy is designed, allowing autonomous
driving for a multi-agent system, using behavioral models to enable the trajectory tracking
and collision avoidance of dynamic and static obstacles, based on the relative approaching
velocity. A desired formation is simultaneously achieved by establishing some navigation
restrictions, in this case, and without loss of generality, a circular formation. The objective
of the research is then to use these models and to adapt them in a control strategy which
allows a decentralized, autonomous navigation system.

In Section 2, the specifications of the control proposal are described, while in
Section 3, the Lyapunov’s stability test is applied on the closed-loop system, for the
non-collision case, to obtain stability conditions to be satisfied by the control gains. In
Section 4, the development of an experimental platform is shown. Section 5 compares the
simulation and experimental results. Section 6 gives the conclusions of this work.

2. Design of the Autonomous Navigation Control Law

A differential mobile robot type (2, 0) has the kinematic model described in (1), where
[xi, yi] are the coordinates of the rotation center regarding a fixed frame of reference, and θi
is its orientation, as shown in Figure 1. Subscript i identifies the i-th robot in a multi-agent
system. For this model, the control inputs are the translational velocity Vi and rotational
velocity Wi, [23].

Figure 1. Type (2, 0) Mobile robot.

ẋi = Vicosθi
ẏi = Visinθi
θ̇i = Wi

(1)

As mentioned in the introduction, the proposed controller integrates a dynamic model
based on reactive forces into the kinematic model, controlled by the translational velocity
Vi and rotational velocity Wi. The integration can be depicted in a nested control scheme
formed by an external and internal controller. The external control loop contains the
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bio-inspired navigation model, which is a driven force dynamic model, whose output is
processed by the internal control loop that corresponds to the kinematic model and is driven
by the translational Vi and rotational velocity Wi. This interconnection is shown in Figure 2.
In the following, the integrated controller is explained in detail.

Figure 2. Scheme of the integrated control model.

2.1. External Control Loop

This control loop consists of the bio-inspired algorithm, which is built in a series of
modifications of Helbing’s crowd dynamics model, presented in [20,21], which portrays
the behavior of an individual of mass mi and velocity vi =

[
vxi , vyi

]
given by a set of socio-

psychological and physical rules. The individual’s position pi = [xi, yi] moves toward a
reference point or goal position pdi

= [xdi
, ydi

]. The desired individual’s velocity, denoted
as the vector v0

i , is reached in a characteristic transition time τi, and points towards a
direction given by the position error vector ei = [xdi

− xi, ydi
− yi] , therefore moving in

a straight line to the goal position. At the same time, it intends to avoid obstacles and
other individuals which invade its comfort zone ri. Evasion forces for dynamic and static
obstacles are denoted as fij and fiw, respectively. This dynamic force model, given by (2), is
then composed by attracting forces related to the goal position and repulsive forces based
on the distance to obstacles, yielding a reactive control.

mi

[
v̇xi

v̇yi

]
= mi

τi

(
v0

i ei − vi
)
+ ∑ fij + ∑ fiw (2)

The obstacle repulsive forces fij and fiw are modeled by (3) and (4), and correspond to
the evasion of dynamic or static obstacles, respectively, considering as dynamic obstacles
other agents that get into the comfort zone of the i-th robot. These repulsive forces are
based on relative distances that onboard sensors can quickly obtain:

fij = kig(rij − dij)nij − κig(rij − dij)∆vt
jitij (3)

fiw = kig(ri − diw)nij − κig(ri − diw)(vi · tiw)tiw (4)

This model has terms as the distance between the mass center of agent i and j denoted
by dij = ||pi − pj||, the normalized vector of direction nij =

[
nijx , nijy

]
= (pi − pj)/dij,

which points from the agent j toward agent i, the tangential vector tij =
[
−nijy , nijx

]
,

the term g, which determines if the comfort zone of agent i interacts with the agent
j comfort zone, i.e., g = 1 if rij > dij (where rij = ri + rj, with ri, rj the radii of the
comfort zones) and g = 0 otherwise. The difference in translational velocity vectors
between the i and j agents represents a relative approaching velocity, and it is denoted by
∆vt

ji = (vj − vi) · tij. The magnitude of the positive gains k and κ determines the influence
of the normal and tangential components of acceleration, which permits modulating the
response of acceleration and intensity of twist to avoid collisions. The repulsion forces
against static obstacles fiw comes as setting vj = 0 in (3), with diw being the distance
between the i agent and the obstacle once it gets into the agent’s comfort zone.
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The dynamic model (2) is used for designing a dynamic control law at acceleration
level driven by forces, whose states are fed to the kinematic model of the mobile robots
as depicted in Figure 2. For this purpose, consider that the mass mi is unitary, and any
obstacle, either dynamic or static, can be treated with the same evasion function, taking into
consideration only its relative approaching velocity. Furthermore, friction forces are let out
of the model as well as slippery forces in order to simplify the control design; nevertheless,
taking into consideration such forces would improve the trajectory tracking performance.
With all of the above considerations and based on the control objectives, the control law
given by (5) is proposed:

v̇i =

[
v̇xi

v̇yi

]
= kpei + kd ėi + ∑ fij + fic (5)

where in order to achieve trajectory tracking, a PD controller is included with tuning gains
kp, kd and fed by the position error (6); meanwhile, the total repulsive forces are the vector
sum of all avoiding collision forces fij, related to dynamic and static obstacles that are
inside the comfort zone, taking into account that the relative approaching velocity for
dynamic obstacles (other vehicles) is given by ∆vt

ji = (vj − vi) · tij, while for static obstacles,
the approaching velocity corresponds only to the velocity of the agent itself as shown on
the last terms of Equations (3) and (4). The term fic allows enforcing a desired geometric
formation of the multi-agent system, then the position of each agent in the formation must
be congruent with satisfying the desired trajectory of the agent. Otherwise, a conflict would
arise, and none of the goals, nor trajectory tracking, nor formation would be satisfied. By
definition of fij, several simple geometric shape formations may be generated [17], such as
straight lines, arrow shapes, circles, etc.:

ei =

[
exi

eyi

]
=

[
xdi
− xi

ydi
− yi

]
(6)

Based on the Cucker–Smale model modifications presented in [18], the function fic is
defined as in (7) that corresponds to a circular formation:

fic = γ

(
1− R
||dic||

)
dic (7)

The function fic pretends to form a circle of radio R with the N agents of the system,
regarding the geometric center (x̄, ȳ), which is given by the average position of the whole
system, (8). The distribution of each agent on the circle formation takes into account the
desired trajectory for each agent, as would be shown at the presented results:

x̄ = 1
N ∑N

i=1 xi, ȳ = 1
N ∑N

i=1 yi (8)

In function (7), dic = [x̄− xi, ȳ− yi]
T is the vector distance from agent i toward the

geometric center, and γ is a positive gain for tuning. By evaluating the control proposed
at (5) and integrating it, the values (v̇xi , v̇yi , vxi , vyi ) are obtained.

2.2. Internal Control Loop

This control loop transforms the velocities and accelerations obtained by the external
control loop into the linear and angular velocities Vi and Wi needed to drive the vehicle. To
achieve this, it is considered the work at [24], obtaining the relations given in (9) and (10):

Vi = kv
[
vxi cos(θi) + vyi sin(θi)

]
(9)

Wi = ka

[
v̇yi vxi−v̇xi vyi

v2
xi+v2

yi+ε
sinc(eθi )− kteθi

]
(10)
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where kv is a gain which modulates the intensity of the control signal Vi. The constant
ε ≈ 0 is added in order to avoid singularities when vxi , vyi are zero. The function sinc(·) is
considered the cardinal sine, and it is defined in (11):

sinc(α) =


sin(α)

α i f α 6= 0

1 i f α = 0
(11)

Since it is intended to achieve a desired orientation, a proportional control is added
with eθi =

(
θi − θdi

)
as the orientation error regarding an angle of reference θdi

. The value
of ka, kt modulatesthe control actions given by the orientation control.

3. Stability Analysis for the Non-Collision Case

The avoidance collision force term fij represents repulsive forces for dynamic and
static obstacles, depending on the relative approaching velocity. Therefore, such forces
depend on each possible scenario that the agent may encounter, and thus the stability
analysis is carried out for the free collision case. From the simulation and experimental
tests, it is concluded that the proper tuning of repulsive forces will not affect convergence
to the desired position as far as there is not an obstacle inside the comfort zone, generating
a conflict for the agent being in its desired position.

Using Lyapunov’s stability test, setting fij = 0 for the collision-free case and taking
into consideration the values of interest (xi, yi, vxi , vyi , θi) and their desired references
(xdi

, ydi
, vxdi

, vydi
, θdi

), the next state variables are defined:

z1i = exi = xdi
− xi z2i = eyi = ydi

− yi
z3i = evxi

= vxdi
− vxi z4i = evyi

= vydi
− vyi

z5i = eθi = θi − θdi

(12)

The closed loop for the i-th agent is given by

ż1i = vxdi
sin2θi + (z4i − vydi

)sin(θi)cos(θi) + z3i cos2(θi)

ż2i = vydi
cos2(θi) + (z3i − vxdi

)sin(θi)cos(θi) + z4i sin2(θi)

ż3i = v̇xdi
− kpz1i − kdz3i − γβix

ż4i = v̇ydi
− kpz2i − kdz4i − γβiy

ż5i = −θ̇di
− kaktz5i + ka

[
(v̇ydi

−ż4i
)(vxdi

−z3i )−(vydi
−z4i

)(v̇xdi
−ż3i )

(vxdi
−z3i )

2+(vydi
−z4i

)2+ε

(
sin(z5i )

z5i

)] (13)

With θ̇di
= Wdi

as angular velocity reference and

βi =

[
βix

βiy

]
=

(
1− R√

(x̄−xdi+z1i )
2+(ȳ−ydi+z2i )

2

)[
x̄− xdi

+ z1i

ȳ− ydi
+ z2i

]
(14)
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Using the Lyapunov candidate function Vi(zi) = 1
2 zT

i zi ≥ 0, the time derivate of
Vi(zi) is

V̇i(zi) =
[
cos2θi − kp

]
z1i z3i +

[
sin2θi − kp

]
z2i z4i

+

[
sinθicosθi +

kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

]
z1i z4i

+

[
sinθicosθi −

kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

]
z2i z3i

−
[

sinθicosθi +
kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

]
z1vydi

−
[

sinθicosθi +
kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

]
z1vxdi

+

[
z1i sinθi + γβiy

(
kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

)]
vxdi

+

[
z2i cosθi − γβix

(
kakpsin(z5i )

(vxdi
−z3i )

2+(vydi
−z4i )

2+ε

)]
vydi

−kd

[
z2

3i
+ z2

4i

]
− kaktz2

5i
− z5i Wdi

(15)

In order to prove V̇i(zi) < 0, we can upper bound it considering the algebraic prop-
erties (a2 + b2) ≥ 0 and 1

2 (a2 + b2) ≥ −ab. Furthermore, it is worth mentioning that the
motors produce a maximal velocity and acceleration, which are positive and bounded, re-
gardless of its spin direction. So, it results in |vxdi

| < vximax , |vydi
| < vyimax and |v̇xdi

| ≤ v̇ximax ,
|v̇ydi
| ≤ v̇yimax . Replacing the bounds of the trigonometrical functions in (15) given by

−0.2 ≤ cos2θi + sinθicosθi ≤ 1.2, −0.2 ≤ sin2θi + sinθicosθi ≤ 1.2, |sin(z5i )| ≤ 1 and
considering the worst-case operation scenario, the function can be written as

V̇(zi) ≤ 1
2

[
kp

(
1− ka

ε

)
+ 0.2

]
z2

1i
+ 1

2

[
kp

(
1 + ka

ε

)
+ 0.2

]
z2

2i

+ 1
2

[
kp

(
1 + ka

ε

)
+ 0.2

]
z2

3i
+ 1

2

[
kp

(
1− ka

ε

)
+ 0.2

]
z2

4i

+
[
vximax

+
(

1
2 − kp

ka
ε

)
vyimax

]
z1i +

[
vyimax

+
(

1
2 − kp

ka
ε

)
vximax

]
z2i

+
[
v̇ximax

− γβix −
(

γβiy + kdvyimax

)
ka
ε

]
z3i

+
[
v̇yimax

− γβiy +
(
γβix + kdvximax

) ka
ε

]
z4i

+ ka
ε

[
γβiy vximax

− γβix vyimax

]
− kd

[
z2

3i
+ z2

4i

]
− kaktz2

5i
− z5i Wdi

(16)

According to (7), the best-case scenario is when agent i is in a circular formation, i.e.,
||dic|| = R, yielding to ||βi|| = 0. The worst-case scenario is ||dic|| > R, which means the
agent i is outside the circumference and ||βi|| 6= 0. These considerations lead to the next
list of conditions, which accomplish V̇i(0) < 0:

1. kp > 0, kd > 0, ka > 0, kt > 0, ε > 0, γ > 0;

2. kp > 0.2
(1− ka

ε )
;

3. kp > ε
ka

(
vximax
vyimax

+ 1
2

)
;

4. kd >
v̇ximax
vyimax

ε
ka

;

5. γ >
ka
ε kdvyimax−v̇ximax

1+ ka
ε

, γ <
v̇yimax

+ ka
ε kdvximax

1+ ka
ε

.

(17)

Under the conditions given in (17), the closed-loop system is asymptotically stable
only when ||βi|| = 0 as Vi(0) = 0, Vi(zi) > 0, V̇i(0) = 0 and V̇i(zi) < 0. Nevertheless, when
||βi|| 6= 0, there are unvanishing terms, which makes V̇i(0) 6= 0 and only retrieves practical
stability, known as uniformly ultimately bounded (UUB) stability.

To perform stability analysis considering possible collisions with dynamic and static
obstacles, each different reaction force for each possible situation during the navigation of
the agent should be properly modeled, which is a cumbersome task. Nevertheless, simula-
tion and experimental tests showed that tuning the reaction forces for dynamic obstacles
would also work for static obstacles since for the last ones, the relative approaching velocity
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is smaller than that of dynamic obstacles, thus requiring less aggressive evasion actions.
Then, k, κ in expression (3) are tuned so the repulsive forces can produce a quick response to
avoid collisions with dynamic obstacles; the same tuning is used for static obstacles, while
maintaining the system’s stability, assuming bounded and differentiable perturbations.

4. Experimental Platform Considerations

In order to prove the proposed control law, a MATLAB® [25] simulation and a physical
implementation are prepared. During experimentation, four Turtlebot3 Burger® and one
Turtlebot3 Waffle Pi® are used, giving a total of 5 agents, individually controlled using ROS
in an onboard Raspberry Pi®, where the external control law is deployed, computing the
control inputs Vi, Wi for each agent, delivered to the onboard OpenCR® power stage card
through serial protocol. The description of the hardware and the programmed nodes in
ROS is available in Figure 3.

Turtlebot 3
360º LiDar Scanner for 

navigation and SLAM

Scalable Structure

RaspberryPi 3 

Onboard Computer


(For the external control 
loop)

OpenCR /Power Stage

(For the internal control 

loop)

Two Dynamixel motors
Anti-Slipping Wheels

Lithium Battery 11.1V, 
1,800mAh

(a)

Turtlebot3 Burger

Bio 
inspired 
control 

loop
Perception

Infrared 
Sensor 
lecture

Odometry
Wheel-
Speed 
Control

Wheels LiDar

Raspberry Pi

OpenCr

Turtlebot3 Waffle

Bio 
inspired 
control 

loop
Perception

Infrared 
Sensor 
lecture

Odometry
Wheel-
Speed 
Control

Wheels LiDar

Raspberry Pi

OpenCr

Master 
node

Ubuntu

(b)

Figure 3. Description of the experimental platform. (a) Structure of the used differential re-configurable
robot Turtlebot3, (b) coded nodes using ROS for the deployment of the internal and external control
loops. Each rectangle represents a device, while each circle represents a coded node in ROS.

The initial position of each robot, on the same inertial global frame, is given, so each
agent, using odometry, can compute its position on each given time. The used algorithms
to obtain parameters needed in the control loop are described next.

4.1. Trajectory Reference Generation
The function in (18) retrieves a lemniscate figure, and it can be computed to obtain the

reference position, velocity and acceleration of each agent xdi
(t), ydi

(t):

xdi
(t) = acos(kst) + Rcos( 360(i)

N ) ydi
(t) = bsin(2kst) + Rsin( 360(i)

N )
ẋdi

(t) = −a · ks · sin(kst) ẏdi
= 2b · ks · cos(2kst)

ẍdi
(t) = −a · k2

s · cos(kst) ÿdi
(t) = −4bk2

s · sin(kst)
(18)

Here, a, b are the length and width of the lemniscate, R is the formation circle radius,
N is the number of agents, the sub-index i refers to the i-th agent, and ks is the temporary
exchange rate.

The trajectory reference has a duration d, where if t < d, the function and its time
derivatives are computed. If t > d, the last computed value on t = d is used in order to
obtain the final position coordinates of the trajectory, with reference velocity equal to zero.

Once the references are obtained, the expressions in (19)–(21) are used to obtain
θdi

, Vdi
, Wdi

:

θdi
= tan−1

( ẋdi
ẏdi

)
(19)
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Vdi
=
√

ẋ2
di
+ ẏ2

di
(20)

Wdi
=

ẋdi
ÿdi
−ẏdi

ẍdi
v2

di
+ε (21)

4.2. Perception

The agent’s comfort zone consists of a continuous area around the agent. This area
can be set as several shapes, which matches the surrounding obstacles. For simplicity, for
the analysis performed in this work, it is chosen to be circular, assuming that potential
obstacles in the surrounding space of the reactive behavior of the robot should conform to
the circular-shaped area, as shown in a wide variety of cases in nature, e.g., in agriculture,
as the robotic solution proposed in [5].

To measure the distance dij from the agent i to the agent j, and the angle θij about the
agent i’s translational axis, where agent j is located, it is necessary to implement the comfort
zone properly. An infrared sensor emits a beam of light, which, when reflected on an object’s
surface, enables measurement of the distance from where it is located. Setting multiple
infrared sensors around the agent is impractical due to the poor retrieved resolution due to
the number of beams on the circumference, which is limited to the available space. This
can be observed in Figure 4a, where an obstacle is not detected despite being in the comfort
zone. A lidar system allows increasing the resolution, spinning an infrared beam to cover
all the circumference. The LDS-01, used in this work, has a 1/360 resolution, scilicet, emits
a beam each 0.0174 [rad] [26]. This is a 360-beam configuration around the agent and
improves the environment perception, as many beams are now reflected in a single object.

In this event, the shortest registered distance is set as dij, while θij is set as the average
angle of all the triggered beam lights. When there are multiple beams activated, but
these are not consecutive, it is considered to be multiple-obstacle detection, as shown in
Figure 4b.

(a) (b)

Figure 4. Detection scenarios regarding sensing. (a) Detection system issue, (b) multiple consecutive
beam lights triggered.

4.3. Position and Velocity Estimation of the Other Agents

For computing collision avoidance function fij given by (3) and used in (5), the
position and velocity of the j-th agent are needed. These are denoted as pj = [xj, yj]

T and
vj = [ẋj, ẏj]

T = [vxj , vyj ]
T , and in order to compute them, the decentralized estimation

algorithm starts from these suppositions:

• Each agent knows its own position regarding a global reference frame.
• All the obstacles detected in a radio detection Rd are considered agents.
• The comfort zone of the agent j is assumed to be the same radius as agent i.

The next algorithm is executed:
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1. Agent i determines with its sensors the vector to the agent j, which is composed by
the distance dij, and the angle from the global x axis frame, denoted as ρij.

2. To obtain the ρij angle, the orientation of the agent i in its inertial frame θi and the
angle of the agent j detected by the sensor, denoted as θij, are needed.

3. While θi increases, the value of θij decreases, as shown in Figure 5a. This yields the
value ρij given by

ρij = θi + θij (22)

4. Agent j’s position on the global reference frame is obtained by

xj = xi + dijsin(ρij), yj = yi + dijcos(ρij) (23)

5. The geometric center is computed by

x̄ = 1
Ni

∑Ni
i=1 xi, ȳ = 1

Ni
∑Ni

i=1 yi (24)

where Ni is the number of agents detected by the i-th agent. The fact that Ni 6= N is
possible must be remarked, due to these reasons:

• If the agent j is out of the sensor coverage area of the agent i;
• If agent k is behind the agent j, agent i will not be detected.

Note: This only applies for the experimentation platform. In simulation, all variables are
available, which disables the scenario depicted in Figure 5b.

(a) (b)

Figure 5. Detection scenarios regarding positioning. (a) Position estimation scheme. (b) Agent i
cannot detect the agent k, as it is behind agent j. Agent L cannot be detected because it is outside the
agent i coverage area.

Finally, to determine the velocity of agent j, the distance dij is compared with the
distance on the previous execution step, denoted as dij[t−1]

. The expression (25) obtains the
velocity of agent j:

vj =
dij−dij[t−1]

t−t−1
(25)

To obtain the velocity on its axis components and to evaluate the tangential velocity
∆vt

ji, the next functions are evaluated:

vxj = vjcos(ρij), vyj = vjsin(ρij) (26)
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5. Simulation and Experimental Results

At simulation, comparison studies for the case of trajectory tracking and collision
avoidance were carried out, considering other techniques proposed in the literature, such as
potential repulsive fields, and the geometric obstacle avoidance control method (GOACM),
obtaining similar performance; however, there is not a completely similar strategy that
integrates formation, trajectory tracking, and collision avoidance of dynamic and static
obstacles, for which full comparison of our proposed strategy could be done. Then, for the
sake of space and considering that such comparison studies do not represent a fair layout,
such results are not presented here.

The experimental configuration consists of a set of N = 5 agents, which has to follow
a lemniscate trajectory given by (18), with the parameters on Table 1 and an execution
period of t = 100 [s]. Considering the stability conditions given by (17), the upper bound
for the control actions is chosen according to the specification of the TurtleBot 3. This is
Vmax = 0.22 [m/s] and Wmax = 2.84 [rad/s], [26], and the tuning of the control gains is
shown in Table 2. Lastly, the initial conditions of each agent are shown in Table 3.

Table 1. Specifications for the desired trajectory.

a b d ks ri R Rd

1 [m] 0.5 [m] 85 [s] 0.15 [m/s] 0.4 [m] 0.6 [m] 1.0 [m]

Table 2. Tuning gains used on the control loop.

kp kd ka kv kt γ k κ ε

4 4 0.5 0.995 2.3 0.49 5 13.5 0.005

Table 3. Initial position of each agent.

xi yi θi

Agent 1 0.5 m −0.5 m π/2
Agent 2 −0.5 m −0.5 m π/4
Agent 3 0.0 m −0.5 m 0
Agent 4 1.0 m −0.5 m −π/2
Agent 5 1.5 m −0.5 m 0

Simulation and experimental results are presented under the same conditions of de-
sired trajectory and tuning gains for comparison purposes. It is essential to emphasize
that simulations are an ideal case. At the same time, during experiments, odometry and
lidar measurements are used to determine each agent’s location and distance to possible
obstacle collision. For the sake of space, only results that involve trajectory tracking, a
desired circular formation and possible collisions between agents, i.e., dynamic obstacles,
are presented. Since the proposed avoidance collision strategy is based on the relative
approaching velocity, it is clear that more aggressive evasion actions are required for dy-
namic obstacles than for static ones because for dynamic obstacles the relative approaching
velocity is higher than that of the proper agent, while for a static obstacle, the approaching
velocity corresponds to that of the agent. Collision avoidance among agents is present at
the transient, between 0 and 8 s, both in the simulation and experimental results because
the initial position of the agents imply possible collisions while trying to get into their
assigned position at the formation. Nevertheless, several cases considering static obstacles
were tested both by simulation and experiments, showing good obstacle avoidance.

First, the simulation results are shown. Figure 6a shows the geometric center posi-
tion of the whole system, compared with the ideal group formation reference. A better
convergence is exhibited in sections where the curvature radio is prominent. Figure 6b
shows the correspondent convergence error, and it can be deduced that for t > 85 [s], the
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geometric center position converges to a standstill position. All the agents converge to the
same external and internal control loop action, as shown in Figure 7a,b, thus moving in a
synchronized way, while tracking the desired lemniscate trajectory.
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Figure 6. Detection scenarios regarding positioning. (a) Geometric center position (Simulation),
(b) trajectory tracking error of the geometric center (Simulation).
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Figure 7. Control signals in simulation setup. (a) Internal control loop variables (Simulation),
(b) external control loop variables (Simulation).

As for the experimental setup, technical difficulties and limitations are evident in
Figures 8 and 9, where noise and abrupt changes are present. This is because of the lidar
measurements and poor odometry location.
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Figure 8. Internal control loop (experimental).
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Figure 9. External control loop (experimental).

Nevertheless, the group tries to follow the lemniscate trajectory reference while gener-
ating the circular formation pattern as exhibited in Figure 10a. This can also be noted in the
tracking errors in Figure 10b; for t > 85 [s], the desired trajectory stops, but since there are
position errors of each agent concerning the circular formation, the agent keeps moving to
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fit into the circumference, but at the end, the circular formation is achieved as shown in
the experiment snapshot of Figure 11.

(a)

0 10 20 30 40 50 60 70 80 90 100

t [seconds]

-0.4

-0.2

0

0.2

0.4

0.6

 X
 e

rr
o
r 

[m
e
tr

e
rs

]

Geometric centre X error  (Experimental)

0 10 20 30 40 50 60 70 80 90 100

t [seconds]

-0.4

-0.2

0

0.2

0.4

0.6

Y
 E

rr
o
r 

[m
e
te

rs
]

Geometric centre Y error  (Experimental)

(b)

Figure 10. Experimental performance of the proposed controller. (a) Average geometric center
(yellow). (b) Geometric center error position (experimental).

Figure 11. Actual experiment footage.

6. Conclusions

The proposed control law, which aims to generate a desired formation during path
tracking, shows satisfactory performance in simulation and acceptable performance in
the experimental setup, taking into account the technical limitations of the experimental
platform. Better acquisition of the environment data, achieving recognition between the
agents in the system, and other localization mechanisms, such as sensor data fusion and
filtering, would be reflected in an improvement of the controller behavior.

The proposed controller can be seen as a dynamic extension of the standard kinematic
control because of the incorporation of the force-driven model, which allows obstacle
avoidance, trajectory tracking, and enforcing the formation. This dynamic force model
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can be further modified to include some other goals related to the synchronization of the
agents, enclosing, escorting, etc. The proposed controller is decentralized and highly relies
on the perception capacities of each agent, but it could be easily implemented based on
communication systems such that each agent shares its location and event information of
detected obstacles. The overall multi-agent systems would enhance its performance and
possible applications, such as harvesting, bodyguard formation, terrain coverage and a
possible extension into flying vehicles.
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