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Abstract: The Korean film market has been rapidly growing, and the importance of explainable
artificial intelligence (XAI) in the film industry is also increasing. In this highly competitive market,
where producing a movie incurs substantial costs, it is crucial for film industry professionals to
make informed decisions. To assist these professionals, we propose DRECE (short for Dimension
REduction, Clustering, and classification for Explainable artificial intelligence), an XAI-powered
box office classification and trend analysis model that provides valuable insights and data-driven
decision-making opportunities for the Korean film industry. The DRECE framework starts with trans-
forming multi-dimensional data into two dimensions through dimensionality reduction techniques,
grouping similar data points through K-means clustering, and classifying movie clusters through
machine-learning models. The XAI techniques used in the model make the decision-making process
transparent, providing valuable insights for film industry professionals to improve the box office
performance and maximize profits. With DRECE, the Korean film market can be understood in new
and exciting ways, and decision-makers can make informed decisions to achieve success.

Keywords: box office; classification; clustering; deep autoencoder; explainable artificial intelligence;
machine learning; uniform manifold approximation and projection

1. Introduction

Data-driven decision-making (DDDM) has become increasingly important in recent
years due to the advancement of technology and the abundance of data available [1–3].
In many industries, people and organizations seek efficient and effective ways of process-
ing and analyzing large volumes of data to support their decision-making efforts [4–7].
Traditional decision-making methods, which rely on personal knowledge, experience,
and wisdom, are limited in dealing with big data effectively and are prone to bias and
errors [8,9]. DDDM uses models and algorithms to process and analyze data sources
for reliable decision support [10,11]. This approach has been widely applied in various
industries, including medical diagnosis [12], financial risk prediction [13,14], public affairs
governance [15], landslide susceptibility prediction [16,17], autonomous driving [18], and
the safe operation of wastewater treatment processes [19,20], among others [21–23]. DDDM
helps reduce the limitations of traditional decision-making methods, resulting in more
accurate predictions and better decision support [1,6,9,11]. This capability of DDDM can
result in the improved efficiency and reduced risks for various industries. Hence, develop-
ing new and improved DDDM models and algorithms has become a crucial research area
and a significant trend in decision analysis.
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The use of DDDM models in the film industry can also help ensure the industry’s
steady growth [24,25]. By providing business decision support and guidance for filmmak-
ers and distributors, DDDM models can help increase the chances of their project’s success,
drive the industry’s continued growth, and ensure its long-term success [26]. For potential
investors, using DDDM models can provide valuable information about the potential suc-
cess of a film before they invest. DDDM models can help ensure the film industry’s steady
growth and long-term success. For directors, DDDM models can provide insights into the
success of their films and help them make informed decisions about which production
companies to partner with, ultimately improving their chances of success. Hence, the use
of DDDM models in the film industry has the potential to play a critical role in reducing
the risks associated with the industry and ensuring its sustainable growth. By providing
more accurate predictions and better decision-making support, DDDM models can help
filmmakers, investors, and directors make informed decisions and improve the efficiency
of their operations [27]. The use of DDDM models in the film industry is a clear example of
how Industry 4.0 technology can revolutionize traditional industries and drive progress
and innovation [26,27].

Predicting the success of a film at the box office is a complex task due to several
factors [28]. The first factor is the short life cycle of films, which are typically screened within
three months [29]. This short screening period, combined with the wide range of events
that can occur during the screening, make it difficult to determine which marketing type
will most impact the box office success. The second factor is the strong influence of word of
mouth (WOM) on the film industry [30]. Unlike other industries, the demand for films is
heavily impacted by what people say about the film to others. Despite these challenges,
researchers have attempted to predict a film’s box office success using artificial intelligence
(AI), namely data mining, machine learning (ML), and deep learning techniques [31,32].
These studies have focused on identifying the factors that impact the box office success and
developing predictive models based on those factors. The studies suggest that big data,
such as social media activity [33], Google searches [34], and Wikipedia page activity [35],
can instantly predict a film’s box office success.

However, most studies have focused on the Western film market, and research on the
Korean film market still needs to be explored. Our proposed model, DRECE (short for
Dimension REduction, Clustering, and classification for Explainable AI), sets itself apart
from previous research in several ways. Firstly, DRECE specifically targets the Korean
film market, considering its rapid growth and the significant impact of the Korean Wave
on the global entertainment industry [36,37]. Secondly, DRECE integrates XAI into the
model, enabling the interpretation and understanding of factors affecting the box office
and addressing the growing importance of explainable AI (XAI) in the film industry [38,39].
Thirdly, the framework starts by transforming multi-dimensional data into two dimensions
through dimensionality reduction techniques, grouping similar data points using K-means
clustering, and classifying movie clusters through ML models. By integrating these diverse
techniques and building upon our previous work [40], our DRECE model provides a
more comprehensive approach to analyzing the Korean film market, offering valuable
insights and DDDM opportunities for film industry professionals to improve the box office
performance and maximize profits. This approach represents a significant step towards
DDDM in the Korean film industry through an XAI model for box office analysis using
dimension reduction, clustering, and classification.

The main contributions of this study are summarized as follows:

(1) We comprehensively understand the Korean film market using data collected from
the Korean Film Council’s online integrated computer network. We offer a data
visualization approach incorporating ML and data mining techniques to bridge the
DDDM of Industry 4.0 and the film industry.

(2) By considering various input variables representing movie characteristics, we identify
the factors impacting a movie’s box office success in South Korea. Our proposed box
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office classification model is designed to assist film industry professionals in making
data-driven decisions to increase the success of future films in the Korean market.

(3) By reducing the feature dimension and applying data mining techniques, we effec-
tively cluster movies and analyze box office trends for each cluster. Utilizing XAI, our
model interprets the factors affecting the box office performance, providing valuable
insights for decision-makers in the Korean entertainment industry to improve the box
office success.

We organize the rest of the paper as follows: in Section 2, we list related studies on the
box office. Section 3 describes our proposed approach, including the materials and methods
used. In Section 4, we present the results of our experiments and engage in discussion. Finally,
in Section 5, we conclude our findings and outline potential directions for future research.

2. Related Studies

Previous studies have attempted to predict the success of a movie at the box office by
utilizing artificial intelligence techniques such as ML and deep learning. Table 1 highlights
the utilization of AI techniques in these studies. The studies aim to identify the factors
affecting the box office performance and develop predictive models. The findings suggest
that significant data sources are crucial for predicting the box office success. The studies
have employed different approaches, including ML algorithms and factors such as review-
ing sentiments and social media data to predict the box office revenue. In this section, we
review the related studies and their findings, highlighting the strengths and limitations of
each approach.

Table 1. Summary of AI-based box office prediction and classification models.

Author(s) Year AI Techniques Input Variables (Features) Output Variable

Zhang et al. [41] 2008 MLBP neural network
Cinema information, competition, content
category, nation, propaganda, showing
time, star value

Movie class or
performance

Kim et al. [42] 2014 GPR, KNN, MLR, SVR Number of SNS mentions, screening-related
information, weekly trends Box office earnings

Hur et al. [43] 2016 ANN, CART, ISM, SVR Movie data, viewer sentiments from
review text Number of audiences

Lee et al. [44] 2020 Bagging, Boosting, DT,
KNN, linear regression

Movie-related variables, number of
eWOMs

Box office at weeks 1, 2,
and 3 after release

Lee and Choeh [45] 2020 Bagging, DEA, DT,
KNN, linear regression

Four eWOM (i.e., review depth, review
rating, review volume, and the number of
positive reviews)

Box office revenue

Bogaert et al. [46] 2021
Bagging, DT, GBM,
KNN, linear regression,
neural network, RF

Movie data (MOV), MGC, and UGC from
both Facebook and Twitter Movie sales data

Pan [47] 2022 ANOVA, regression
analysis

Box office, film title, film theme, monthly
film box office in 2019, the monthly number
of film releases in 2019, number of potential
audiences, place of origin, positive
comment rate, schedule, score, WOM

Box office revenue

Li and Liu [48] 2022

ARIMA, DNN, linear
regression, log-linear
regression, ridge
regression, RF, SVM

Historical (2002–2010) box office
information

China GDP, China
NMS, US GDP, US
NMS
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Table 1. Cont.

Author(s) Year AI Techniques Input Variables (Features) Output Variable

Ni et al. [49] 2022

Linear regression,
stacking (CatBoost,
GBM, LightGBM, RF,
SVR, and XGBoost)

Baidu search index, China microdata,
epidemic, movie attribute

Total box office
performance

Velingkar et al. [50] 2022

CatBoost, LightGBM,
ridge regression, RF,
voting regression,
XGBoost

Budget, cast, crew, genres, IMDb ID,
IMDb rating, IMDb vote count, MPAA
rating, original language, original title,
overview, popularity rating, production
companies, production countries, release
date, revenue, runtime, spoken languages,
star power, tagline, TMDb rating, TMDb
vote count, title

Box office revenue

Ours

Unsupervised
Learning: DAE, UMAP,
K-means clustering;
Supervised learning:
logistic regression, DT,
RF, CatBoost;
XAI: SHAP

16 genres, director’s name, leading actor’s
name, production country

Cluster-specific box
office success label

ANOVA, analysis of variance; ARIMA, autoregressive integrated moving average; Bagging, bootstrapped aggre-
gation; CART: classification and regression trees; CatBoost, categorical boosting; DAE, deep autoencoder; DNN,
deep neural network; DT, decision tree; eWOM, electronic word-of-mouth; GBM, gradient boosting machine; GPR,
gaussian process regression; ISM, independent subspace method; KNN, k-nearest neighbors; LightGBM, light
GBM; MLBP, multilayer backpropagation; MLR, multiple linear regression; MGC, mainstream media generated
content; MPAA, motion picture association of America; RF, random forest; SHAP, Shapley additive explanations;
SVM, support vector machine; SVR, support vector regression; TMDb, The Movie Database; UGC, user-generated
content; UMAP, uniform manifold approximation and projection; XAI, explainable artificial intelligence; XGBoost,
extreme gradient boosting.

Zhang et al. [41] conducted a study to predict the success of a movie at the box office
before its theatrical release. To build the prediction model, they employed a multilayer
backpropagation (MLBP) neural network (NN) with multiple inputs and outputs. The
movies were divided into six categories, ranging from “blob” to “bomb,” based on their
box office revenue. The input variables were selected based on market surveys, and their
weight values were determined using statistical methods. The NN was optimized using
theoretical guidance and experiments. A classifier with dynamic thresholds was used to
standardize the output and improve the robustness of the model. A six-fold cross-validation
experiment was used to measure the prediction model’s performance. The results showed
that the MLBP model had a better prediction accuracy than the multilayer perceptron
(MLP) method, with a 68.1% pinpoint accuracy and a 97.1% accuracy within one category.
Kim et al. [42] proposed a novel method for predicting film box office earnings using social
network service (SNS) data and ML algorithms. Three sequential forecasting models were
developed to predict non-cumulative and cumulative box office earnings before, one week
after, and two weeks after a film’s release. SNS mentions, weekly trends, and screening
information were used as input variables. A genetic algorithm was used to select significant
input variables, and three ML-based nonlinear regression algorithms were used to build
the forecasting models. The results showed that using the SNS data and ML algorithms
improved the accuracy of all three models. The research process involved selecting films,
collecting screening and SNS data, determining the structure of the forecasting models, and
selecting input variables. The conclusion was that their new approach, which used current
screening and SNS information, improved the accuracy of forecasting box office earnings.

Hur et al. [43] proposed a new method that considered the review sentiment and
employed non-linear ML algorithms for forecasting movie box office earnings. They
used viewer sentiments from review texts as input variables in addition to conventional
predictors and three ML-based algorithms, such as the classification and regression tree
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(CART), artificial neural network (ANN), and support vector regression (SVR), to capture
the non-linear relationship between the box office and predictors. An independent subspace
method (ISM) was applied to provide variable importance. The results showed that the
proposed methods could make accurate and robust forecasts. A framework for box office
forecasting was developed, and experiments were conducted to validate the ISM and verify
the predictive performance of the proposed framework. The results showed that the ISM
could assess variable importance robustly, and the proposed forecasting framework had a
good predictive performance. Lee et al. [44] aimed to predict movie box office revenue using
ensemble methods. The authors compared the prediction performance of decision trees
(DTs), k-nearest neighbors (KNN), and linear regression using ensemble methods, such as
random forests (RFs), bagging, and boosting, with a sample of 1439 movies. The results
showed that the DTs using ensemble methods outperformed KNN and linear regression in
predicting the box office revenue for the first, second, and third weeks after release. This
study also compared the prediction performance between ensemble and non-ensemble
methods within each algorithm and found that DTs using the ensemble methods provided
better application effectiveness than KNN and linear regression analysis. The study was
significant as it analyzed Korean movie data, which had rarely been investigated in the
movie literature, and provided insights into predicting the movie box office revenue using
ensemble methods.

Lee and Choeh [45] examined the relationship between movie resource powers and
box office revenue, and how efficiency moderates the relationship between online word-of-
mouth (eWOM) and revenue. Using data envelopment analysis, they found that movie
efficiency had negative and positive moderating effects on different eWOM variables and
their impact on the subsequent box office revenue. Their DTs, KNN, and linear regression
analysis showed that movies with inefficient resources had better prediction performance
than movies with efficient resources. The study added to the literature on eWOM by
suggesting the production efficiency as a moderator between eWOM and the box office.
The production efficiency produced by data envelopment analysis (DEA) still needed to be
used in previous studies on the box office revenue. The authors showed that efficiency could
affect the impact of different eWOM variables on the box office. Bogaert et al. [46] aimed to
investigate the power of social media data (Facebook and Twitter) in predicting box office
sales and determine which platform and data type are the most important. The authors
used various prediction algorithms to compare models using movie, Facebook, and Twitter
data. The analysis showed that social media data significantly improve the predictive
power of traditional box office prediction models, with Facebook data performing better
than Twitter data. The sensitivity analysis revealed that the volume and valence-based
combination variables of Facebook comments were the most critical variables. The study
found that Twitter had less of an impact on the box office sales due to the lower source
credibility of Twitter users. The framework employed in the study was based on the
cross-industry standard process for data mining (CRISP-DM) methodology. The study
results are significant for practitioners, marketers, and academics who want to use social
media data for box office sales predictions.

Pan [47] studied the factors affecting the box office revenue of the top 100 films in
2019. The results indicated that the score, potential audience, release schedule, and place
of origin significantly impacted the box office revenue. The high fit of the model showed
that these four independent variables well explained the dependent variable. The model’s
residuals had weak autocorrelation due to low multicollinearity between the four variables.
However, the positive comment rate was found to have no significant impact. The dummy
variables revealed that films released on popular schedules had higher box office revenues,
and films produced in China outperformed those produced abroad. The study found
that film themes significantly impacted the box office revenue, with science-fiction films
having the highest average box office revenue. The first-day box office was also found to
significantly impact the total box office, reflecting a conformity effect among consumers.
Li and Liu [48] researched predicting the box office revenue in the movie industry. They
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proposed an ML-based method for forecasting the box office revenue in the United States
(US) and China. The method was tested and compared with eight other methods, and it
was found that the support-vector-machine-based method using a gross domestic product
(GDP) achieved the best results with a relative root mean squared error of 0.056 in the US
and 0.183 in China. The results were validated using data from 2017, 2018, and 2019, and
the mean relative absolute percentage errors were found to be 0.044 in the US and 0.066 in
China. The study concluded that the proposed method effectively and efficiently predicted
the nationwide box office revenue. The results provide evidence for the superiority of the
support vector machine (SVM)-based method compared to other methods and demonstrate
the potential of using economic factors in predicting the box office revenue.

Ni et al. [49] aimed to predict the box office revenue of films in China. The authors
collected data from ENDATA including 5683 pieces of movie data and selected the top
2000 pieces for the prediction dataset. The authors used various types of Chinese microdata,
a Baidu search index of movie names, and data on the coronavirus disease 2019 (COVID-19)
epidemic to study the factors influencing the box office. Using a two-layer model archi-
tecture, they optimized the stacking algorithm using an ML technique. The base learners
were extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM),
categorical boosting (CatBoost), gradient boosting decision tree (GBDT), RF, and SVR. At
the same time, the meta-learner was a multiple linear regression model. The prediction
error was 14.49%, measured by the mean absolute percentage error. The results showed
that the COVID-19 epidemic at the time of the movie’s release had a related impact on the
movie’s box office. Velingkar et al. [50] studied the film industry, a multi-billion-dollar
business significantly contributing to a country’s economy. They focused on the box office
revenue of a movie, which is a crucial indicator of its popularity and can be influenced
by various factors such as the production company, genre, budget, reviews, and ratings.
The authors created an ML model that predicted a movie’s box office revenue based on the
information available before its release to help investors make informed decisions. The
authors used various algorithms, including XGBoost, RF, CatBoost, LightGBM, Ridge, and
voting regressors, and considered factors such as the movie’s genre, original language, title,
popularity rating, release date, budget, cast, crew, and more. The model considered the
intended genre and target revenue and used the RF model to suggest a budget, runtime,
star power, and expected popularity that would lead to the desired box office revenue.

Our research stands apart from prior studies by offering a unique perspective on the
Korean film industry, focusing on classifying the box office types and analyzing factors
contributing to the box office success. While earlier research primarily aimed to predict the
box office revenue using various ML algorithms, our study employs a combination of ML
techniques, XAI, dimension reduction, and clustering methods for a more comprehensive
and explainable assessment of the film demand in the Korean market. By collecting
data from the Korean Film Council’s online database, our study provides an in-depth
understanding of the Korean film market, effectively clustering movies and analyzing the
box office trends for each cluster. This clustering and analysis distinguish our work from
previous studies that utilized single ML-based methods. Additionally, our study integrates
established ML techniques with XAI, enabling a better interpretation and understanding
of the factors affecting the box office performance. The valuable insights gained from our
research can assist decision-makers in the Korean entertainment industry with making
data-driven decisions to improve the box office success. In summary, our study’s unique
contributions lie in its focus on the Korean film market, the integration of ML techniques
with XAI for enhanced interpretability, and the combination of dimension reduction and
clustering methods to assess and predict film demand more comprehensively.

3. Materials and Methods
3.1. Data Collection and Preprocessing

We gathered information about past box office performances through web crawling
from the VOD Korea Box-office Information System (VKOBIS) [51], a computer system
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run by the Korean Film Council. The system quickly and accurately collects and processes
movie-viewing data. Our data included the top 300 highest-grossing movies of all time, as
shown in Table 2. The information for each movie included the title, production country,
genre, director, actors, release date, and running time. If the data type was a character or
category, it was initially collected in Korean and then translated into English by us. This
information can be found in the Supplementary Materials.

Table 2. Information on the movie dataset.

No. Name Description Data Type

1 Title Movie title Character
2 Country Production country Category
3 Genre 16 genres Category
4 Director Director’s name Character
5 Actor Leading actor’s name Character

Each movie in the data had only one value for its production country and genre, but it
could have zero or more than two values for its director and actors. Figure 1a,b compares
the number of movies each country produces and their genres, respectively. Figure 1a
shows that most movies were produced in South Korea or the U.S. The only movie made in
the United Kingdom (U.K.) was “About Time,” the only movie made in Japan was “Your
Name,” and the only movie made in France was “Taken 2.” In Figure 1b, action movies
were the most prevalent, while war and family genres had only one movie each, “Harry
Potter and the Sorcerer’s Stone” and “Operation Chromite.”
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The title was excluded from the experiment, and the text variables “director” and
“actor” were divided into separate values. The values were then labeled “CON” for
the country, “GEN” for the genre, “DIRECT” for the director, and “ACT” for the actor.
Finally, these characters and categorical variables were one-hot encoded, creating dummy
variables by marking “1” if the corresponding value was present and “0” if not. The final
experimental data had a total of 1028 features.

3.2. DRECE Model Construction

Figure 2 depicts our proposed DRECE framework. The framework starts by trans-
forming multi-dimensional data into 2D data using two stages of dimensionality reduction
techniques: deep autoencoder (DAE) and uniform manifold approximation and projection
(UMAP). Then, K-means clustering is applied to the reduced data to group similar data
points. The clustering result is added as a class label to the data, and one-hot encoding
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is performed on this class label. The proposed DRECE framework creates variables indi-
cating which movies belong to which cluster. Finally, various ML models, such as logistic
regression (LR), DT, RF, and CatBoost, are applied to classify the movie clusters, and the
best-performing model is selected. The AI techniques that provide insights into the model’s
decision-making process were used to make the model more explainable.
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3.2.1. Dimension Reduction

The reason for dimensionality reduction was that the high-dimensional data are chal-
lenging to visualize in their raw form and computationally demanding to process [52,53].
Therefore, by reducing the number of dimensions, the data can be presented in a more easily
understandable format, and the computational load is reduced, making processing and
analysis faster. As a result, dimensionality reduction can enhance the efficiency, accuracy,
and interpretability of data analysis by focusing on the most significant features of the
data [53]. We utilized the hidden variables of the DAE and UMAP to reduce the number of
dimensions. To display the K-means clustering, we needed to shrink it to two dimensions.

DAE [54,55] is an NN architecture design for unsupervised learning. The goal of DAE
is to reconstruct the input data. It consists of two main parts: an encoder and a decoder. The
encoder transforms the input into a lower-dimensional representation, while the decoder
transforms the lower-dimensional representation back into the original data. The idea
behind DAE is that it can learn compact representations of data that are more meaningful
than the raw input [32]. The complexity of the representation can be increased by adding
multiple hidden layers to both the encoder and decoder parts of the network.

The training of DAE involves minimizing the difference between the original input
and the output of the decoder. We used the mean squared error (MSE) as the loss function
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for our DAE. The structure of the DAE is shown in Figure 3, and the details on the number
of dense layers and the number of units in each layer can be found in the relevant case. We
set the number of units in each layer to decrease or increase by a factor of 2. The activation
function for the last layer in the decoder was sigmoid, while we used the rectified linear
unit (ReLU) function to activate the other layers.
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Figure 3. Deep autoencoder architecture.

The latent variable in a DAE is a lower-dimensional representation of the input
data created by the encoder. Using latent variables in a DAE means the encoder has
learned a compact and meaningful representation of the input data. This low-dimensional
representation eliminates fewer essential details and retains the most crucial information
about the input. The decoder then utilizes the latent variables to reconstruct the original
input, which should closely approximate the original data. As a result, latent variables
become helpful for data compression, visualization, and feature extraction [54]. In other
words, the latent variables of a DAE can be considered concise representations of the input
data learned by the network during training [32,55].

Hence, we extracted these latent variables from the DAE and used them. We opted
for a manifold learning technique to re-embed the data and aimed to learn the entire
embedded manifold to optimize the clustering. While the autoencoder we used was a
good choice for learning a meaningful data representation, it did not consider the local
structure [56]. By combining the autoencoder with a manifold learning technique that
considered the local structure, we could enhance the quality of the representation in terms
of the clusterability. Therefore, the dimensionality of the latent space of the DAE was not
immediately reduced to two dimensions; instead, a dimensionality reduction process using
UMAP was performed separately.

UMAP [57] is a dimensionality reduction algorithm used to visualize high-dimensional
data in a lower-dimensional space. UMAP combines Riemannian geometry, algebraic
topology, and ML techniques to find a low-dimensional data representation that retains
its structure. Unlike dimensionality reduction algorithms such as t-distributed stochastic
neighbor embedding (t-SNE) [58] and principal component analysis (PCA) [59], UMAP can
preserve the data’s local and global structure, and the algorithm can be adjusted through
various hyperparameters, giving users greater control over the process [56,57]. Additionally,
UMAP is less sensitive to changes in hyperparameters. Due to these features, UMAP is
commonly used for data exploration and visualization. To provide a more intuitive and
interpretable expression of the clustering results for the preprocessed data, we used DAE
and UMAP to reduce the 1030-dimensional data to 2 dimensions (2D).

3.2.2. Clustering Analysis

We used K-means clustering to cluster data points with similar characteristics in
2D data. K-means clustering [28,60] is an ML algorithm that divides a dataset into K
clusters. The algorithm repeatedly updates the cluster assignments and cluster centroids
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until convergence is reached. The number of clusters, K, must be specified beforehand, and
the algorithm’s goal is to minimize the sum of squares within the clusters. We used the
elbow method [32,61] shown in Figure 4 to determine the optimal value of K. The elbow
method involves comparing the sum of squares error (SSE) values for different numbers
of clusters by plotting them on a graph. The optimal number of clusters is selected as the
number corresponding to the point where the SSE value shows a steep decline followed by
a gentle slope.
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Nevertheless, alternative clustering methods, such as tclust, could be more suitable for
our application. Tclust [62–64] is a generalization of K-means that can handle potential outliers
and detect elliptical clusters. This method might provide more accurate results in cases where
the data contain outliers, or the clusters have an elliptical shape, thus improving the overall
performance of the clustering process. Tclust is typically implemented in R [65,66], while our
study was conducted using Python, which led us to use the more general K-means clustering
method. We recommend considering tclust or other clustering methods as alternatives to
K-means for further analysis and improvements in similar applications, especially when using
R or other programming languages that support tclust implementation.

3.2.3. Movie Classification

We created four classification models to present the analysis results of the K-means
clustering effectively. The original dataset, which consisted of 1030 input variables, posed a
challenge as it needed labels or classes. Applying the supervised learning technique to the
dataset made it difficult.

To overcome this, we added a new variable by assigning a label of “1” to the box
office belonging to each cluster and a label of “0” to the rest. Afterward, we utilized the
1028 variables and the cluster results (i.e., a label of “1” for the data belonging to a specific
cluster and a label of “0” for data belonging to the other clusters) as input and output
variables for each cluster to build four ML models, such as LR, DT, RF, and CatBoost.
This was because they not only delivered high classification performance when the default
values of the hyperparameters were set, or optimal values suggested in the previous studies
were used, but they were also straightforward to interpret.

LR [67] is a statistical method used to model the relationship between a dependent
variable and one or more independent variables. Given the independent variables’ values,
it uses a logistic function to calculate a particular class’s probability. The logistic function
generates a value between 0 and 1, representing the likelihood of the dependent variable
being of a particular class. This probability value is then compared to a threshold, typically
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0.5, to classify the dependent variable into one of two categories. LR can be used for binary
classification tasks, where the dependent variable can only take two possible values.

DT [45,68] is a tree-based model used for decision analysis and ML. It consists of
internal nodes representing tests or conditions on the input features, branches representing
the outcomes of these tests, and leaf nodes representing the final prediction. The DT
algorithm works by splitting the data into smaller subgroups based on the values of the
input features to find the splits that result in the highest accuracy. The final prediction is
made based on the values of the input features at the leaf node, and DTs can be used for
regression and classification tasks. They help understand the relationships between the
input features and the target variable.

RF [50,69] is an ensemble learning algorithm that uses multiple DTs to make predic-
tions. The algorithm works by training multiple DTs on different samples of data and
different subsets of features. Each DT in the RF makes its prediction, and the final prediction
is made by taking a majority vote among the predictions made by all trees. This process
helps to reduce overfitting, increase accuracy, and make the model more interpretable. By
using multiple DTs, RF also reduces the variance in the model, making it more stable. Based
on the literature that suggests 128 trees is an appropriate number for the RF, we set the
number of trees in our model to 128 [23].

CatBoost [23,70] is an advanced gradient-boosting algorithm that handles categorical
variables effectively. It combines gradient boosting and categorical feature processing
techniques to achieve better accuracy than other gradient boosting libraries. CatBoost
makes it an ideal choice for datasets with many categorical variables. In addition, CatBoost
has built-in mechanisms for handling overfitting and missing values, making it more robust
and less prone to errors than other gradient-boosting algorithms. CatBoost is a powerful
and flexible ensemble learning algorithm well-suited for many data analysis tasks. CatBoost
is noted for delivering outstanding performance even with default hyperparameter settings,
as noted by the authors, so we proceeded with the default values [70].

The above four models, LR, DT, RF, and CatBoost, are designed to be interpretable
to provide insight into their decision-making processes. These four models are designed
to be interpretable and easy to set up and are thus an accessible and practical choice for
many classification tasks. Furthermore, the RF and CatBoost models are easy to interpret
and offer high performance, making them an ideal choice for many classification tasks [23].

3.2.4. Model Interpretation

The original dataset of 1028 input variables needed labeled or classified data, which
posed a challenge for implementing supervised learning techniques. As a result, the
interpretability of the RF and CatBoost models may have been weaker than that of the LR
and DT models, which rely on labeled data to make predictions. To address this issue and
increase the interpretability, we considered alternative techniques, such as Shapley values,
which provide a more in-depth understanding of the model’s decision-making process.

Shapley additive explanations (SHAP) [71,72] is a method that provides explanations
for the predictions made by ML models. It assigns a contribution value to each feature in the
input data to explain the model’s predictions. The SHAP values are based on the concept
of Shapley values from cooperative game theory and provide a way to fairly represent the
contribution of each feature to the prediction, both in absolute terms and relative to other
features. SHAP values help interpret complex models and understand the relationship
between features and predictions. It helps explain the decisions made by the models,
identify areas where they may be biased, and provide insight into the decision-making
process. By calculating the SHAP values, we can understand which features are essential
for predicting the movie type, making it a vital reference for understanding the proposed
prediction model.

We considered using Tree SHAP for both the RF and CatBoost models to enhance
the interpretability of our classification model further. Tree SHAP [23,39] is a method
to interpret the output of tree-based ML models such as RF and CatBoost. It assigns
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contribution values to each feature in the input data to explain the predictions made by the
model. By using Tree SHAP, we aimed to gain insights into the decision-making process
and identify potential biases in the models. The results of the Tree SHAP analysis would be
used to generate a list of essential features for predicting the movie type, which can serve
as a reference for understanding how the proposed method makes predictions for the box
office type prediction.

4. Experimental Results
4.1. Movie Data Compression and Clustering Analysis

We built a DAE model to condense the 1028 variables (excluding the movie name) from
the original 1029 variables into a more compact representation of 16 dimensions. Figure 5
displays the loss of the DAE model during the training and testing phases. The loss was
calculated using the MSE method. After 50 training cycles, the loss reached a minimum and
stabilized, demonstrating that the DAE model successfully captured the essential features
of the data and extracted the significant latent variables. Lastly, we utilized the UMAP
algorithm to further reduce the 16-dimensional data into a 2-dimensional representation
for easier visualization.
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Figure 5. Comparison of training and testing loss for the DAE.

Figure 6 displays the results of applying these techniques to the data, showing the
results of reducing the data to 2D using both DAE and UMAP, as well as the results of
first reducing the data to 16D using DAE and then reducing it to 2D using UMAP. We
configured the hyperparameters of UMAP to have an n_neighbors value of 8 and a min_dist
value of 0.2. We found that when the data were reduced to 2D using DAE, only straight
lines were displayed, which meant that DAE could not capture the non-linear structure of
the data. In contrast, when we used UMAP to reduce the data to 2D, two large distributions
were represented along the x-axis, corresponding to the two types of box office movies we
were interested in identifying. However, it took work to distinguish between the two types
of movies based on the UMAP plot.

To address this issue, we combined DAE and UMAP techniques by first reducing
the data to 16D using DAE and then reducing it to 2D using UMAP. The combination of
techniques was effective in identifying different types of box office movies. This is because
DAE could capture the non-linear structure of the data, while UMAP could preserve both
the local and global structure of the data. By using DAE first to reduce the data to a
lower dimension and then applying UMAP, we achieved a more accurate and interpretable
representation of the data. Hence, we found that combining the DAE and UMAP techniques
was more effective in identifying different types of box office movies. The combination
of techniques allowed for the capture of the non-linear structure of the data while also
preserving the local and global structure of the data.
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We used the elbow method to determine the optimal number of clusters. Figure 4
shows the SSE values for different numbers of clusters. We found that reducing the number
of clusters from 1 to 6 resulted in a substantial decrease in the SSE. However, the decrease
in the SSE was relatively minor for the number of clusters that was more significant than
6. Based on these findings, we concluded that this study’s optimal number of clusters
was 6. The results of the data clustering, using the K-means clustering algorithm on the
two-dimensional representation, can be seen in Figure 7a. Figure 7b shows the distribution
of the box office data points across the different clusters.
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4.2. Performance Comparison of Classification Models

A confusion matrix, such as the one shown in Figure 8, is a table used to evaluate the
performance of a binary or multi-class classifier. It provides a clear and concise summary of
the classifier’s performance by displaying the number of correct and incorrect predictions
in a clear format. The rows in the confusion matrix represent the actual class, while the
columns represent the predicted class. Each cell in the matrix displays the number of
observations corresponding to each combination of the actual and predicted classes. In a
binary classification confusion matrix, the four most common items are:

• True positives (TP): The number of correctly predicted instances as positive.
• False positives (FP): The number of instances predicted as positive but are negative.
• True negatives (TN): The number of correctly predicted instances as negative.
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• False negatives (FN): The number of instances predicted as negative but are positive.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 31 
 

 

4.2. Performance Comparison of Classification Models  
A confusion matrix, such as the one shown in Figure 8, is a table used to evaluate the 

performance of a binary or multi-class classifier. It provides a clear and concise summary 
of the classifier’s performance by displaying the number of correct and incorrect 
predictions in a clear format. The rows in the confusion matrix represent the actual class, 
while the columns represent the predicted class. Each cell in the matrix displays the 
number of observations corresponding to each combination of the actual and predicted 
classes. In a binary classification confusion matrix, the four most common items are:  
• True positives (TP): The number of correctly predicted instances as positive. 
• False positives (FP): The number of instances predicted as positive but are negative. 
• True negatives (TN): The number of correctly predicted instances as negative. 
• False negatives (FN): The number of instances predicted as negative but are positive. 

 
Figure 8. Confusion matrix. 

When assessing how well a classifier works, several metrics are calculated using a 
confusion matrix. The confusion matrix is a table that shows the comparison between the 
classifier’s predicted results and the actual results for a set of data. Using a confusion 
matrix can also help improve the classifier’s performance. The following five metrics, 
calculated using Equations (1)–(6), are the best for understanding the classifier’s 
performance fully. A classifier is a tool to assign items to several predefined categories. 
The performance of a classifier is evaluated by comparing its predicted results to the actual 
results of a set of data. 

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Recall = TP/(TP + FN) (2)

F1-score = TP/(TP + ½ × (FP + FN)) (3)

Pe = ((TP + FN) × (TP + FP) × (TN + FN) × (TN + PF))/N2 (4)

Kappa = (Accuracy − Pe)/1 − Pe (5)

Ground truth label

Total observations
(n)

Condition positive 
(CP)

Condition negative 
(CN)

Pr
ed

ic
te

d 
la

be
l

Test 
outcome 
positive 
(TOP)

True positive 
(TP)

False positive 
(FP)

Test 
outcome
negative 
(TON)

False negative 
(FN)

True Negative 
(TN)

Figure 8. Confusion matrix.

When assessing how well a classifier works, several metrics are calculated using a
confusion matrix. The confusion matrix is a table that shows the comparison between the
classifier’s predicted results and the actual results for a set of data. Using a confusion matrix
can also help improve the classifier’s performance. The following five metrics, calculated
using Equations (1)–(6), are the best for understanding the classifier’s performance fully. A
classifier is a tool to assign items to several predefined categories. The performance of a
classifier is evaluated by comparing its predicted results to the actual results of a set of data.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Recall = TP/(TP + FN) (2)

F1-score = TP/(TP +
1
2
× (FP + FN)) (3)

Pe = ((TP + FN) × (TP + FP) × (TN + FN) × (TN + PF))/N2 (4)

Kappa = (Accuracy - Pe)/1 - Pe (5)

MCC = ((TP × TN) - (FP × FN))/
√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN) (6)

• Accuracy: Accuracy is a metric that measures the proportion of correctly classified
instances by the classifier. It is calculated by dividing the number of correct classifica-
tions by the total number of instances in the data, as described in Equation (1). For
example, if a classifier correctly classified 80 out of 100 movie instances, its accuracy
would be 80%. However, in cases where the data are imbalanced, or false positive or
negative results are costly, the accuracy may not be the best metric to use. For instance,
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if a classifier is designed to predict the box office hits, and it only correctly identifies 1
out of 10 movies as a hit, its accuracy would still be 10% even though it is not doing
an excellent job of predicting the box office success.

• Recall: Recall, also known as the sensitivity or true positive rate, measures the propor-
tion of box office hits correctly identified by the classifier in the dataset. It is calculated
by dividing the number of box office hits correctly identified by the total number of
hits in the dataset, as described in Equation (2). For example, if a classifier correctly
identified 20 out of 25 box office hits, its recall would be 80%. The recall is an essential
metric for evaluating the classifier’s ability to identify all box office hits, especially in
cases where false negatives are costly. For instance, if a classifier is designed to predict
which movies will be box office hits for a film production company, a high recall is
crucial to ensure that all potentially successful movies are greenlit for production.

• F1-score: The F1-score is a metric that considers both the precision and recall, as
described in Equation (3). It provides a balance between the precision and recall by
considering metrics at the same time. The precision measures the ratio of the true
positive box office hit predictions made by the classifier among all positive predictions.
The recall measures the ratio of true positive box office hits among all actual positive
box office hits in the data. The F1-score is the harmonic mean of the precision and
recall and is calculated using a formula. An F1-score of 1 means perfect precision and
recall, while 0 means the worst performance.

• Kappa: Cohen’s Kappa adjusts for chance agreement and evaluates the agreement
between evaluators by considering both the observed agreement and the agreement
expected by chance, as described in Equations (4) and (5). Kappa ranges from −1 to 1,
with 1 indicating a complete agreement between the evaluators on the predicted box
office hits and actual hits and a value less than 0 indicating an agreement worse than
the chance. In other words, Kappa is a valuable metric for evaluating the performance
of a classifier in cases where the data are imbalanced, and it considers both the observed
agreement and disagreement in the predictions.

• MCC: Matthews correlation coefficient (MCC), as described in Equation (6), measures
the quality of a binary classifier used to predict the box office types. It considers both
the true and false positive and negative results. The MCC ranges from −1 to 1, with a
value closer to 1 indicating a higher accuracy in the classifier’s predictions and closer to
−1 indicating a lower accuracy. If a classifier’s predictions are random, its MCC value
would be 0. The MCC is beneficial in cases where the dataset is uneven, as it considers
both the accuracy and the ratios of true positive to false positive and true negative to
false negative, making it a more reliable measure of performance in these cases.

We aimed to perform a feature analysis of the input variables most closely associated
with different types of box office movies. To accomplish this, we constructed a classification
model, which is an ML model that predicts the class or label of input variables based on
their features or characteristics. However, we intended to use something other than this
classification model for making future predictions. Instead, we trained the classification
model on the entire dataset to identify the input variables that were most strongly related to
each type of box office movie. We hoped to gain insights into the key factors that influence
the success of different types of movies at the box office.

We used the entire dataset to evaluate the classification model rather than dividing
it into training and test sets. Our decision allowed them to assess the model’s accuracy
on the entire dataset and obtain a more comprehensive understanding of the relationship
between the input variables and box office movie types. Furthermore, it was possible
for the performance metric of the model to reach a value of 1 or close to 1 if the model
was overfitting. Despite that, we constructed a classification model to perform a feature
analysis on the input variables most closely associated with different types of box office
movies. We trained the classification model on the entire dataset to gain insights into the
key factors that influence the success of different types of movies at the box office. By using
the entire dataset to evaluate the classification model, the authors were able to obtain a
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more comprehensive understanding of the relationship between the input variables and
box office movie types.

Table 3 shows each cluster’s performance metrics and the study’s ML model. The
random state for all the models was set to 42, and the decision tree’s maximum depth was
set to 5 [68]. The logistic regression and decision tree models also performed well, with
high accuracy, recall, F1-score, Kappa, and MCC values for many clusters. The logistic
regression model even outperformed the other models for some clusters, achieving the
highest accuracy for clusters A and D, the highest recall for cluster C, and the highest
F1-score for clusters A, C, and D. Additionally, the logistic regression model had the highest
Kappa and MCC values for clusters A, C, D, and F. These results suggest that the logistic
regression model may be a good choice for identifying specific types of box office movies,
particularly for clusters A, C, D, and F. However, it is essential to note that the optimal
model choice may vary depending on the specific research question and dataset.

Table 3. Performance comparison of machine learning models.

Metric Model Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F

Accuracy

CatBoost 0.94 0.76 0.83 0.88 0.83 0.94
DT 0.96 0.78 0.83 0.85 0.87 0.95
LR 0.98 0.97 0.96 1.00 0.96 0.94
RF 1.00 1.00 1.00 1.00 1.00 1.00

Recall

CatBoost 0.10 0.06 0.19 0.46 0.04 0.14
DT 0.38 0.14 0.23 0.34 0.28 0.29
LR 0.76 0.88 0.79 1.00 0.77 0.19
RF 1.00 1.00 1.00 1.00 1.00 1.00

F1-score

CatBoost 0.17 0.12 0.32 0.63 0.07 0.25
DT 0.55 0.25 0.36 0.50 0.43 0.44
LR 0.86 0.94 0.88 1.00 0.87 0.32
RF 1.00 1.00 1.00 1.00 1.00 1.00

Kappa

CatBoost 0.16 0.09 0.28 0.57 0.06 0.24
DT 0.53 0.20 0.30 0.44 0.38 0.43
LR 0.86 0.92 0.86 1.00 0.85 0.30
RF 1.00 1.00 1.00 1.00 1.00 1.00

MCC

CatBoost 0.30 0.22 0.40 0.63 0.18 0.37
DT 0.60 0.33 0.39 0.52 0.47 0.52
LR 0.87 0.92 0.87 1.00 0.86 0.42
RF 1.00 1.00 1.00 1.00 1.00 1.00

Therefore, it is essential to carefully evaluate the performance of different models and con-
sider their strengths and weaknesses before making a final selection. The RF model achieved
perfect performance for all clusters. In Table 3, the RF model shows perfect classification
accuracy, with all metrics equal to 1. The perfect classification accuracy can be explained by
several factors, including the RF model’s inherent strengths and potential overfitting.

• Inherent strengths of the RF model: As an ensemble model, RF builds multiple DTs
and aggregates their predictions, reducing overfitting and improving generalization.
Additionally, RF introduces randomness in the feature selection and bootstrapping
samples, increasing the tree diversity and reducing the correlation between trees,
resulting in a more robust and accurate model.

• Overfitting: The RF model may have to overfit the training data, resulting in perfect
accuracy scores. Overfitting happens when the model learns the data’s noise rather
than its patterns, leading to an exceptional performance on the training data but a
poor performance on the new data. Evaluating the model on a separate validation or
test set could be considered to check for overfitting.

• Entropy perspective: Entropy measures the impurity or randomness in the data. The
RF’s trees use entropy to find the best-split points for each node. The perfect accuracy
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scores might result from the RF model’s ability to efficiently minimize the entropy at
each split, producing highly accurate predictions.

Overall, the results suggest that the RF model was the most robust and accurate of the
models tested, achieving perfect performance for all clusters. The other models performed
well for some clusters but showed a lower performance for others, suggesting they may
need to be more suitable for identifying all box office movie types.

4.3. Interpretability of Box-Office-Type Classification Model

Interpretability of the model refers to the ability to understand how it makes its
predictions regarding the box-office-type classification. The interpretability of the model is
important because it allows us to understand the strengths and weaknesses of the model
and how it is likely to perform in real-world scenarios [73]. One way to interpret the
model is to examine the model’s coefficients for each feature. The coefficients indicate the
importance of each feature in the model’s predictions for the box-office-type classification.
For example, if a particular director has a high coefficient, the model considers this director
to be a strong predictor of the type of box office success the film may have.

The SHAP decision plot visualizes the contribution of each feature to a prediction
made by an ML model for a specific instance or data point. The plot shows the relationship
between the features and the prediction, with the essential features considered first. The
features with higher absolute SHAP values had a more significant impact on the prediction.
The plot displays the prediction as the mean prediction of the leaf nodes, with the leaf
nodes’ size indicating each feature’s contribution. The interactions between features are
represented by branches in the plot, with the branch’s size indicating the feature’s effect on
the prediction. The value of the feature shows how much it contributes compared to the
average contribution of all features for all instances. The SHAP decision plot provides an
interpretable explanation for the relationship between the features and a model’s prediction.

The SHAP summary plot is a visual representation of the contribution of each feature
to the prediction of a binary classification model. The plot displays the SHAP values
for each feature, representing the feature’s impact on the model’s prediction. The x-axis
displays the features, while the y-axis represents the contribution of each feature to the
prediction, with positive values indicating a positive contribution and negative values
indicating a negative contribution. The SHAP summary plot provides a clear view of
the relationship between the features and the model’s prediction, making it an effective
tool for understanding the behavior of binary classification models, such as movie genre
classification or box office revenue prediction.

The SHAP violin plot is a graphical representation of the distribution of SHAP values
for each feature in a binary classification model. The x-axis displays the features, and the
y-axis shows the SHAP values split into two halves, one for the positive and one for the
negative classes. The width of the plot at a point on the y-axis represents the density of the
SHAP values for that feature, with the median being the center. The position of the plot on
the y-axis indicates the direction of the feature’s contribution to the prediction, with positive
contributions to the right of the baseline and negative contributions to the left. The width of
the plot provides information on the variance in the contributions, with more expansive plots
indicating a higher variance and narrower plots indicating a lower variance.

As shown in Figure A1, we analyzed Cluster A and revealed that it contained key-
words such as “Yoo Ah-in” and “National Bankruptcy Day.” It was found that Yoo Ah-in,
a famous Korean actor, was the most influential variable in this cluster. Furthermore, the
other actors and directors from “Day of National Bankruptcy,” a movie where Yoo Ah-in
played the main character, were also part of this cluster. Along with this movie, the cluster
consisted of other directors or actors who have appeared alongside Yoo Ah-in in different
movies. Interestingly, the French actor Vincent Cassel appeared in a movie with him. The
article suggests that if Vincent Cassel and other non-Korean actors were to work with a
Korean actor or director, it could lead to a good synergy effect. Combining various actors’
charms and acting skills and reflecting cultural diversity can produce more affluent and
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exciting work. The analysis of Cluster A could enhance the work’s perfection and attract
the audience’s interest.

In Cluster B, shown in Figure A2, the main keywords were “Taken” and “animation.”
The “Taken” series is a popular action movie with three installments, and the actors in the
series are critical in this cluster. Liam Neeson, who played the main character in all three
movies, was the most influential actor in the cluster. Many Korean directors, such as Lee
Seok-hoon and Kwak Gyeong-taek, have produced successful films in Korea and are highly
regarded in the industry. The cluster also contained many directors and voice actors who
have produced American animations. If they participate in animation works produced in
Korea, it can increase the possibility of gaining popularity worldwide. Since action movies
and animations were distributed together in this cluster, new works can be created by
producing action movies as animations or live-action animations. These initiatives can
open new markets and create new revenue opportunities. Overall, this cluster provided
insight into the potential collaborations between Korean and American actors, directors,
and animators that could result in successful and globally famous works.

Cluster C was characterized by movies with suspenseful and action-packed plots,
such as the famous “Maze Runner” and “Kingsman” series, as Figure A3 shows. These
movies are known to captivate viewers with their thrilling action scenes and suspenseful
developments, and the influence of the actors and directors who made them possible is
significant. Notable Korean actors in this cluster include Kim Sang-ho, Baek Yun-sik, and
Ma Dong-seok, known for their impressive performances in villainous roles, particularly in
action scenes. Their inclusion in the cluster suggests the potential for them to be cast as the
protagonists of new action movies within this cluster. In addition, Cluster C also included
actors with exceptional singing abilities, such as Hugh Jackman and Cho Seung-woo. When
combined with suitable directors or staff, this cluster showed promise for the involvement
in film productions within the musical genre. Given the variety of styles within Cluster C,
there is great potential for creating various types of action movies. However, new attempts
and challenges will be required to achieve this, and these efforts could open new markets
for the industry.

Cluster D was mainly influenced by middle-aged male Korean actors and actors who
have appeared in the Avengers series, as shown in Figure A4. Notable actors in this cluster
include Kim Seong-gyun, Ju Ji-hoon, Ko Chang-seok, and Lee Byung-hun. They could create a
Korean version of the Avengers with their combined influence. Additionally, Korean actresses
such as Kim Seong-ryeong and Han Hyo-joo had a significant presence in this cluster. If they
were to take on roles similar to those played by Scarlett Johansson in The Avengers, they
could attract public attention with their acting skills and charm. Furthermore, the actors in
this cluster have the potential to participate in international activities, like the Avengers actors.
As Korean actors become more involved in international film production, they could help
elevate the Korean film industry to a global level. The analysis of Cluster D could lead to a
more diverse and globally recognized film industry in Korea.

As depicted in Figure A5, Cluster E comprised actors who have shown their acting
skills in films of various genres, including “Interstellar” and “Harry Potter,” which are
representative works containing fantasy elements. The actors in this cluster are character-
ized by taking on diverse roles and displaying a wide range of acting skills, not limited
to a single genre. Among the actors in this cluster, Jessica Chastain stands out as the most
influential actress due to her outstanding performance in “Interstellar.” She has established
herself as a performer who can perform in films of various genres and is highly recognized
for her acting skills. As a result, the E cluster has the potential to create films of various
genres by combining the appropriate actors. Recently, Jang Ki-yong and Lim Soo-jeong,
actors from Cluster E, were selected for lead roles in a drama. These actors have shown
consistent acting abilities in various works and are expected to receive high marks in dra-
mas. Additionally, since there are many actors with acting abilities and charm regardless
of the genre in this cluster, it is expected that the actors receiving attention from various
works will appear in the future.
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Figure A6 shows that Cluster F primarily comprised actors and directors who have
contributed to the success of famous animated films such as Coco, Finding Dory, and Pororo.
These movies have gained worldwide recognition and popularity, and it is believed that the
technical abilities of the directors, the voice actors’ acting skills, and the use of visual effects
all played essential roles in their success. On the other hand, Korean actors belonging to
this cluster, such as Jang Dong-gun and Hyun Bin, are known for their versatility and are
active in various fields, including advertising, dramas, and movies. Specifically, Dong-gun
Jang, Hyunbin, Min-sik Choi, and Jiseong all share a history of appearing in historical
drama films. Given the strengths of these actors, it is recommended that they appear as
voice actors in animated movies or movies that heavily utilize computer-generated (CG)
technology. This is because these actors can showcase their acting skills while also taking
advantage of the impressive visual effects that CG technology can produce. Following
these recommendations, we can expect Korean actors to create movies featuring innovative
acting performances and stunning visual effects.

5. Discussion and Conclusions

DDDM models utilize data analysis to inform decision-making in the film industry.
These models analyze various factors related to a film’s potential success, such as the box
office revenue and audience size, to predict its performance before its release. Filmmakers
and investors can then use this information to reduce risk and make more informed
decisions about the film’s production, marketing, and distribution. Data-driven decision-
making models can potentially revolutionize the film industry by providing valuable
insights and improving efficiency. By accurately predicting a film’s success, these models
can help filmmakers and investors make better decisions about the resources they allocate
toward producing and promoting a film. DDDM models, in turn, can lead to better-
performing films and a more sustainable film industry overall. Predicting the success
of a film can be challenging due to the complexity of the film industry and the various
factors that impact a film’s success, such as the cultural and economic systems. However,
data-driven decision-making models have the potential to help address these challenges,
and provide more accurate predictions and better decision-making support for filmmakers
and investors in the film industry.

To better understand the factors contributing to the success of box office movies, we
analyzed the top 300 highest-grossing movies of all time. The data were collected using
web crawling from the VKOBIS, a computer system run by the Korean Film Council, and
included information on the title, production country, genre, director, actors, release date,
and running time of each movie. We used the DRECE framework to process this data,
which involved transforming multi-dimensional data into 2D data through dimensionality
reduction techniques such as DAE and UMAP. The 2D data were then subjected to K-means
clustering to group similar data points and classify the movie clusters. Finally, we applied
ML models, including LR, DT, RF, and CatBoost, to classify the movie clusters. The results
showed that the RF model performed best, with an accuracy and recall of 1.00 and an
F1-score, Kappa, and MCC of 1.00.

Although CatBoost is known for its excellent performance even with default hyperpa-
rameter values, the results in Table 3 did not meet our expectations. As a result, we decided
to perform a grid search to find the optimal hyperparameters for CatBoost, including the
learning rate, maximum depth of each tree, and the coefficient at the L2 regularization
term of the cost function [74]. After specifying a wide range of hyperparameter values
and running the grid search, the researchers achieved perfect performance for all clusters,
with an accuracy, recall, F1-score, Kappa, and MCC equal to 1. However, it is worth noting
that while this approach led to a perfect performance, it came with a high computing
cost. Specifying a wide range of hyperparameter values and running a grid search can be
computationally intensive and time-consuming, especially for large datasets. Therefore,
this approach may only sometimes be feasible or practical in real-world applications, and
trade-offs between the performance and computational efficiency must be considered.
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Our study provides practical guidance for filmmakers seeking to maximize their chances
of producing a hit by utilizing entropy-based methods in classification with a DT-based RF
approach. However, it is essential to acknowledge the limitations of our proposed approach,
which requires careful consideration of various factors such as the number and type of features
or the quality and quantity of the data. In information theory, entropy is a measure of the
uncertainty or randomness of a system. It represents the information needed to describe or
predict the system’s state. Our DT-based RF algorithm used entropy to identify the most
informative features and create a hierarchy of nodes representing increasingly specific rules
for classifying instances. DT-based RFs can generate powerful models for predicting the box
office success by recursively applying entropy-based splitting criteria.

Our findings demonstrate the potential of entropy-based methods to improve the
classification performance of models by minimizing the uncertainty and maximizing
information gain. By partitioning data based on the entropy, we can effectively identify
unique clusters of movies with distinct strengths and characteristics that offer valuable
insights for innovation and success in the Korean film industry. Furthermore, our paper
significantly contributes to entropy-related issues in film industry analysis, providing a
pioneering framework for future studies to build upon. Our work will inspire further
research, leading to more advanced and sophisticated methods for analyzing film industry
data. It is essential to acknowledge our approach’s limitations and conduct further research
to enhance its generalizability and robustness when applying it to other datasets or contexts.

Unfortunately, the impact of COVID-19 on recent movie box office performance could
not be studied, and Korean and Hollywood’s films were excluded from the analysis.
Furthermore, a comprehensive analysis of the movie reviews on Korean portals and the
differences in the box office performance between successful and unsuccessful films were
not examined. However, our model provides valuable insights for decision-makers in the
film industry to make data-driven decisions and improve future film success in the Korean
market. Future research is necessary to thoroughly analyze the impact of COVID-19 on
the box office performance of recent movies and to perform a more comprehensive and
integrated analysis of the global film industry. Advanced natural language processing
techniques will likely be utilized to provide a more systematic analysis, and the plan is
to build an integrated platform that covers the worldwide film industry. As a result, it
is recommended to leave these topics for future research, which will include a planned
analysis of Hollywood data as well.
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Figure A3. SHAP plots for Cluster C. (a) Decision plot; (b) Summary plot; (c) Violin plot. 
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Figure A4. SHAP plots for Cluster D. (a) Decision plot; (b) Summary plot; (c) Violin plot. 
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Figure A5. SHAP plots for Cluster E. (a) Decision plot; (b) Summary plot; (c) Violin plot. 
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Figure A6. SHAP plots for Cluster F. (a) Decision plot; (b) Summary plot; (c) Violin plot. Figure A6. SHAP plots for Cluster F. (a) Decision plot; (b) Summary plot; (c) Violin plot.
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