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Abstract: Graph-based change-point detection methods are often applied due to their advantages
for using high-dimensional data. Most applications focus on extracting effective information of
objects while ignoring their main features. However, in some applications, one may be interested in
detecting objects with different features, such as color. Therefore, we propose a general graph-based
change-point detection method under the multi-way tensor framework, aimed at detecting objects
with different features that change in the distribution of one or more slices. Furthermore, considering
that recorded tensor sequences may be vulnerable to natural disturbances, such as lighting in images
or videos, we propose an improved method incorporating histogram equalization techniques to
improve detection efficiency. Finally, through simulations and real data analysis, we show that the
proposed methods achieve higher efficiency in detecting change-points.

Keywords: tensor; image; change-point; maximum edge weight; histogram-based edge weight

1. Introduction

Videos or images are common in real life. Examples include images of traffic lights to
regulate traffic, videos recorded by electronic traffic cameras to track vehicles that violate
regulations, and webcams in smart agriculture to monitor the ripening stage of vegetables
or fruits and automatically estimate the harvest time. Videos or images include huge
amounts of information, but not all are useful. Therefore, extracting useful information
from videos or a sequence of images, which can be regarded as a change-point detection
problem, is important. The authors of [1] proposed a distribution-free, consistent graph-
based change-point detection method for recorded videos tracking cell division. After that,
a non-Euclidean graph-based change-point test was proposed by [2] as an effective way to
reduce random interference, and applied to detecting both landing and departure times in
a sequence of bees’ flower visitation data.

Digital videos or images are special cases of multi-way tensors. A r-way tensor can be
expressed as X ∈ Rp1×···×pr , where R denotes the real number line and p` represents the
dimension of mode-` of X , ` = 1, . . . , r. The elements of the tensor X can be accessed using
r indices as in xi1,...,ir , varying i` from 1 to p`, ` = 1, . . . , r. A slice refers to a tensor subarray
with one fixed index. For example, Xir = {x·,...,·,r} is defined to be the ir-th slice of X along
mode r (abbreviated as the ir-th mode-r slice), ir = 1, . . . , pr. Thus, X contains r different
sets of slices. In modern statistical applications, tensors are commonly encountered in
many fields. A color image can be represented as a three-way tensor, i.e., Rp1×p2×3, where
{x·,·,i3}, i3 = 1, 2, 3, are mode-3 slices, the combination of which determines the color of an
image. Nevertheless, both [1,2] converted three-way tensors to one-way tensors by taking
the average of R, G, B mode-3 slices, which neglects the object’s color information.

In real life, one may also be interested in detecting targets with different colors.
For example, detecting changes in the color of traffic lights may help daltonians reduce
the limitations of visual impairment and be able to pass through traffic lights normally.
Figure 1 shows a sequence of traffic light images containing different colors, such as green
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(t = 1, . . . , 10), yellow (t = 11, . . . , 14), and red (t = 15, . . . , 27). Traffic light colors are
dominated by R, G, B mode-3 slices, not their average. In addition, detecting a change
in the color of fruits or vegetables may help monitor their maturity stages and estimate
their harvest time, which is important for building automated harvesting systems. For
example, the ripening process of tomato fruits can be categorized into three stages: mature
green (MG), breaker (BR), and light red (LR) [3,4]. Figure 2 displays 26 frames of these
three stages, i.e., MG (t = 1, . . . , 8), BR (t = 9, . . . , 19), and LR (t = 20, . . . , 26), which are
extracted from a video that recorded the tomato fruits’ maturation process from MG to LR.
However, the pixel values of images or video frames are sensitive to light intensity. Figure 3
presents the same sequence of 26 frames, but the light intensity changes at t = 5, 10, 17, 21.
All these disturbances make change-point detection more challenging.

Figure 1. Three different colors of traffic lights: green (left panel, t = 1, . . . , 10), yellow (middle panel,
t = 11, . . . , 14), and red (right panel, t = 15, . . . , 27).

Figure 2. Three ripening stages: MG (left panel, t = 1, . . . , 8), BR (middle panel, t = 9, . . . , 19), and
LR (right panel, t = 20, . . . , 26).

Figure 3. Three ripening stages where the light intensity changes at t = 5, 10, 17, 21: (a) t = 1, . . . , 5,
(b) t = 6, . . . , 8, (c) t = 9, 10, (d) t = 11, . . . , 17, (e) t = 18, 19, (f) t = 20, 21, (g) t = 22, . . . , 26.

Inspired by the above examples, we were interested in developing a change-point
detection method for the multi-way tensor-based framework, which we present in this
paper. Suppose an observation of an object can be represented as a sequence of r-way
tensors. The features of an object are dominated by one or a few slices. One may encounter a
situation where the distribution of one or some mode-` slices suddenly changes, ` = 1, . . . , r,
say, mode-r slices. If so, taking the average over all mode-r slices may mask changes, such
that some features of the object are no longer clearly visible. Following the graph-based
change-point detection method in [2], we propose two detection methods based on the
multi-way tensor framework. One is directly based on the elements of the slices, and the
other is based on the histograms of the slices to reduce the influence of natural disturbances,
such as lighting, in the image. Change-points occur when the value of some important
dominant slices change suddenly. Without loss of generality, we take a three-way tensor
as an example to intuitively illustrate the performance of the proposed method. We show
through simulations and real-data analysis that the proposed methods are more capable
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than the method in [2] regardless of whether the sequence of tensors is affected by natural
disturbances.

The main contributions of this study are summarized. First, to the best of our knowl-
edge, few studies have addressed the problem of identifying temporal change-points in
sequences of tensors. Therefore, we propose a graph-based change-point detection method
to identify temporal changes under the framework of multi-way tensors. Second, we
propose maximal and histogram-based edge weights to build graphs. The latter aims to
downplay or remove natural distractions, such as lighting, in an image. Third, we conduct
simulation studies in different scenarios with equal or unequal variances of the slices,
with or without natural disturbances. Our simulation results demonstrate the robustness
and efficiency of the proposed methods in change-point detection. Finally, our proposed
methods are suitable for, but not limited to, detecting color changes of traffic lights and
monitoring maturity stage changes in smart agriculture.

2. Methodology
2.1. Model Setup

Let X t be a sequence of r-way tensors, i.e., X t ∈ Rp1×···×pr , where p`, ` = 1, . . . , r,
are positive integers, and t = 1, . . . , T. X t contains p` mode-` slices, denoted as X(`)

i`,t ∈
Rp1×···×p`−1×p`+1×···×pr , where the superscript ` denotes different modes, ` = 1, . . . , r, and
the subscript i` denotes the i`-th slice along mode `, i` = 1, . . . , p`. For the collection of
tensors, assume that a time point t∗ divides the observations into two segments such that
X t in two segments are significantly different, whereby the mode-` slices characterize
the difference. Then t∗ is a change-point. For example, the color of a colorful image is
dominated by mode-3 slices. A change of any mode-3 slice will result in a change in
the color of this image. Generally, for the mode-` slices, denote S = {1, . . . , p`}. Let
T (`)

t and K(`)
t be subsets of S for t = 1, . . . , t∗ and t = t∗ + 1, . . . , T, respectively. Note

that K(`)
t = ∅ for t = 1, . . . , t∗. Without loss of generality, make ` = r. Define j =

{j1, . . . , jr−1} ∈ Rr−1, an index label vector, where j` = 1, . . . , p` with ` = 1, . . . , r − 1.
Denote J = {1, . . . , p1} × · · · × {1, . . . , pr−1}. Let x(r)j,m,t be the elements of X(r)

m,t at time
t, j ∈ J and m ∈ {1, . . . , pr}. Suppose that the object area of these slices is represented
as J (r)

1,t ⊂ J at time t. We use the following model to illustrate the time series with a
change-point at time t∗:

x(r)j,m,t =

{
µ
(r)
m,1 + σ

(r)
m,1ε, j ∈ J (r)

1,t , m ∈ T (r)
t , m /∈ K(r)

t ,

µ
(r)
m,2 + σ

(r)
m,2ε, j ∈ J (r)

1,t , m ∈ K(r)
t ,

(1)

where µ
(r)
m,i, σ

(r)
m,i , i = 1, 2, are unknown parameters, ε is an independently identically

distributed (iid) random error, with a mean of zero and a variance of one. The first part in
model (1) corresponds to the mode-r slices with no change (initial state). The second part
shows significant changes among these mode-r slices for t > t∗. For simplicity, we drop the
suffix r in (1). Then, model (1) becomes

xj,m,t =

{
µm,1 + σm,1ε, j ∈ J 1,t, m ∈ T t, m /∈ Kt,
µm,2 + σm,2ε, j ∈ J 1,t, m ∈ Kt.

(2)

If there exists a change-point t∗, similar to [2], detecting the change-point of (1) is equivalent
to testing the following hypothesis:

H0 : Kt = ∅, t = 1, . . . , T vs Ha :
{

Kt = ∅, t = 1, . . . , t∗,
Kt 6= ∅, t = t∗ + 1, . . . , T.

(3)
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Suppose that a time point t divides the observations into two segments, ‘past’ (≤ t) and ‘fu-
ture’ (> t), t = 1, . . . , T. In light of [2,5], we define the number of edges that connect points
from the ‘past’ and ‘future’ segments over a graph G, for any t, and (t1, t2) ∈ E(G(ω)),

CG(ω)
t = ∑

(t1,t2)∈E(G(ω))

I{I{t1 > t} 6= I{t2 > t}}, (4)

where I{A} is an indicator function that is equal to 1 if A is true, and 0 otherwise; and G
is a connected, edge-weighted undirected graph with vertex set {1, . . . , T} and edge set
E(G). Many ways can be used to construct such a graph, such as minimum spanning tree
(MST), minimum distance pairing (MDP), and shortest Hamiltonian path (SHP) [1,2,5].
Nevertheless, not all of them perform well in a graph-based hypothesis test. As is shown
in [1], a test based on MST performed poorly in terms of power for a large dimension d.
Moreover, Chen and Zhang [5] argue that MDP achieves the desirable property of being
truly distribution-free. However, Biswas et al. [6] show that the generalized run test using
the SHP is distribution-free and consistent as a dimension d goes to infinity. In our study,
we thus use the graph G that is obtained using SHP, denoted as SHP(ω). Small values
of CG(ω)

t are against the null hypothesis H0 in (3), which is equivalent to constructing the
graph that attains the minimum of the sum of edge weights among all of the spanning
paths. Therefore, it is key to establish suitable edge weights ωt1,t2 between any two nodes
t1, t2 in the construction of graph G. We propose two edge weights, given in (7) or (8) of the
following two subsections.

To test the null hypothesis, an SHP-based test was proposed in [1], with the test statistic

SSHP(ω)
T =

1
T − 1

T−1

∑
t=1

(
ZSHP(ω)

t

)2
, (5)

where ZSHP(ω)
t is the standardization of CSHP(ω)

t , ZSHP(ω)
t = (CSHP(ω)

t − E0)/
√

var0,
E0 = 2t(T − t)/T; and var0 = 2t(T − t){2t(T − t) − T}/(T3 − T2). We reject the null

hypothesis at the significant level α if the statistic SSHP(ω)
T is larger than the simulated

critical value. When rejecting H0, the change-point estimate is given by

arg min
1≤t≤T

CSHP(ω)
t /{t(T − t)}. (6)

Under the null hypothesis, the distribution of SSHP(ω)
T is distribution-free. The critical

values are calculated via the permutation method with 100,000 replications based on various
d and significance levels α. The details are given in the Appendix A.

2.2. Maximum Edge Weight

As mentioned earlier, it is possible to encounter a mode-r slice change, such as the first
mode-r slice. Taking the average of all mode-r slices may mask the importance of the first
slice and thus the variation in important features of the object. For example, when a study
focuses on detecting time points of color change in a sequence of images, averaging three
mode-3 slices removes the color features of these images. Undoubtedly, the method of [2]
will fail to detect it. Inspired by the problem of detecting color changes, we thus propose
maximum edge weights to enforce the importance of considering the mode-r slices.

Let E(G) be a set of edges of the undirected edge-weighted graph, the nodes of which
are {1, . . . , T}. The maximum edge weights of nodes t1, t2 are defined as

ωt1,t2 = max
m∈{1,...,pr}

∣∣∣∣∣ ∑j∈J (xj,m,t1 − xj,m,t2)

∣∣∣∣∣, (7)
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where j ∈ J means that j` ∈ {1, . . . , p`} for ` = 1, . . . , r− 1. The methods based on the
maximum edge weights and the non-Euclidean edge weights of [2] are named Maxima-SHP
and nonE-SHP, respectively.

2.3. Histogram-Based Edge Weight

Both the nonE-SHP and Maxima-SHP are directly based on the differences between
tensors’ elements, which can easily be affected by some natural factors. For example, the
pixel values of the video’s frames are sensitive to light intensity, which makes the video’s
frames or images either over- or under-exposed, resulting in a narrow range of intensity
values of pixels. In such a case, using the method of nonE-SHP or Maxima-SHP directly
may fail to detect the underlying true change-points. Histogram equalization is useful
in images where the background and foreground are both light and dark, by effectively
spreading highly populated intensity values. Motivated by the histogram equalization, we
propose a new weight based on the histograms of all elements of the tensors rather than all
elements directly. For the tensor Xm,t, let fm,hi ,t be the empirical probability of occurrence
of intensity level hi in the m-th mode-r slice (m = 1, . . . , pr), where hi, i = 1, . . . , L, denote
the intensity levels, and L is the number of possible intensity levels (e.g., L = 256 for an
8-bit image). We propose a histogram-based edge weight of nodes t1, t2,

ωt1,t2 = max
k=1,...,L

m∈{1,...,pr}

L

∣∣∣∣∣ k

∑
i=1

( fm,hi ,t1 − fm,hi ,t2)

∣∣∣∣∣. (8)

The weight is in line with the histogram equalization technique that can dilute or remove
the effects of disturbances, such as the effects of light intensity on images or videos. The
method using the histogram-based edge weight is named HistEq-SHP.

3. Simulations
3.1. Comparative Study of the Performance of NonE-SHP and Maxima-SHP

We generated three-way tensor samples, X t ∈ Rp1×p2×3, using model (2). Under the

null hypothesis, the model’s settings are µm,1 = 0, σm,1 = 1, ε
iid∼ N(0, 1) for m = 1, 2, 3,

and d = p1 p2 = 5, 10, 100, 500, 1000, 5000, 10,000, 50,000. We carried out 10,000 simulations
with α = 0.05 and T = 20, 40, 60, 80, 100, 200. Table 1 displays the estimated type I errors
via nonE-SHP and the proposed Maxima-SHP. All the estimated type I errors are around
0.05, consistent with the significance level α = 0.05.

Table 1. Comparison of type I error rates using nonE-SHP and Maxima-SHP based on various T and d.

T Method
d

10 50 100 500 1000 5000 10,000 50,000

20 Maxima-SHP 0.0519 0.0505 0.0493 0.0495 0.0524 0.0495 0.0507 0.0513
nonE-SHP 0.0446 0.0506 0.0502 0.0510 0.0535 0.0494 0.0496 0.0463

40 Maxima-SHP 0.0512 0.0495 0.0519 0.0500 0.0561 0.0503 0.0460 0.0531
nonE-SHP 0.0529 0.0498 0.0484 0.0496 0.0478 0.0530 0.0502 0.0530

60 Maxima-SHP 0.0507 0.0491 0.0479 0.0508 0.0483 0.0477 0.0497 0.0497
nonE-SHP 0.0487 0.0491 0.0489 0.0518 0.0460 0.0504 0.0507 0.0469

80 Maxima-SHP 0.0487 0.0495 0.0508 0.0479 0.0565 0.0468 0.0505 0.0514
nonE-SHP 0.0522 0.0513 0.0493 0.0538 0.0522 0.0480 0.0519 0.0500

100 Maxima-SHP 0.0459 0.0498 0.0465 0.0476 0.0517 0.0481 0.0484 0.0484
nonE-SHP 0.0522 0.0506 0.0521 0.0458 0.0497 0.0456 0.0496 0.0483

200 Maxima-SHP 0.0456 0.0507 0.0480 0.0514 0.0510 0.0513 0.0500 0.0540
nonE-SHP 0.0476 0.0514 0.0473 0.0489 0.0466 0.0519 0.0434 0.0503

Additionally, we examined the powers of Maxima-SHP and nonE-SHP under the alter-
native hypothesis. For simplicity, we also considered three-way tensor samples generated
using model (2) with r = 3. Suppose that t∗ is the preset change-point, and Kt = {1, 3}
for t > t∗, indicating that the distribution of the first and third mode-3 slices X1,t change
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after t∗. When t ≤ t∗, for the third mode-3 slice µ3,1 = 0.2, whereas for the first and second
mode-3 slices µ1,1 = µ2,1 = 0. When t > t∗, the distribution of the second mode-3 slice
remains unchanged, whereas both distributions of the first and third mode-3 slices change,

µ1,2 = 0.2 and µ3,2 = 0. Furthermore, let σm,1 = σm,2 = 1, ε
iid∼ N(0, 1) for m = 1, 2, 3.

Figure 4 visually shows the generated three-way tensors for t ≤ t∗ and after t∗, i.e., t > t∗.

Figure 4. Illustration of the generated three-way tensors for t ≤ t∗ and t > t∗ in the middle and on
the right, respectively.

We performed the simulations via 10,000 repetitions at the significance level of 0.05.
Figure 5 shows the estimated powers of Maxima-SHP and nonE-SHP by setting the change-
point at T/2. Clearly, as the dimension d increases, the powers of nonE-SHP are all around
0.05, implying that it fails to reject the null hypothesis when the alternative hypothesis
is true. However, the powers of Maxima-SHP tend to one for the whole T, empirically
showing the strong power consistency. The power consistency of Maxima-SHP is mainly
affected by the dimension d. Figure 6 shows similar results as Figure 5 when µ3,1 = µ1,2 =
0.3 and keeping the other values unchanged. We conducted two more simulations by
setting the location of change-point at T/4. The results are given in the Appendix B.

Additionally, we carried out other simulations under the scenario of unequal variances
for different slices. The variance of the second mode-3 slice was equal to 1.5, whereas the
other settings were the same as above. Table 2 shows that the estimated type I errors are
still around 0.05 under the null hypothesis for both Maxima-SHP and nonE-SHP. Figure 7
gives the estimated powers under the alternative hypothesis. These results indicate that
the proposed Maxima-SHP still outperforms the nonE-SHP, whether the variances of the
slices are equal or not.

Figure 5. Estimated powers of Maxima-SHP and nonE-SHP over 10,000 simulations by setting equal
slice variance; t∗ = T/2, T = 40, 100, 200, µ3,1 = 0.2, µ1,1 = µ2,1 = 0 for t ≤ t∗; and Kt = {1, 3},
µ1,2 = 0.2, µ3,2 = 0 for t > t∗.
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Figure 6. Estimated powers of Maxima-SHP and nonE-SHP over 10,000 simulations by setting
t∗ = T/2, T = 40, 100, 200, µ3,1 = 0.3, µ1,1 = µ2,1 = 0 for t ≤ t∗; and Kt = {1, 3}, µ1,2 = 0.3, µ3,2 = 0
for t > t∗.

Table 2. Comparison of type I error rates of nonE-SHP and Maxima-SHP with unequal variances of
slices, based on various T and d.

T Method
d

10 50 100 500 1000 5000 10,000 50,000

20 Maxima-SHP 0.0532 0.0479 0.0537 0.0484 0.0464 0.0520 0.0516 0.0497
nonE-SHP 0.0489 0.0468 0.0533 0.0471 0.0511 0.0525 0.0494 0.0468

40 Maxima-SHP 0.0475 0.0519 0.0501 0.0473 0.0516 0.0464 0.0533 0.0525
nonE-SHP 0.0490 0.0495 0.0542 0.0478 0.0529 0.0500 0.0498 0.0527

60 Maxima-SHP 0.0518 0.0531 0.0496 0.0492 0.0476 0.0508 0.0532 0.0521
nonE-SHP 0.0469 0.0471 0.0456 0.0514 0.0538 0.0464 0.0565 0.0487

80 Maxima-SHP 0.0485 0.0493 0.0462 0.0455 0.0530 0.0472 0.0504 0.0521
nonE-SHP 0.0498 0.0476 0.0446 0.0487 0.0501 0.0481 0.0466 0.0504

100 Maxima-SHP 0.0495 0.0472 0.0514 0.0508 0.0534 0.0494 0.0530 0.0503
nonE-SHP 0.0505 0.0496 0.0483 0.0441 0.0513 0.0504 0.0477 0.0534

200 Maxima-SHP 0.0489 0.0527 0.0537 0.0502 0.0521 0.0479 0.0543 0.0487
nonE-SHP 0.0461 0.0528 0.0516 0.0523 0.0515 0.0510 0.0501 0.0462

Figure 7. Estimated powers of Maxima-SHP and nonE-SHP over 10,000 simulations with unequal
variances of slices by setting t∗ = T/2, T = 40, 100, 200, σ2,1 = σ2,2 = 1.5, µ3,1 = 0.3, µ1,1 = µ2,1 = 0
for t ≤ t∗; and Kt = {1, 3}, µ1,2 = 0.3, µ3,2 = 0 for t > t∗.

3.2. Comparative Study of the Performance of NonE-SHP and HistEq-SHP

In order to investigate the performance of HistEq-SHP, we first performed change-
point detection by generating a sequence of synthetic gray images (r = 2) under different
T and d. Figure 8 is an example of T = 40, d = 10,000, r = 2. In Figure 8, we depict images
constructed using a normal distribution with a mean of 0.8 and a standard deviation of
0.05 for t = 1, . . . , 9 (see Figure 8a ), and using a normal distribution with a mean of
0.5 and a standard deviation of 0.05 for t = 10, . . . , 19 (see Figure 8b). Furthermore, we
added an object, the shape of a butterfly, to the images constructed using the normal
distribution with a mean of 0.5 and a standard deviation of 0.05 for t = 20, . . . , 29 (see
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Figure 8c). Finally, the illustration of the image in Figure 8d was generated on the basis
of Figure 8a for t = 30, . . . , 40. The time point t = 19 is the change-point. Under various
T and d, we calculated the empirical powers based on 10,000 repetitions. We remark that
we preprocessed the images using the histogram equalization technique before using the
nonE-SHP method. Table 3 displays the powers of HistEq-SHP and nonE-SHP, which
shows that the powers of both methods are ones when d = 5000 and 10,000 regardless of T.
For d = 50,000, the powers of HistEq-SHP are ones, but those of the nonE-SHP method are
close to one, implying the proposed method outperforms the nonE-SHP method for high
dimension d.

Figure 8. Illustrations of a sequence of synthetic gray images with T = 40, d = 10,000, r = 2: (a)
t = 1, . . . , 9; (b) t = 10, . . . , 19; (c) t = 20, . . . , 29; (d) t = 30, . . . , 40.

Table 3. Comparison of the powers of nonE-SHP and HistEq-SHP based on gray images with various
T and d.

T Method
d

5000 10,000 50,000

40 nonE-SHP 1.0000 1.0000 0.9110
HistEq-SHP 1.0000 1.0000 1.0000

100 nonE-SHP 1.0000 1.0000 0.9991
HistEq-SHP 1.0000 1.0000 1.0000

We further examined the performance of these methods on three-way tensors by
extending gray images to color images. As we discussed in the introduction, lighting can
easily affect images, making change-point detection even more challenging. We performed
another simulation to check the stability of the proposed methods by generating synthetic
images under different light intensities. Figure 9 displays four types of images: Figure 9a
is generated from a normal distribution with a mean of 0.8 and a standard deviation of
0.05 for three mode-3 slices, and a red object is added; Figure 9b is generated in the same
way as in Figure 9a except that the mean of the normal distribution is 0.5; Figure 9c,d are
generated in the same way as in Figure 9b and Figure 9a, respectively, except that blue
targets replaced the red ones. Note that Figure 9a,d are in the same light intensity, and so
are Figure 9b,c. It is obvious that the time change-point is at t∗ = 19. Table 4 gives the
powers of nonE-SHP and HistEq-SHP. It shows that the powers of nonE-SHP are close to
0.05 in all cases, and, hence, the method failed to detect the real change-point, i.e., where the
colors of the object are not the same, and the images receive different light intensities. On
the contrary, the powers of HistEq-SHP are all ones. The results demonstrate that although
the images are affected by different light intensities, the proposed HistEq-SHP method can
successfully identify the true change-point.
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Figure 9. Illustrations of a sequence of synthetic color images with T = 40, d = 10,000, r = 3: (a)
t = 1, . . . , 9; (b) t = 10, . . . , 19; (c) t = 20, . . . , 29; (d) t = 30, . . . , 40. (a,d) are in the same light intensity,
and so are (b,c).

Table 4. Comparison of the powers of nonE-SHP and HistEq-SHP based on color images with various
T and d.

T Method
d

5000 10,000 50,000

40 nonE-SHP 0.0503 0.0485 0.0499
HistEq-SHP 1.0000 1.0000 1.0000

100 nonE-SHP 0.0527 0.0507 0.0494
HistEq-SHP 1.0000 1.0000 1.0000

4. Case Studies
4.1. Example 1: Color Change in a Traffic Light

Our proposed method has important implications in real life. An application that
recognizes the color change of traffic lights may help daltonians reduce the limitations
of their visual impairment and allow them to navigate traffic light intersections. We
extracted 27 frames per second from a short video (27 s) taken at a traffic light intersection,
recording the entire traffic light transition from green to red. We cropped each frame to
size 73× 40. Figure 1 displays three frames containing different colors of the traffic light,
green (t = 1, . . . , 10), yellow (t = 11, . . . , 14), and red (t = 15, . . . , 27). Clearly, based on the
hypothesis test in (3), two change-points exist: t∗ = 10 and t∗ = 14. In this case, we aim to
detect the moments when the traffic light has changed its color, e.g., t∗ = 10 and 14.

We transformed the three-way tensor of the R,G,B slices into three vectors and normal-
ized the pixel values. According to Equation (7), we extracted the maximum edge weights

of the three color slices to construct SHP(ω). The test statistic SSHP(ω)
T in Equation (5) was

10.5787, larger than the corresponding critical value 2.1491 (T = 27, d = 2920), leading to
the rejection of the null hypothesis at the significance level 0.05. The estimated location of
the change-point was t∗ = 14. To further test if other change-points exist, we considered
the two segments: {X t, t = 1, . . . , 13} (Segment I) and {X t, t = 15, . . . , 27} (Segment II).
Following the same procedure as above, the second change-point was estimated at t∗ = 10
in Segment I, whereas there was no change-point in Segment II. The estimated results are
given in Figure 10 (upper panel), which agrees with the real situation.

To compare Maxima-SHP with nonE-SHP, we also constructed the SHP(ω) via the
non-Euclidean weight given by [2]. By following the same procedure, although the ratio

cut was minimized at location 19, the statistic SSHP(ω)
T was 0.6278, less than the critical

value, resulting in failing to reject the null hypothesis. The results are given in Figure 10
(lower panel). As expected, the nonE-SHP failed to detect the real change-points in such
a scenario because it disregarded the main feature in three slices in constructing its non-
Euclidean weights.
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Figure 10. The change-point estimation using Maxima-SHP (upper panel) and nonE-SHP (lower
panel).

4.2. Example 2: Tomato Fruit Color Change

Nowadays, automatic harvesting systems have become a powerful technique for smart
agriculture [7]. Monitoring the maturity stages of fruits or vegetables and estimating their
harvest time are important steps in building an automatic harvesting system. Based on
video recordings of fruit’s or vegetable’s maturation processes, the problem of monitoring
the maturity stages and estimating the harvest times of fruit or vegetable can be transformed
into a change-point detection problem.

Figure 2 shows three stages of the ripening process of the tomato fruit, MG (t =
1, . . . , 8), BR (t = 9, . . . , 19), and LR (t = 20, . . . , 26), containing 26 frames extracted from
a video. Each of them was cropped to size 149 × 149. Obviously, t∗ = 8 and t∗ = 19 are
considered as the change-points. Applying the change-point detection methods of HistEq-
SHP and nonE-SHP, the results are displayed in Figure 11. As expected, both methods
successfully detected the real change-points.

Figure 11. Change-point detection via HistEq-SHP (upper panel) and nonE-SHP (lower panel).

However, videos or images are easily affected by light intensity, which makes change-
point detection more challenging. Here, we present another example to illustrate that our
proposed method is more robust than the nonE-SHP when the recorded videos or frames
are recorded in different light intensities. We darkened the frames of t = 6, . . . , 10 and
lightened the frames of t = 18, . . . , 21, shown in Figure 3. Note that the change-points are
still at t∗ = 8 and t∗ = 19, the detection of which is easily affected by the false change-points
t = 5, t = 10, t = 17, and t = 21, where the light intensity changes. By applying nonE-
SHP, three false change-points t∗ = 5, t∗ = 10, and t∗ = 17 were detected (see the lower
panel of Figure 12). In contrast, the proposed HistEq-SHP detected two change-points at
t∗ = 8 and t∗ = 19 (see the upper panel of Figure 12), consistent with the real ones. The
nonE-SHP failed to detect the real change-points when the videos or frames were recorded
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in different light intensities. However, our proposed HistEq-SHP remained unaffected by
disturbance(s) and successfully detected the real change-points.

Figure 12. Change-points detected by HistEq-SHP (upper panel) and nonE-SHP (lower panel), light
intensity changes at t = 5, 10, 17, 21.

5. Conclusions

Nowadays, videos or images are ubiquitously used in real life. This paper proposes a
general class of graph-based change-point detection methods for checking whether objects
with different characteristics and sequences of tensors are affected by natural disturbances.
Simulation studies empirically showed the power consistency of the proposed methods.
Furthermore, the proposed methods are shown to detect changes in the color of traffic
lights at intersections and monitor changes in fruit ripening stages in smart farming. All
numerical studies demonstrated the effectiveness of the proposed methods.
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Appendix A. Simulated Critical Values of Both Maxima-SHP and HistEq-SHP

Appendix A.1. Simulated Critical Values of Maxima-SHP

Under the null hypothesis, the distribution of SSHP(ω)
T defined in (5) is distribution-

free. The critical values are obtained from simulations via the permutation method with
100,000 replications based on various d and significance levels α. Table A1 lists the estimated
critical values under the null hypothesis. We generated data using model (2) with Kt = ∅

and T = 20, r = 3, µm,1 = 0, σm,1 = 1, ε
iid∼ N(0, 1) for m = 1, 2, 3. The significance levels

mainly indicate changes in the critical values. There is little difference among the cαs in
response to changing the dimension d and the length of tensor sequences T. Tables A2–A4
present the estimated cα by letting T = 60, 100, 200, respectively.
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Table A1. The estimated critical values (cα) of the Maxima-SHP based on different d and significance
levels α for T = 20.

d 10% 5% 2.5% 1% 0.5% 0.1%

10 1.7491 2.1163 2.4878 2.9904 3.3718 4.2241
50 1.7518 2.1321 2.4972 2.9871 3.3772 4.2879
100 1.7491 2.1203 2.4990 2.9992 3.3752 4.2060
500 1.7506 2.1254 2.5020 2.9799 3.3375 4.1512
1000 1.7537 2.1194 2.5027 3.0056 3.3562 4.2720
5000 1.7524 2.1200 2.4859 2.9723 3.3488 4.2147
10,000 1.7658 2.1307 2.5027 3.0002 3.3875 4.2840
50,000 1.7555 2.1269 2.4926 2.9829 3.3603 4.2390

Table A2. The estimated critical values (cα) of the Maxima-SHP based on different d and significance
levels α for T = 60.

d 10% 5% 2.50% 1% 0.50% 0.10%

10 1.7726 2.1602 2.5744 3.1198 3.5629 4.5688
50 1.7630 2.1617 2.5717 3.1458 3.5821 4.5475
100 1.7790 2.1814 2.5877 3.1514 3.6000 4.6520
500 1.7682 2.1564 2.5540 3.1161 3.5231 4.3641
1000 1.7744 2.1652 2.5785 3.1312 3.5226 4.6107
5000 1.7821 2.1858 2.5948 3.1566 3.5853 4.4944
10,000 1.7607 2.1471 2.5483 3.0943 3.5304 4.4988
50,000 1.7652 2.1552 2.5569 3.1253 3.5456 4.5816

Table A3. The estimated critical values (cα) of the Maxima-SHP based on different d and significance
levels α for T = 100.

d 10% 5% 2.50% 1% 0.50% 0.10%

10 1.7637 2.1659 2.5594 3.1031 3.5163 4.4318
50 1.7646 2.1612 2.5491 3.0839 3.5053 4.4586
100 1.7681 2.1662 2.5509 3.1026 3.5370 4.5026
500 1.7789 2.1791 2.5795 3.1361 3.5555 4.5226
1000 1.7667 2.1700 2.5823 3.1372 3.5414 4.5186
5000 1.7700 2.1596 2.5664 3.0797 3.5040 4.5572
10,000 1.7613 2.1526 2.5711 3.1216 3.5611 4.5922
50,000 1.7657 2.1685 2.5609 3.1098 3.5059 4.4325

Table A4. The estimated critical values (cα) of the Maxima-SHP based on different d and significance
levels α for T = 200.

d 10% 5% 2.50% 1% 0.50% 0.10%

10 1.7584 2.1543 2.5425 3.0915 3.4645 4.5578
50 1.7476 2.1284 2.5239 3.0532 3.4679 4.4469
100 1.7513 2.1404 2.5414 3.0683 3.5084 4.5517
500 1.7526 2.1420 2.5245 3.0276 3.4349 4.3104
1000 1.7575 2.1340 2.5359 3.0681 3.4754 4.4134
5000 1.7578 2.1457 2.5428 3.0905 3.5153 4.5126
10,000 1.7598 2.1489 2.5446 3.0879 3.4847 4.4418
50,000 1.7476 2.1336 2.5343 3.0567 3.4472 4.4326

Appendix A.2. Simulated Critical Values for the HistEq-SHP

According to the intensity levels of the 8-bit image, let L equal 256. We replaced

the weight in SSHP(ω)
T with Equation (8) to obtain the critical values (c

′
α) the same way.

Table A5 lists the estimated critical values with T = 40, d = 5000, 10,000, 50,000. Significant
differences of c

′
α are only evident among different α values. The critical values are slightly
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different as the value of d changes. Other settings of the critical values with T = 100,
d = 5000, 10,000, 50,000 are presented in Table A6, in which the same phenomena as in
Table A5 can be observed.

Table A5. The estimated critical values (c
′
α) of the HistEq-SHP based on different d and significance

levels α for T = 40 .

d 10% 5% 2.5% 1% 0.5% 0.1%

5000 1.7857 2.1754 2.5571 3.1191 3.5116 4.6093
10,000 1.7775 2.1704 2.5683 3.1237 3.5465 4.4774
50,000 1.7680 2.1591 2.5433 3.0833 3.4894 4.4746

Table A6. The estimated critical values (c
′
α) of the HistEq-SHP based on different d and significance

levels α for T = 100.

d 10% 5% 2.50% 1% 0.50% 0.10%

5000 1.7895 2.2013 2.6125 3.1743 3.6417 4.6668
10,000 1.7827 2.1841 2.6033 3.1570 3.5595 4.5371
50,000 1.7742 2.1755 2.5914 3.1428 3.5968 4.5675

Appendix B. Empirical Powers of Maxima-SHP and NonE-SHP

We examined the powers of Maxima-SHP and nonE-SHP under the alternative hy-
pothesis by setting the change-point at T/4. Figures A1 and A2 show similar results as
Figures 5 and 6, respectively.

Figure A1. Empirical powers of both Maxima-SHP and nonE-SHP based on 10,000 simulations with
t∗ = T/4, T = 40, 100, 200, µ3,1 = 0.2, µ1,1 = µ2,1 = 0 for t ≤ t∗; and Kt = {1, 3}, µ1,2 = 0.2, µ3,2 = 0
for t > t∗.

Figure A2. Empirical powers of both Maxima-SHP and nonE-SHP based on 10,000 simulations with
t∗ = T/4, T = 40, 100, 200, µ3,1 = 0.3, µ1,1 = µ2,1 = 0 for t ≤ t∗; and Kt = {1, 3}, µ1,2 = 0.3, µ3,2 = 0
for t > t∗.
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