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Abstract: In this work, we address the beneficial role of noise in two different contexts, the human
brain and financial markets. In particular, the similitude between the ability of financial markets to
maintain in equilibrium asset prices is compared with the ability of the human nervous system to
balance a stick on a fingertip. Numerical simulations of the human stick balancing phenomenon
show that after the introduction of a small quantity of noise and a proper calibration of the main
control parameters, intermittent changes in the angular velocity of the stick are able to reproduce the
most basilar stylized facts involving price returns in financial markets. These results could also shed
light on the relevance of the idea of the “planetary nervous system”, already introduced elsewhere,
in the financial context.
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1. Introduction

The beneficial role of noise in physics has been explored in several studies, which
have shown that a certain degree of noise can enhance the stability or performance of
many systems [1–7]. However, the positive impact of noise is not limited to the physical
context but can also be observed in biological systems, such as cognitive processes [8–10],
neural systems [11,12] or light-harvesting complexes ([13], and in several socio-economic
ones, particularly in hierarchical organizations [14], political institutions [15] and financial
markets [16,17]. Previous studies in the latter field showed, for example, that random
trading strategies can result to be more successful than technical ones [18,19], or that
random investments can limit the size of financial bubbles and crashes [20].

The present work further explores this topic by drawing a comparison between two
complex systems where noise seems to play a significant role, the human brain and financial
markets. This analogy stands on the evidence that both are complex systems at the edge
of chaos, i.e., at a critical point in between stability and chaos. Many contributions have
consolidated the description of systems lying at the edge of chaos [21], specifically referring
to the brain, as pointed out by [22–24], and to financial markets [25–29]. In this respect,
both these systems are characterized by clear stylized facts, such as the existence of power
low distributions [30], which have been identified in neural electrodynamics [31,32] and
financial systems [33–35].

The leading idea of this study is to envision financial markets as a single system of
related markets and comparing it to the Planetary Nervous System: “a goal-oriented, glob-
ally distributed, self-organising, techno-social system for answering analytical questions
about the status of world-wide society, based on three pillars: social sensing, social mining
and the idea of trust networks and privacy-aware social mining” [36]. This technology has
mainly been proposed for social network analysis and has never been explicitly used for
financial systems analysis. We build upon the hypothesis that financial markets as a whole
can be considered as a decentralized planetary nervous system, operating as the human
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nervous system, where financial market actors act as parts and what happens in one of
them causes a reaction in the rest of the system, similarly to what happens in the human
body. In addition to the significant role of noise, this analogy has been driven by two other
characteristics of financial markets: interconnection and real-time responses.

At present, we live in an increasingly complex and interconnected society, with an
enormous amount of data available to us. Observing financial markets, we can find a perfect
example of the changes that have taken place in recent decades. In such markets, mainly due
to globalization, interconnectedness is extended across territorial borders, market sectors,
and through transactional linkages [37,38]. In addition, financial institutions are connected
to one another via their counterparty arrangements [39]. Much research has been conducted
highlighting this global picture of financial markets. For example, refs. [40,41] examined the
interdependence between some international stock indices; Ref. [42] analyzed the effects
of South Africa and US shocks on African financial markets; Ref. [43] demonstrated the
relationship between the US stock market and the Turkish stock market; Ref. [44,45] showed
how US and Japanese stock markets affect Asian countries and [46] found that US equity
markets affect world markets and that innovations in the US are rapidly transmitted to
other markets. More recently, [47] used networks to measure financial interconnection, such
as [48], who used multilayer information spillover networks to measure interconnectedness.
Financial markets tend to also be characterized by fairly short reaction times, thus quickly
responding to global announcements and information dynamics, such as in the COVID-19
pandemic [49], macroeconomic news [50] or concerning the impact of terrorist attacks
on the Istanbul Stock Market [51], sometimes with an immediate market reaction, which,
however, recedes almost immediately.

Furthermore, although central coordinating control is missing, financial markets—
acting as if they were a global planetary nervous system—try to strive for equilibrium.
According to the efficient market hypothesis [52], this tendency is ensured by the fact that
arbitrage possibilities are immediately exploited, leading prices back to their fundamental
values. Specifically, prices fully reflect all available information and possible variations
from the fundamental value can only be traced back to news that are unexpected by
agents who, however, respond quickly and rationally by selling and buying until every
possibility of profit is canceled out. In this respect, being populated by human beings,
each one with their peculiar psychological features, financial markets are also affected by
their unpredictable collective behavior, which acts as an endogenous source of noise and
contributes to maintain the global system at the edge of chaos. The comparison with the
planetary nervous system finds its roots precisely in this connection between the individual
human psychology and the financial market trends. Along these lines, the purpose of the
present work is that of introducing a tool for studying such a connection. In particular, by
means of an “econophysics” approach [53], we challenge the analogy between the idea
of a planetary nervous system, operating through the global financial markets, and the
individual human nervous system trying to balance a stick on the fingertip.

The idea of balancing unstable objects has long been developed in the field of engineer-
ing and control theory. Stabilizing an inverted pendulum is the classical example of control
activity over an unstable dynamic system, and several works have been conducted on this;
see, e.g., [54–59]. A number of authors have conducted studies on the human nervous
system in keeping balanced a stick on a fingertip while analyzing statistical properties
of finger movements. Pioneering contributions in this field were those by Cabrera and
Milton [60–64], who demonstrated, among other things, that fluctuations in the vertical
displacement angle of a stick balanced at the fingertip obey a scaling law [60] and that the
controlling movements made by the fingertip during the stick balancing can be described by
Lévy flight [61]. Refs. [65,66] also focused on the statistical properties of the movements of
the stick, while [67] proposed an improvement in stick balancing in the presence of vertical
vibration at the fingertip. In a previous enlightening contribution, Ref. [68] underlined
some similarities between the time series generated by the experiment of a “balancing stick”
presented in [60] and the financial returns.
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On the basis of these similarities, we propose a comparison between the distribution
of speed changes obtained while trying to balance the stick and the distribution of financial
returns. Our results show that, in presence of a certain level of noise, the individual stick
balancing phenomenon is able to replicate the main stylized facts of financial markets,
namely the appearance of fat tails in the probability density functions of returns [69,70],
the absence of autocorrelation [71,72] and the presence of volatility clustering [69]. Our
results may be of interest, since they enrich the extant literature on the topic of financial
stability with the perspective of human emotional control of investors, which can shed
light on implications of financial behaviors beyond orthodox optimization frameworks.

The remainder of the paper is as follows: Section 2 contains the stick balancing model,
Section 3 presents numerical results and Section 4 advances some conclusive remarks.

2. Materials and Methods

As mentioned in the Introduction, this paper presents a case study of the application
of human stick balancing mechanism. In the experiments conducted by [61], six subjects
(8–52 years) have been studied while they try to balance sticks with a diameter of 6.35 mm,
a mass of 35 g and heterogeneous lengths and material: 39 cm (aluminium) and 62 cm
(Garolite). Differences in lengths were analyzed because short sticks are more difficult to
balance and require continuous visual feedback control by the nervous system, minimizing
the role of proprioceptive inputs.

In their work, they focused on corrective finger movements, interpreting them as a
random walk. Authors set the speed, V, as the step size per unit time, imaging that the
change in speed, ∆V, estimates how fast the hand of the observed subjects can respond
to variations in the stick position. This ∆V was characterized in terms of a truncated
Lévy flight, with the truncation inversely proportional to skill level increases of the subject
involved in the experiment. They measured this level by observing the percentage of
times the stick remained balanced for at least 20 s. After two hours of training, three
subjects were excluded because they were unable to balance the stick for more than 20 s.
Subjects involved in the experiment practiced the stick balancing for 14 h in 10 days and
their skills increased during this period, but their nervous system were not capable of
predicting the movements of the balanced stick, developing a foraging strategy. Through
their experiments, the authors found that most of the times ∆V < 0.5 m/s, although larger
changes intermittently occur.

In order to compare the distribution of financial returns with that of speed changes in
human stick balancing, we adopted a mathematical model to simulate the stick balancing
process. In particular, we follow the works of Cabrera and Milton [60,63], who derived
the motion of the stick by numerically integrating the following nonlinear second-order
differential equation:

θ̈(t) +
γ

m
θ̇(t)− g

L
sinθ(t) + F(θ(t)) = 0 (1)

where L is the length of the stick, g is the gravitational constant, γ is the damping coefficient,
m is the mass of the stick and θ is the vertical displacement angle (with θ = 0 corresponding
to the upright position). The last part of this equation represents the external force that a
finger apply on the stick in order to balance it. In real applications, it is necessary to take
into account the time required to detect a deviation in θ and, then, to effect a corrective
movement. Consequently, the feedback is time-delayed and the ODE in Equation (1)
becomes a delay differential equation (DDE):

θ̈(t) +
γ

m
θ̇(t)− g

L
sinθ(t) + F(θ(t − τ)) = 0 (2)
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where τ is the time delay, while θ(t) and θ(t − τ) respectively refer to the values of θ at
times t and t − τ. By expanding F as a Taylor series, Equation (2) becomes:

θ̈(t) +
γ

m
θ̇(t)− g

L
sinθ(t) + r0θ(t − τ) = 0 (3)

where:
r0(t) = R0 + ξ(t) (4)

in which R0 is a constant and ξ(t) represents a Gaussian white noise with zero mean and
variance σ. This makes the final Equation (3) a stochastic delay differential equation.

A parametric study was preliminarily carried out by numerically integrating [73]
Equation (3) in order to find the optimal configuration of parameters able to reproduce the
features of human stick balancing.

Some parameters were set and left constant throughout our analysis, since we verified
that their influence on the dynamics is limited: they are the damping coefficient γ = 0.5
and the initial (small) displacement value θ(0) = 0.06. Moreover, we also set g = 9.8, m = 1
and, at the moment, L = 49%, expressed as a percentage with respect to the width of the
simulation environment. The parametric study was thus mainly performed by varying R0,
σ and τ, which are the parameters related to the temporal lag in Equation (3), responsible
for the complex dynamical behavior.

A first analysis was carried out in absence of noise, i.e., setting σ = 0:

• For τ ≤ 5, there is a critical threshold for R0 (specifically R∗
0 = 4.80545 for τ = 0 and

R∗
0 = 4.83749 for τ = 5), below which the sticks quickly falls, thus the point identified

by the initial conditions θ(0) and θ̇(0) in phase space results to be unstable, i.e., a
repeller. Above the threshold, the system becomes stable, although the equilibrium
point may not coincide with the initial one, and spiral trajectories can be observed
approaching the node (in this case, of course, the stick never falls). In other words,
in correspondence of the critical threshold R∗

0 , there is a sudden transition from a
completely disordered regime to a completely ordered one.

• For 5 < τ ≤ 10, a third type of regime appears. Below a different critical threshold R∗
0

(which for τ = 10 becomes R∗
0 = 4.88424), we always observe a repeller in the phase

space, and the sticks always falls; on the other hand, for R∗
0 < R0 < 5, the stick never

falls, and we again find a spiral node; finally, for R0 > 5, the stick falls again, but we
now observe a spiral repeller.

• For τ > 10 we do not find anymore the regime where the initial point is a spiral node.
The stick always falls and we pass from finding a repeller to find a spiral repeller in
phase space in correspondence of a critical value starting from R0 ∼ 5 and increasing
as τ increases. For τ = 50 and for values of R0 ≤ 10, the transition to spiral repeller is
no longer observed.

Summarizing, in the absence of noise, there are different types of transitions from one
regime to another, but we always observe either perfectly stable or completely unstable
behavior, with dynamical trajectories that appear to be absolutely unrealistic. Actually,
in order to reproduce human stick balancing–and, then, financial markets stylized facts—
we need an edge-of-chaos-like situation where the stick would obviously fall, but after
remaining in equilibrium for a while and showing power–law distributions in velocity
changes. In order to obtain such a behavior, we definitely need to add some noise, i.e., we
have to set σ > 0.

Also in the human stick balancing experiments, it has been established that a certain
degree of noise is essential for the neural control mechanism [61]. This is a very delicate
point, since an overly high level of noise would destabilize the system, and the stick would
never balance. Then, after several tests performed by trials and errors (see next section), we
arrived at the conclusion that an appropriate level of noise amplitude able to balance the
stick corresponds to the value σ = 10. Once having fixed this value for σ, we found that
whatever the values of R0 and τ, the stick falls after intervals of time of different length,
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which in some cases are enough to allow the appearance of a complex dynamical behavior
in phase space. At this level of noise, it is impossible to find exact thresholds between the
different dynamical regimes, as in absence of noise. In any case, one can still approximately
identify the following behavior:

• For values of τ less than 5, and for R0 less than 4, the stick immediately falls for any
initial condition, thus showing repeller behavior. Within the small range 4 < R0 < 6,
more interesting dynamics start to be observed in the phase space. An example is
shown in Figure 1 for τ = 2 and R0 = 5.2. Finally, for larger values of R0, the stick still
falls but the representative point of the system barely moves from its initial position in
the phase space.

Figure 1. Phase space for τ = 2, R0 = 5.2 and σ = 10.

• For τ > 5, the dynamics start to become very sensitive to the noise, for any R0.
Generally, as τ increases, a spiral-like repelling behavior emerges for values of R0 > 6.
Regardless, for τ ∼ 10 and for 4.5 < R0 < 6.5, a window of complex behavior does
appear, with longer trajectories more suitable for allowing statistical analysis.

After several trials, we found that, for σ = 10 and L = 49%, the most interesting
and plausible dynamics in the phase space can be found in correspondence of τ = 10 and
R0 = 5, as shown in Figure 2. In the next section, we will adopt this parameter setting in
order to explore the possibility of reproducing financial stylized facts by simulating human
stick balancing.

Figure 2. Phase space with τ = 10, R0 = 5 and σ = 10.
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3. Results

At first, we had to decide on the number of repetitions of the human stick balancing
simulation, obtained by numerically integrating Equation (3), which we should perform for
each set of parameters in order to have statistically stable results. Since we did not find sig-
nificant variations in these results after more than 20 repetitions, for all subsequent analyses,
an average of just over 20 runs will be performed. As anticipated in the previous section,
we will fix the setting for almost all the main parameters, namely θ(0) = 0.06, τ = 10
and R0 = 5.

We first checked if the chosen values for the stick length, L = 49%, and for the noise
amplitude, σ = 10, which were determined as suitable in the previous section to achieve a
realistic stick balancing dynamics in the phase space, are also suitable for replicating the
financial characteristics. In the financial context, the stick length and the noise amplitude
could represent a measure of, respectively, the stability of market and random interference
of the external socio-economic environment on the feedback mechanism of self-regulation.
Specifically, their variation should be restricted within small ranges, in order to better
simulate the real features of human stick balancing, where the stick neither immediately
falls nor stays balanced for too long time. As we will see in the following, staying within
these narrow ranges we will be able to reproduce quite well several stylized facts of
financial markets.

Let us start with the analysis of the angular velocity changes, or angular velocity
returns, obtained from the stick balancing dynamics and defined as: θ̇(t)− θ̇(t − 1). An
example of angular velocity returns time series is shown in Figure 3, which refers to
the same run whose dynamics in phase space has been reported in Figure 2. A strongly
intermittent behavior generating a fat tailed distribution (PDF) can be immediately noted, as
confirmed in Figure 4, where the corresponding PDF is plotted together with the analogous
PDFs obtained for other values of the stick length L. The curves are also compared with a
Gaussian curve (dashed line).

Figure 3. Angular velocity returns as function of time for τ = 10, R0 = 5, σ = 10 and L = 49%.

It immediately appears that the tails of the PDFs are slightly wider when the stick is
shorter. This is what we actually expect since, when its length is shortened, the stick tends
to fall sooner and larger angular velocity changes are needed in order to balance it.

Focusing on a stick with L = 49%, which definitely results as being a good compromise
for the stick length, we now compare the angular velocity returns distributions obtained
for increasing levels of noise σ. Since increasing σ results in the stick falling more and more
quickly, a deeper analysis of the results presented in Figure 5 allow us to conclude that the
best compromise between the length of the returns time series (needed for having a good
statistics) and the width of the tails of the distributions is obtained for σ = 10. Thus, we
can also confirm this value as the more suitable for our analysis.
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Figure 4. Comparison of several distributions of angular velocity returns (cumulated over 20 runs)
at σ = 10 and for increasing values of the stick length L, expressed in percentage with respect to
the width of the simulation environment. Gaussian distribution is also reported as a dashed line
for comparison.

Figure 5. Comparison of several distributions of angular velocity returns (cumulated over 20 runs) at
L = 49% and for increasing values of noise σ. Gaussian distribution is also reported as a dashed line
for comparison.

Empirical Data Collection and Comparison with Simulated Data

We can now proceed with the comparison between the statistical features of our
simulated data and those of real financial markets. Financial daily data were gathered for
20 series, including 10 assets and 10 indices. In Tables 1 and 2 are report, for indices and
assets, respectively, the reference periods for each one of the chosen historical series. Data
for the assets were collected from Yahoo Finance [74], and data for the indices from the
Datastream dataset [75].

In the two panels of Figure 6, we compare the distribution of returns for the angular
velocity obtained simulating a stick balanced on a fingertip with L = 49% and σ = 10, with
the distributions of normalized price returns for the 20 real financial series.
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Figure 6. The angular velocity returns distribution of simulated stick balancing, with L = 49% and
σ = 10, is compared with the returns distributions of real financial indexes (left) and assets (right). In
both the panels, Gaussian distribution is also reported as a red dashed line, together with two fitting
q-Gaussian curves, reported as blue and red full lines, respectively.

Table 1. Reference periods for real financial indices.

Index First Day Last Day

AEX 03/01/1983 06/07/2022
Dow Jones 04/05/1950 06/07/2022

Euro stoxx 50 31/12/1986 06/07/2022
FTSE 100 30/12/1983 06/07/2022
FTSE MIB 31/12/1997 06/07/2022

France CAC 40 09/07/1987 06/07/2022
IBEX 35 05/01/1987 06/07/2022
Nasdaq 05/02/1971 06/07/2022

Nikkei 225 03/04/1950 06/07/2022
S&P 500 31/12/1963 06/07/2022

Table 2. Reference periods for real financial assets.

Asset First Day Last Day

American Express 12/12/1972 06/07/2022
Amazon 16/05/1997 06/07/2022

Apple 15/12/1980 06/07/2022
BMW 11/11/1996 06/07/2022

Colgate 03/05/1973 06/07/2022
Ford 02/06/1972 06/07/2022

General Electric 03/01/1962 06/07/2022
JP Morgan 18/03/1980 06/07/2022
Microsoft 14/03/1986 06/07/2022

Pfizer 02/06/1972 06/07/2022

The comparison shows that, indeed, our simulated data replicates the behavior of
financial empirical data quite well, since both present similar fat tailed distributions of
returns. Such a similarity can be quantified in the context of nonextensive statistical me-
chanics [76] by fitting both the simulated PDFs and the empirical ones with q-Gaussian

curves. The latter have the following functional form y = A(1 − (1 − q)Bx2)
(1/(1−q)),

where the entropic index q measures the departure from Gaussian behavior (obtained in
the limit q = 1 and also reported as a dashed line). When q > 1, as typical for financial
distributions [77–80], we are in presence of power–law tails: this is actually what is happen-
ing, in our case, for both the simulated and the empirical data (see blue and red full lines,
respectively), with values of the entropic index that are exactly the same (q = 2.25) for the
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assets, while being slightly different, but still compatible, for the indexes (also in this case,
we could obtain a perfect agreement just by reducing the level of noise—see Figure 5).

The simulated stick balancing is also able to reproduce other typical stylized facts
of financial markets, such as the absence of autocorrelation and the presence of volatility
clustering. This can be verified looking at Figures 7 and 8, where these two quantities, calcu-
lated for the time series of the angular velocity changes in stick balancing, are reported and
compared with the analogous ones calculated for the returns time series of the previously
considered indexes and assets.

Figure 7. Comparison between the ACF of simulated data, with L = 49% and σ = 10, and the ACF
of real financial indexes (left) and assets (right).

In Figure 7 the lack of autocorrelation, found in returns of real assets and indices and
in our simulated data, implies that it is not possible to forecast price variations, thereby
eliminating the potential for simple arbitrage strategies [81]. This reinforces the notion that
financial markets are complex systems at the edge-of-chaos, where even small perturbations
can result in unpredictable and complex behavior.

Figure 8. Comparison between the ACF of absolute value of simulated data, with L = 49% and
σ = 10, and the ACF of absolute returns of real financial indexes (left) and assets (right).

Concerning Figure 8, it could be noticed that simulated results seem not able to exactly
capture the stationarity of real data, even if a decreasing slope can be appreciated for
both indexes and assets. In general, it is not easy to explain the existence of volatility
clustering [82], and replicating it by means of a model is difficult and very sensitive to
the chosen conditions [83–85]. In our case, we are not advancing a specific model of
trading (as in [86,87], among others) here. We are more focusing on the identification
of a useful predisposition in the statistical properties of a phenomenon linked to the
human ability, with the aim of embedding it in a more realistic framework depicting
the operation of the market.
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4. Discussion and Conclusions

This research contributes to a growing body of literature suggesting that noise is not
always detrimental, and can in fact play a positive role in several complex systems. In
particular, through an extended parametric study performed by numerically integrating
a delayed differential equation, we showed that a certain degree of noise is necessary to
reproduce a plausible simulation of a human nervous system trying to balance a stick on
a finger. Moreover, after proper calibration of the main control parameters, we have also
shown that the statistical features of velocity change during the stick balancing process can
be successfully compared with the most basilar stylized facts of financial markets, namely
the fat tailed distribution of returns, the absence of autocorrelation and the nonvanishing
volatility clustering. These results allow us to reinforce the visionary idea of a planetary
nervous system (PNS), already proposed by several authors from a different perspective.
In analogy with the ability of the individual nervous system in balancing a stick, PNS could
actually be invoked here as a possible candidate for representing the hidden mechanism
behind the self-regulation ability of global financial markets. In this respect, both human
brain and financial markets seem able to benefit from noise for self-maintaining at the
edge-of-chaos, a critical state at the border between order and disorder that appears to be
essential to ensure their complex performance.

In forthcoming related studies, the potential of the stick balancing model could be
further exploited in order to investigate the impact of individual choices on the global
stability of financial markets. The role of informative flows on financial equilibria is well
known, and as already shown in previous works [87], the excess of information and signals
is one of the most relevant channel of transmission of volatility. This is easily confirmed by
a vast literature on financial contagion [88–90], which can be jointly considered in order to
analyze to what extent the individual ability of traders to resist and behave without sharp
reactions to any possible small perceived disequilibria can influence the global volatility
of markets. While this remains the aim of successive studies, the analogy that we are
advancing here between psychomotor skills and psychological factors can represent a first
step in the direction of recognizing—and then taming—ingredients of financial instability.

This aspect is important because, as pointed out in the present work, one of the main
reasons for market volatility is that financial markets are populated by humans, who
are driven by their psychological inclinations. This means that market fluctuations and
movements are not solely determined by the dynamics of the true values of the assets but
are also influenced by the decisions and the emotions of market participants. It is important
to take these human features into consideration when analyzing and predicting market
trends. In fact, the value of an asset is determined by a complex web of transactions and
signals within the financial market. This can sometimes result in the asset’s value becoming
disconnected from its true value. As a consequence, market fluctuations can lead to both
profits and losses that do not necessarily reflect the actual value of the company represented
by the asset. In this respect, we believe that, despite its present limitations—which we will
try to overcome in future analysis—the proposed analogy between financial markets and
the stick balancing process could inspire stabilization policies trying to bring the value
of the asset back to its “original” value and to avoid the resulting instabilities, such as
financial bubbles or crashes.
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14, 153–164. [CrossRef]
52. Fama, E.F. Efficient capital markets: A review of theory and empirical work. J. Financ. 1970, 25, 383–417. [CrossRef]
53. Mantegna, R.N.; Stanley, H.E. Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press:

Cambridge, UK, 1999.
54. Schaefer, I.; Cannon, R. On the control of unstable mechanical systems. Res. Rev. 1966, 5, 11.
55. Mori, S.; Nishihara, H.; Furuta, K. Control of unstable mechanical system control of pendulum. Int. J. Control 1976, 23, 673–692.

[CrossRef]
56. Åström, K.J.; Furuta, K. Swinging up a pendulum by energy control. Automatica 2000, 36, 287–295. [CrossRef]
57. Henders, M.; Soudack, A. “In-the-large” behaviour of an inverted pendulum with linear stabilization. Int. J. Non-Linear Mech.

1992, 27, 129–138.
58. Maletinsky, W.; Senning, M.; Wiederkehr, F. Observer based control of a double pendulum. IFAC Proc. Vol. 1981, 14, 3383–3387.
59. Kawazoe, Y. Manual control and computer control of an inverted pendulum on a cart. In Proceedings of the First International

Conference on Motion and Vibration Control, Yokohama, Japan, 7–11 September 1992.
60. Cabrera, J.L.; Milton, J.G. On-off intermittency in a human balancing task. Phys. Rev. Lett. 2002, 89, 158702. [CrossRef] [PubMed]
61. Cabrera, J.L.; Milton, J.G. Human stick balancing: tuning Lévy flights to improve balance control. Chaos Interdiscip. J. Nonlinear

Sci. 2004, 14, 691–698. [CrossRef] [PubMed]
62. Cabrera, J.L.; Bormann, R.; Eurich, C.; Ohira, T.; Milton, J. State-dependent noise and human balance control. Fluct. Noise Lett.

2004, 4, L107–L117. [CrossRef]

http://dx.doi.org/10.1016/j.pneurobio.2017.07.002
http://dx.doi.org/10.1177/1073858412445487
http://dx.doi.org/10.1038/nature01624
http://dx.doi.org/10.1146/annurev.economics.050708.142940
http://dx.doi.org/10.1016/j.chaos.2016.01.020
http://dx.doi.org/10.1140/epjst/e2012-01688-9
http://dx.doi.org/10.2139/ssrn.1988968
http://dx.doi.org/10.1016/j.intfin.2014.12.004
http://dx.doi.org/10.1080/13602380312331288650
http://dx.doi.org/10.1016/j.rdf.2013.10.002
http://dx.doi.org/10.1080/758527545
http://dx.doi.org/10.1016/S1059-0560(00)00057-5
http://dx.doi.org/10.2307/2330774
http://dx.doi.org/10.1080/14697688.2020.1831047
http://dx.doi.org/10.1016/j.ribaf.2020.101249
http://www.ncbi.nlm.nih.gov/pubmed/34170989
http://dx.doi.org/10.1007/BF02425192
http://dx.doi.org/10.31671/dogus.2018.103
http://dx.doi.org/10.2307/2325486
http://dx.doi.org/10.1080/00207177608922192
http://dx.doi.org/10.1016/S0005-1098(99)00140-5
http://dx.doi.org/10.1103/PhysRevLett.89.158702
http://www.ncbi.nlm.nih.gov/pubmed/12366030
http://dx.doi.org/10.1063/1.1785453
http://www.ncbi.nlm.nih.gov/pubmed/15446980
http://dx.doi.org/10.1142/S0219477504001719


Entropy 2023, 25, 557 13 of 13

63. Cabrera, J.L.; Luciani, C.; Milton, J. Neural control on multiple time scales: Insights from human stick balancing. Condens. Matter
Phys. 2006, 9, 373–383. [CrossRef]

64. Cabrera, J.; Milton, J. Stick balancing, falls and Dragon-Kings. Eur. Phys. J. Spec. Top. 2012, 205, 231–241. [CrossRef]
65. Cluff, T.; Riley, M.A.; Balasubramaniam, R. Dynamical structure of hand trajectories during pole balancing. Neurosci. Lett. 2009,

464, 88–92. [CrossRef] [PubMed]
66. Treffner, P.J.; Kelso, J.S. Dynamic encounters: long memory during functional stabilization. Ecol. Psychol. 1999, 11, 103–137.

[CrossRef]
67. Milton, J.G.; Ohira, T.; Cabrera, J.L.; Fraiser, R.M.; Gyorffy, J.B.; Ruiz, F.K.; Strauss, M.A.; Balch, E.C.; Marin, P.J.; Alexander, J.L.

Balancing with vibration: a prelude for “drift and act” balance control. PLoS ONE 2009, 4, e7427. [CrossRef]
68. Bouchaud, J.P.; Gefen, Y.; Potters, M.; Wyart, M. Fluctuations and response in financial markets: the subtle nature ofrandom’price

changes. Quant. Financ. 2003, 4, 176. [CrossRef]
69. Mandelbrot, B.B. The variation of certain speculative prices. J. Bus. 1967, 36, 394–419. [CrossRef]
70. Gopikrishnan, P.; Plerou, V.; Amaral, L.A.N.; Meyer, M.; Stanley, H.E. Scaling of the distribution of fluctuations of financial

market indices. Phys. Rev. E 1999, 60, 5305. [CrossRef] [PubMed]
71. Pagan, A. The econometrics of financial markets. J. Empir. Financ. 1996, 3, 15–102. [CrossRef]
72. Cont, R.; Potters, M.; Bouchaud, J.P. Scaling in stock market data: Stable laws and beyond. In Scale Invariance and Beyond; Springer:

Berlin, Germany, 1997; pp. 75–85.
73. Wilensky, U. NetLogo; Center for Connected Learning and Computer-Based Modeling, Northwestern University: Evanston, IL,

USA, 1999.
74. yahoo. 2022. Available online: https://finance.yahoo.com (accessed on 6 July 2022 ).
75. Refinitiv. 2022. Available online: https://solutions.refinitiv.com/datastream-macroeconomic-analysis (accessed on 6 July 2022).
76. Tsallis, C. Introduction to Nonextensive Statistical Mechanics, 2nd ed.; Springer: Berlin, Germany, 2023.
77. Tsallis, C.; Anteneodo, C.; Borland, L.; Osorio, R. Nonextensive Statistical Mechanics and Economics. Phys. A 2003, 324.

[CrossRef]
78. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Modeling financial markets by self-organized criticality. Phys. Rev. E 2015, 92, 042814.

[CrossRef] [PubMed]
79. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Order book, financial markets, and self-organized criticality. Chaos Solitons Fractals 2016,

88, 196–208. [CrossRef]
80. Biondo, A.E.; Pluchino, A.; Rapisarda, A. A multilayer approach for price dynamics in financial markets. Eur. Phys. J. Spec. Top.

2017, 226, 477–488. [CrossRef]
81. Cont, R. Empirical properties of asset returns: stylized facts and statistical issues. Quant. Financ. 2001, 1, 223. [CrossRef]
82. LeBaron, B. Agent-based financial markets: Matching stylized facts with style. In Post Walrasian Macroeconomics: Beyond the DSGE

Model; Cambridge University Press: Cambridge, UK, 2006; pp. 221–235.
83. Raberto, M.; Cincotti, S.; Focardi, S.M.; Marchesi, M. Agent-based simulation of a financial market. Phys. A Stat. Mech. Its Appl.

2001, 299, 319–327. [CrossRef]
84. Fabretti, A. On the problem of calibrating an agent based model for financial markets. J. Econ. Interact. Coord. 2013, 8, 277–293.

[CrossRef]
85. Cafferata, A.; Tramontana, F. A financial market model with confirmation bias. Struct. Chang. Econ. Dyn. 2019, 51, 252–259.

[CrossRef]
86. Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A. Minimal agent based model for financial markets I: origin and self-organization

of stylized facts. Eur. Phys. J. B 2009, 67, 385–397. [CrossRef]
87. Biondo, A.E. Order book modeling and financial stability. J. Econ. Interact. Coord. 2019, 14, 469–489. [CrossRef]
88. Wu, F.; Zhang, D.; Ji, Q. Systemic risk and financial contagion across top global energy companies. Energy Econ. 2021, 97, 105221.

[CrossRef]
89. Banerjee, S.; Guhathakurta, K. Change-point analysis in financial networks. Stat 2020, 9, e269. [CrossRef]
90. Trevino, I. Informational channels of financial contagion. Econometrica 2020, 88, 297–335. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5488/CMP.9.2.373
http://dx.doi.org/10.1140/epjst/e2012-01573-7
http://dx.doi.org/10.1016/j.neulet.2009.08.039
http://www.ncbi.nlm.nih.gov/pubmed/19699264
http://dx.doi.org/10.1207/s15326969eco1102_1
http://dx.doi.org/10.1371/journal.pone.0007427
http://dx.doi.org/10.1080/14697680400000022
http://dx.doi.org/10.1086/294632
http://dx.doi.org/10.1103/PhysRevE.60.5305
http://www.ncbi.nlm.nih.gov/pubmed/11970400
http://dx.doi.org/10.1016/0927-5398(95)00020-8
https://finance.yahoo.com
https://solutions.refinitiv.com/datastream-macroeconomic-analysis
http://dx.doi.org/10.1016/S0378-4371(03)00042-6
http://dx.doi.org/10.1103/PhysRevE.92.042814
http://www.ncbi.nlm.nih.gov/pubmed/26565296
http://dx.doi.org/10.1016/j.chaos.2016.03.001
http://dx.doi.org/10.1140/epjst/e2016-60197-4
http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1016/S0378-4371(01)00312-0
http://dx.doi.org/10.1007/s11403-012-0096-3
http://dx.doi.org/10.1016/j.strueco.2019.08.004
http://dx.doi.org/10.1140/epjb/e2009-00028-4
http://dx.doi.org/10.1007/s11403-018-0227-6
http://dx.doi.org/10.1016/j.eneco.2021.105221
http://dx.doi.org/10.1002/sta4.269
http://dx.doi.org/10.3982/ECTA15604

	Introduction
	Materials and Methods
	Results
	Discussion and Conclusions
	References

