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Abstract: Community detection in weighted networks has been a popular topic in recent years.
However, while there exist several flexible methods for estimating communities in weighted networks,
these methods usually assume that the number of communities is known. It is usually unclear how
to determine the exact number of communities one should use. Here, to estimate the number of
communities for weighted networks generated from arbitrary distribution under the degree-corrected
distribution-free model, we propose one approach that combines weighted modularity with spectral
clustering. This approach allows a weighted network to have negative edge weights and it also
works for signed networks. We compare the proposed method to several existing methods and
show that our method is more accurate for estimating the number of communities both numerically
and empirically.

Keywords: community detection; degree-corrected distribution-free model; weighted modularity;
network analysis

1. Introduction

For decades, network science provided substantial quantitative tools for the study
of complex systems [1–4]. Networks emerge in numerous fields including physics, soci-
ology, biology, economics, and so forth [5–15]. The elementary parts of a network are
nodes, links, and link weights. A network is unweighted when all link weights are
1 and weighted otherwise [16]. Networks usually have community structure such that
nodes within the same community have more connections than across communities [17,18].
For example, in social networks, communities can be groups of students who belong to
the same school, be of the same club, be of the same graduation year, or be interested
in the same movie; in scientific collaboration networks, communities are scientists in the
same field [19–21]; in protein-protein interaction networks, communities are proteins en-
joying similar functions [22,23]. However, in practice, the latent community structure of a
network is generally not directly observable and we need to develop techniques to infer
community structure.

Community detection for unweighted networks has been widely studied for decades [17,18].
Numerous community detection methods have been developed to fit a statistical model that
can generate a random network with a community structure. The stochastic blockmodels
(SBM) [24] is a classical and popular generative model for unweighted networks. The
popular degree-corrected stochastic blockmodels (DCSBM) extends SBM by considering
node heterogeneity. Based on SBM and DCSBM, substantial community detection methods
have been developed, such as [25–36]. However, most methods require the number of
communities K to be known in advance, and this is often not the case for real-world
unweighted networks. To address this problem, some methods have been developed to
estimate K under SBM or DCSBM [37–47], where approaches developed in [46] stand out
as they estimate K for unweighted networks regardless of statistical models.

A significant drawback of the above SBM-based and DCSBM-based methods is that
they ignore the impact of edge weights which are common in network data and could help
us to understand the community structure of a network better [16]. Recently, community
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detection in weighted networks has become a hot topic and many statistical models have
been developed to fit weighted networks, such as the weighted stochastic blockmodels
(WSBM) proposed in [48–54], the distribution-free model (DFM) of [55], and the degree-
corrected distribution-free model (DCDFM) introduced in [56]. Among these models,
DFM and its extension DCDFM stand out as they allow edge weights to follow any
distribution as long as the expected adjacency matrix follows a block structure related
to community partition. However, similar to SBM-based and DCSBM-based methods,
algorithms developed for the above models also assume that K is known in advance, which
is usually impractical for real-world weighted networks. To close this gap, we provide a
simple approach to estimate K for weighted networks generated from DCDFM.

The main contributions of this work include:
(1) We propose a method by taking advantage of both spectral clustering and weighted

modularity to estimate the number of communities for weighted networks generated from
arbitrary distribution under DCDFM. The method determines K by increasing the number
of communities until weighted modularity does not increase. The method is devised
for DCDFM, but it can be naturally applied to weighted networks generated from DFM
and unweighted networks generated from SBM and DCSBM since these three models are
sub-models of DCDFM.

(2) We conduct a large number of experiments on both computer-generated weighted
networks and real-world networks including signed networks. The experimental results
show that our method can estimate the number of communities for weighted networks
generated by different distributions under DCDFM even when the true K is 1 and it is more
accurate than its competitors.

2. Methodology
2.1. The Degree-Corrected Distribution-Free Model

In this article, we work with the degree-corrected distribution-free model proposed
in [56]. We assume that there exist K perceivable non-overlapping clusters C(1), C(2), . . . , C(K),
and each node only belongs to exactly one cluster. Let the n× 1 vector ` denote the node
label such that `i takes value from {1, 2, . . . , K} and `i is the community label for node i for
i ∈ [n]. Let Z ∈ {0, 1}n×K be the community membership matrix such that Zik = 1 if `i = k
and Zik = 0 otherwise. Let θ be an n× 1 vector such that the positive number θi is the node
heterogeneity of node i. Let Θ be an n× n diagonal matrix whose i-th diagonal entry is
θi. Let P be the K× K symmetric connectivity matrix such that P’s rank is K, P’s elements
can be any real values in [−1, 1], and maxk,l∈[K]|Pkl | = 1, where we let P’s maximum ab-
solute element be 1 for convenience since we consider the node heterogeneity parameter
θ. For i, j ∈ [n], the DCDFM model [56] generates the (i, j)-th element of the symmetric
adjacency matrix A for an un-directed weighted network N in the following way:

Aij is a random variable generated from arbitrary distribution F with expectation Ωij,
where Ω is defined as Ω = ΘZPZ′Θ.

(1)

DCDFM includes several previous models. For example, when θi =
√

ρ for all i ∈ [n],
DCDFM reduces to the distribution-free model [55]; when F is Bernoulli distribution and
P’s elements are non-negative, DCDFM reduces to the classical degree-corrected stochastic
blockmodels [57]; when F is Bernoulli distribution, all elements of θ are the same, and P’s
elements are non-negative, DCDFM reduces to the popular stochastic blockmodels [24],
i.e., SBM, DCSBM, and DFM are sub-models of DCDFM. As analyzed in [56], F can be
any distribution as long as A’s expectation matrix is Ω under distribution F . Meanwhile,
the fact that whether P’s elements can be negative depends on distribution F . For example,
when F is Bernoulli, Binomial, Poisson, Geometric or Exponential distributions, P’s ele-
ments should be non-negative or positive; when F is Normal, Laplace or A is the adjacency
matrix of a signed network, P’s elements can be negative. DCDFM can generate A for
weighted networks benefiting from the arbitrariness of distribution F .
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When n, K, `, P, and θ are set, we can generate the adjacency matrix A for any distribu-
tion F under DCDFM as long as Equation (1) holds. Given A and the known number of
clusters K, ref. [56] designs an efficient spectral algorithm called nDFA to estimate the node
label vector ` and shows that nDFA enjoys consistent estimation under DCDFM for any
distribution F satisfying Equation (1). However, the method nDFA requires K to be known
in advance, and this is not the case in practice. To process this problem, in this article, we
aim at developing an efficient method to estimate the number of communities K when only
the adjacency matrix A is known, where A is generated from DCDFM with K communities
for arbitrary distribution F satisfying Equation (1).

2.2. Estimation of the Number of Communities

Our method for estimating K is closely related to the modularity for signed networks
introduced in [58] and this modularity extends the popular Newman-Girvan modularity
matrix [59] from unweighted networks to signed networks. Instead of simply considering
signed networks, we extend the modularity developed in [58] to weighted networks
with A’s elements being any finite real values by considering indicator functions. We
let the n × n symmetric adjacency matrix A be generated from DCDFM for arbitrary
distribution F satisfying Equation (1), so we have A ∈ Rn×n. Let A+, A− ∈ Rn×n

≥0 such that
Aij = A+

ij − A−ij , where A+
ij = max(0, Aij) and A−ij = max(0,−Aij) for any i, j ∈ [n]. Let d+

be the positive degree vector with i-th entry d+i = ∑n
j=1 A+

ij and d− be the negative vector

with i-th entry d−i = ∑n
j=1 A−ij for i ∈ [n]. Let m+ = ∑n

i=1 d+i /2 and m− = ∑n
i=1 d−i /2. Let ˆ̀

be a n× 1 node label vector returned by running a community detection methodM on A
with k communities such that ˆ̀ i takes value from {1, 2, . . . , k}. Based on the community
partition ˆ̀ obtained from the methodM, the positive modularity Q+ and the negative
modularity Q− are defined as

Q+ =
1

2m+

n

∑
i=1

n

∑
j=1

(A+
ij −

d+i d+j
2m+

)δ( ˆ̀ i, ˆ̀ j)1m+>0, Q− =
1

2m−
n

∑
i=1

n

∑
j=1

(A−ij −
d−i d−j
2m−

)δ( ˆ̀ i, ˆ̀ j)1m−>0,

where δ( ˆ̀ i, ˆ̀ j) is the Kronecker delta function, 1m+>0 and 1m−>0 are indicator functions
such that

δ( ˆ̀ i, ˆ̀ i) =

{
1 when ˆ̀ i = ˆ̀ i,
0, otherwise,

, 1m+>0 =

{
1 when m+ > 0,
0, otherwise,

, 1m−>0 =

{
1 when m− > 0,
0, otherwise,

,

The weighted modularity considered in this article is defined as

QM(k) =
2m+

2m+ + 2m−
Q+ − 2m−

2m+ + 2m−
Q−. (2)

When all edge weights are non-negative such that m− = 0, the weighted modularity
reduces to the Newman-Girvan modularity. When A has both positive and negative entries,
the weighted modularity reduces to the modularity introduced in [58]. The weighted
modularity obtained via Equation (2) measures the quality of community partition for
a weighted network whose adjacency matrix has any finite real elements, and it is more
general than the modularity introduced in [58]. Similar to the Newman-Girvan modularity,
a larger weighted modularity QM(k) indicates a better community partition.

In Equation (2), we write the weighted modularity as a function of the number of
communities k and the community detection methodM to emphasize that the weighted
modularity may be different for different k or different community detection methods.
We estimate the number of communities K by increasing k until the weighted modularity
function in Equation (2) does not increase. Suppose there is a cardinality choice of K such
that K locates in {1, 2, . . . , K0}. For a community detection algorithmM, our strategy for
estimating K is
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K̂M = arg max
k∈[K0]

QM(k). (3)

In this paper, to estimate the number of communities for weighted networks generated
from DCDFM, we choose the methodM as the nDFA algorithm designed in [56] because
nDFA enjoys consistent estimation of community memberships under DCDFM and it is
computationally fast. For convenience, whenM is the nDFA algorithm, we call our method
for estimating K via Equation (3) as nDFAwm, where “wm” means weighted modularity.
The details of the nDFA algorithm [56] are written below.

Input: A, k. Output: ˆ̀.

• Let Ã = ÛΛ̂Û′ be the top-k eigendecomposition of A.

• Let the n× k matrix Û∗ be the row normalization of Û such that Û∗(i, :) = Û(i,:)
‖Û(i,:)‖F

for

i ∈ [n].
• Apply k-means algorithm on all rows of Û∗ with k clusters to obtain ˆ̀.

3. Experimental Results

In this section, we present both simulation results and real-world experiments to
compare our nDFAwm with three model-free methods in the literature for estimating the
number of communities: the modularity eigengap (ME for short) method proposed in [60],
the non-backtracking (NB) method designed in [46], and the Bethe Hessian matrix-based
method BHac developed in [46].

3.1. Simulations

In this section, we investigate the performance of nDFAwm and competing algorithms
to adjacency matrices generated from nine distributions under DCDFM. For each parameter
setting, we report the accuracy rate over 100 repetitions for each method, where the accuracy
rate is the fraction of times that the estimated number of clusters K̂ equals the true number
of clusters K.

To generate simulated weighted networks from DCDFM, first, we need to define
n, K, θ, Z, and P. For n, unless specified, we let n = 50K. For Z, we let each node be-
long to one of the K clusters with equal probability, i.e., there are around 50 nodes in
each cluster. For θ, unless specified, we let θi = rand(1)

√
ρ, where the positive number

ρ controls network sparsity and rand(1) is a random number drawn from the uniform
distribution in the interval (0, 1). We set n, K, P, and ρ independently for each simula-
tion. After setting these model parameters, we generate A under DCDFM for several
distributions F satisfying Equation (1). For our nDFAwm, we set Kc = 20 since the
largest K in our simulations is six. In this paper, we consider Bernoulli, binomial, Pois-
son, geometrical, exponential, normal, laplace, and uniform distributions, where details
on probability mass function or probability density function of these distributions can
be found in http://www.stat.rice.edu/~dobelman/courses/texts/distributions.c&b.pdf
(accessed on 9 November 2022). Meanwhile, we also consider the signed network case in
our simulation studies.

3.1.1. Bernoulli Distribution

When F is Bernoulli distribution such that Aij∼Bernoulli(Ωij), i.e., Aij ∈ {0, 1} for
i, j ∈ [n] and DCDFM reduces to DCSBM for this case. By the property of Bernoulli
distribution, E[Aij] = Ωij satisfies Equation (1) and Ωij is a probability ranging in [0, 1]. So,
ρ’s range is (0, 1], and all elements of P should be non-negative. For Bernoulli distribution,
we consider the following simulations.

Experiment 1 (a): changing ρ. Let K = 3 and P be

P =

 1 0.2 0.3
0.2 0.8 0.2
0.3 0.2 0.9

.

http://www.stat.rice.edu/~dobelman/courses/texts/distributions.c&b.pdf
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Let ρ range in {0.2, 0.3, . . . , 1}.
Experiment 1 (b): changing K. Let P’s diagonal entries be 1 and off-diagonal

entries be 0.2. Let ρ = 0.9 and K range in {2, 3, . . . , 6}.
Experiment 1 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in

{0.1, 0.2, . . . , 1}.
Experiment 1 (d): connectivity across communities. Let K = 2, ρ = 1, P’s

diagonal entries be 1, P’s off-diagonal entries be β, and β range in {0.1, 0.2, . . . , 0.8}.
Figure 1 shows the accuracy rate of Experiment 1. Panel (a) of Figure 1 shows that as

the network becomes denser, all methods provide more accurate estimations of the number
of clusters. For Experiment 1 (a), all methods perform similarly. For Experiment 1 (b),
from panel (b) of Figure 1, we see that our nDFAwm performs the best. From panel (c) of
Figure 1, we see that our nDFAwm performs poorer than NB and BHac while ME fails to
work. Meanwhile, except ME, all methods perform better as the network becomes denser
for Experiment 1 (c). From panel (d) of Figure 1, we see that all methods perform poorer as
the off-diagonal entries of P are closer to the diagonal entries and our nDFAwm performs
slightly poorer than ME while it outperforms NB and BHac.
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Figure 1. Bernoulli distribution.

3.1.2. Binomial Distribution

When F is binomial distribution such that Aij∼Binomial(m,
Ωij
m ) for any positive

integer m, i.e., Aij ∈ {0, 1, 2, . . . , m} for i, j ∈ [n]. By the property of binomial distribution,

E[Aij] = Ωij satisfies Equation (1) and
Ωij
m is a probability ranging in [0, 1]. So, ρ’s range is

(0, m] and all elements of P should be non-negative.
Experiment 2 (a): changing ρ. Let K = 3, m = 5, and P be the same as that of

Experiment 1 (a). Let ρ range in {0.5, 1, . . . , 5}.
Experiment 2 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 2,

m = 5, and K range in {2, 3, . . . , 6}.
Experiment 2 (c): changing ρ when K = 1. Let K = 1, P = 1, m = 5, and ρ

range in {0.5, 1, . . . , 5}.
Experiment 2 (d): connectivity across communities. Let K = 2, ρ = 1, m = 5,

and P be the same as Experiment 1 (d).
Figure 2 shows the accuracy rate of Experiment 2. For Experiments 2 (a), 2 (b), and

2 (c), the results are similar to that of Experiments 1 (a), 1 (b), and 1 (c), respectively, and we
omit the analysis here. For Experiment 2 (d), panel (d) of Figure 2 says that our nDFAwm
perform similarly to NB and BHac while ME performs best.
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Figure 2. Binomial distribution.
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3.1.3. Poisson Distribution

When F is Poisson distribution such that Aij∼Poisson(Ωij), i.e., Aij is a non-negative
integer for i, j ∈ [n]. By the property of Poisson distribution, E[Aij] = Ωij satisfies
Equation (1) and Ωij is non-negative. So, ρ’s range is (0,+∞) and all elements of P should
be non-negative.

Experiment 3 (a): changing ρ. Let K = 3 and P be the same as that of Experi-
ment 1 (a). Let ρ range in {0.5, 1, . . . , 5}.

Experiment 3 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 2,
and K range in {2, 3, . . . , 6}.

Experiment 3 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in
{0.5, 1, . . . , 5}.

Experiment 3 (d): connectivity across communities. Let K = 2, ρ = 2, and P
be the same as Experiment 1 (d).

Figure 3 shows the accuracy rate of Experiment 3. The results are similar to that of
Experiment 2, and we omit the analysis here.
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Figure 3. Poisson distribution.

3.1.4. Geometric Distribution

When F is a geometric distribution such that Aij∼Geometric( 1
Ωij

), i.e., Aij is positive

integer for i, j ∈ [n]. For geometric distribution, since P(Aij = m) = 1
Ωij

(1− 1
Ωij

)m−1 for

m = 1, 2, . . . , and 0 < 1
Ωij
≤ 1, all elements of P must be positive. By the property of

geometric distribution, we have E[Aij] = Ωij satisfying Equation (1). For convenience,
we let θi =

√
ρ for i ∈ [n] to make DCDFM reduce to DFM for this case. Then, we have

Ω = ρZPZ′. Since Ωij ≥ 1 for i, j ∈ [n], we have ρmink,l∈[K]Pkl ≥ 1.
Experiment 4 (a): changing ρ. Let K = 3 and P be the same as that of Experi-

ment 1 (a). Let ρ range in {5, 6, . . . , 15}.
Experiment 4 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 10,

and K range in {2, 3, . . . , 6}.
Experiment 4 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in

{2, 4, . . . , 20}.
Experiment 4 (d): connectivity across communities. Let K = 2, ρ = 10, and P

be the same as Experiment 1 (d).
Figure 4 shows the accuracy rate of Experiment 4. Unlike Experiments 1–3, the numer-

ical results of Experiment 4 say that our nDFAwm successfully estimates the number of
communities for all cases while NB and BHac fail to work when the network is generated
from geometric distribution under the DCDFM model. For the method ME, it fails to work
when the true K is 1 and it performs similarly to our nDFAwm for other cases.
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Figure 4. Geometric distribution.
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3.1.5. Exponential Distribution

When F is a exponential distribution such that Aij∼Exponential( 1
Ωij

), i.e., Aij ∈ R+

for i, j ∈ [n]. For exponential distribution, since 1
Ωij

> 0, all elements of P must be positive

and ρ range in (0,+∞). By the property of exponential distribution, E[Aij] = Ωij satisfies
Equation (1).

Experiment 5 (a): changing ρ. Let K = 3 and P be the same as that of Experi-
ment 1 (a). Let ρ range in {1, 2, . . . , 10}.

Experiment 5 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 5,
and K range in {2, 3, . . . , 6}.

Experiment 5 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in
{1, 2, . . . , 10}.

Experiment 5 (d): connectivity across communities. Let K = 2, ρ = 5, and P
be the same as Experiment 1 (d).

Figure 5 shows the accuracy rate of Experiment 5. In general, we see that our nDFAwm
estimates K more accurately than its competitors except Experiment 5 (d) where ME
performs slightly better than our nDFAwm. From panels (a) and (c) of Figure 5, it is
interesting to find that NB and BHac perform poorer as ρ increases. Panels (b) and (d) of
Figure 5 say that NB and BHac fail to work for Experiments 5 (b) and 5 (d).
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Figure 5. Exponential distribution.

3.1.6. Normal Distribution

WhenF is normal distribution such that Aij∼Normal(Ωij, σ2), i.e., Aij ∈ R for i, j ∈ [n],
where Ω(i, j), σ2 are the expectation and variance terms of normal distribution, respectively.
By the property of normal distribution, E[Aij] = Ωij satisfies Equation (1) and all entries of
P are real values. So, ρ’s range is (0,+∞) and P’s elements can be negative.

Experiment 6 (a): changing ρ. Let K = 3, σ2 = 1, and P be

P =

 1 −0.2 −0.3
−0.2 0.8 0.2
−0.3 0.2 0.9

.

Let ρ range in {1, 2, . . . , 10}.
Experiment 6 (b): changing K. Let P be the same as Experiment 1 (b), σ2 = 1,

ρ = 3, and K range in {2, 3, . . . , 6}.
Experiment 6 (c): changing ρ when K = 1. Let K = 1, σ2 = 1, P = 1, and ρ

range in {0.5, 1, . . . , 10}.
Experiment 6 (d): connectivity across communities. Let K = 2, σ2 = 1, ρ = 2,

P’s diagonal entries be 1, P’s off-diagonal entries be β, and β range in {−0.5,−0.4, . . . , 0.9}.
Figure 6 shows the accuracy rate of Experiment 6. In general, we see that our nDFAwm

outperforms its competitors except for Experiment 6 (d) where it performs similarly to ME.
From panels (a), (b), and (d) of Figure 6, we see that NB and BHac fail to work. Panel (c) of
Figure 6 says that though NB and BHac perform poorer than our nDFAwm, they provide
more accurate estimations as ρ increases for Experiment 6 (c).
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Figure 6. Normal distribution.

3.1.7. Laplace Distribution

When F is laplace distribution such that Aij∼Laplace(Ωij, σ2

2 ), i.e., Aij ∈ R for i, j ∈ [n],
where Ω(i, j), σ2 are the expectation and variance terms of laplace distribution, respectively.
Similar to normal distribution, E[Aij] = Ωij satisfies Equation (1), all elements of P are real
values, and ρ’s range is (0,+∞).

Experiment 7 (a): changing ρ. Let K = 3, σ2 = 1, P be the same as Experiment
6 (a), and ρ range in {1, 2, . . . , 10}.

Experiment 7 (b): changing K. Let P be the same as Experiment 1 (b), σ2 = 1,
ρ = 3, and K range in {2, 3, . . . , 6}.

Experiment 7 (c): changing ρ when K = 1. Let K = 1, σ2 = 1, P = 1, and ρ
range in {0.5, 1, . . . , 10}.

Experiment 7 (d): connectivity across communities. Let K = 2, σ2 = 1, ρ = 2,
P’s diagonal entries be 1, P’s off-diagonal entries be β, and β range in {−0.5,−0.4, . . . , 0.9}.

Figure 7 displays the accuracy rate of Experiment 7. The numerical results are similar
to that of Experiment 6 and we omit the analysis here.
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Figure 7. Laplace distribution.

3.1.8. Uniform Distribution

When F is uniform distribution such that Aij∼Uniform(0, Ωij). For this case, E[Aij] =
Ωij satisfies Equation (1), all elements of P are non-negative, and ρ’s range is (0,+∞)
because Aij ∈ (0, maxi,j∈[n]Ωij) and it has no limitation on ρ as long as ρ is positive.

Experiment 8 (a): changing ρ. Let K = 3, P be the same as Experiment 1 (a),
and ρ range in {2, 4, . . . , 20}.

Experiment 8 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 0.3,
and K range in {2, 3, . . . , 6}.

Experiment 8 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in
{2, 4, . . . , 20}.

Experiment 8 (d): connectivity across communities. Let K = 2, ρ = 1, and P
be the same as Experiment 1 (d).

Figure 8 displays the accuracy rate of Experiment 8. We see that our approach nD-
FAwm outperforms its competitors in all cases except for Experiment 8 (d) where it performs
slightly poorer than ME. For ME method, it enjoys similar performances as our nDFAwm
for Experiments 8 (a), 8 (b), and 8 (d) while it fails to estimate the number of clusters when
the true K is 1. For NB and BHac, they perform poorer as ρ increases for Experiments 8 (a),
8 (c), and 8 (d). Meanwhile, NB and BHac fail to work for Experiment 8 (b).
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Figure 8. Uniform distribution.

3.1.9. Signed Networks

Let P(Aij = 1) =
1+Ωij

2 and P(Aij = −1) =
1−Ωij

2 such that A is the adjacency matrix
of a signed network. For this case, E[Aij] = Ωij satisfies Equation (1), all elements of P are
real values, and ρ’s range is (0, 1]. For signed networks, we let n = 100K, each node belong
to one of the K communities with equal probability, and θi =

√
ρ for i ∈ [n].

Experiment 9 (a): changing ρ. Let K = 3, P be the same as Experiment 6 (a),
and ρ range in {0.1, 0.2, . . . , 1}.

Experiment 9 (b): changing K. Let P be the same as Experiment 1 (b), ρ = 0.5,
and K range in {2, 3, . . . , 6}.

Experiment 9 (c): changing ρ when K = 1. Let K = 1, P = 1, and ρ range in
{0.1, 0.2, . . . , 1}.

Experiment 9 (d): connectivity across communities. Let K = 2, ρ = 0.5, P’s
diagonal entries be 1, P’s off-diagonal entries be β, and β range in {−0.5,−0.4, . . . , 0.9}.

Figure 9 displays the accuracy rate of Experiment 9. We see that our approach nD-
FAwm provides a more accurate estimation of the number of clusters than its competitors
except Experiment 9 (d) where it performs similarly to ME. For ME, it fails to work in
Experiments 9 (a) and 9 (c). For NB and BHac, they fail to estimate K except for Experiment
9 (c) where they have better estimations as ρ increases.
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Figure 9. Signed networks.

3.2. Real-World Networks

For real-world networks, we consider eight data sets in Table 1. The ground truth
numbers of communities of these eight networks are known and they provide a reason-
able baseline to compare estimators. The Karate club (weighted) network is a weighted
network with non-negative edge weights, the Gahuku-Gama subtribes is a signed net-
work, the Slovene Parliamentary Party network is a weighted network with positive
and negative edge weights, and the other five data sets are unweighted. For visual-
ization, Figure 10 displays adjacency matrices of weighted networks considered in this
paper. The Karate club (weighted) network can be downloaded from http://vlado.fmf.
uni-lj.si/pub/networks/data/ucinet/ucidata.htm#kazalo (accessed on 12 November 2022)
and it is the weighted version of the classical Karate club network. The Gahuku-Gama
subtribes network can be downloaded from http://konect.cc/networks/ucidata-gama/
(accessed on 12 November 2022) and its ground truth of node labels can be found in
Figure 9 (b) of [61]. The Slovene Parliamentary Party network can be downloaded
from http://vlado.fmf.uni-lj.si/pub/networks/data/soc/Samo/Stranke94.htm (accessed
on 12 November 2022). The other five data sets with ground truth of node labels can
be downloaded from http://www-personal.umich.edu/~mejn/netdata/ (accessed on

http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#kazalo
http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#kazalo
http://konect.cc/networks/ucidata-gama/
http://vlado.fmf.uni-lj.si/pub/networks/data/soc/Samo/Stranke94.htm
http://www-personal.umich.edu/~mejn/netdata/
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12 November 2022). In particular, for the Dolphins network, as analyzed in [62], both K = 2
or K = 4 are reasonable.
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Figure 10. Adjacency matrices of Karate club (weighted), Gahuku-Gama subtribes, and Slovene
Parliamentary Party network. (a) Karate club (weighted). (b) Gahuku-Gama subtribes. (c) Slovene
Parliamentary Party network.

Table 1. Comparison of estimated K in real-world networks.

Dataset Source n K Weighted? nDFAwm ME NB BHm BHa BHmc BHac

Karate club (weighted) [63] 34 2 Yes 2 2 4 4 4 4 4
Gahuku-Gama subtribes [64] 16 3 Yes 3 N/A 1 1 12 N/A 13

Slovene Parliamentary Party [65] 10 2 Yes 2 2 N/A N/A N/A N/A N/A
Dolphins [66] 62 2, 4 No 4 2 2 2 2 2 2

College football [67] 110 11 No 11 10 10 10 10 10 10
Karate club [63] 34 2 No 2 34 2 2 2 2 2

Political books [68] 105 3 No 4 2 3 3 4 4 4
Political blogs [69] 1222 2 No 2 2 7 7 7 8 8

For real-world networks, we compare our nDFAwm with the modularity eigengap
(ME) [60], NB [46], BHm [46], BHa [46], BHmc [46], and BHac [46]. For our nDFAwm, we
take Kc = n. Figure 11 displays the weighted modularity from Equation (2) by the nDFA
algorithm for different choices of the number of clusters and we can find the nDFAwm’s
estimated K of the eight real-world networks from Figure 11 directly. Table 1 shows
the estimated number of clusters for these networks. For all networks except for the
Political books network, our nDFAwm successfully determines the correct number of
communities. For the ME method, it estimates the correct K for Karate club (weighted),
Slovene Parliamentary Party Network, Dolphins, and Political blogs while it fails for
the other four networks. For NB and BHm methods, they only estimate K correctly for
Dolphins, Karate club, and Political books. For BHa, BHmc, and BHac, they only estimate
K successfully for Dolphins and Karate club. In particular, the non-backtracking method
and Bethe Hessian matrix-based methods proposed in [46] fail to estimate the number
of communities for the three real-world weighted networks in Table 1. As a result, our
nDFAwm outperforms its competitors in these real-world networks.
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Figure 11. Weighted modularity Q obtained from Equation (2) against the number of clusters by
the nDFA algorithm for real-world networks considered in this paper. (a) Karate club (weighted).
(b) Gahuku-Gama subtribes. (c) Slovene Parliamentary Party network. (d) Dolphins. (e) College
football. (f) Karate club. (g) Political books. (h) Political blogs.

4. Conclusions and Future Work

In this paper, we proposed a method for determining the number of communities
for weighted networks in DCDFM. The method is designed based on a combination
of weighted modularity and a spectral clustering algorithm. This estimation method
enables us to estimate the number of communities even in the case where there is only one
community in a weighted network generated by different distributions under DCDFM.
Through substantial computer-generated weighted networks from DCDFM and several real-
world networks, the numerical results show that the estimation accuracy of our approach
is better than its competitors and our method also works for signed networks.

There are some open questions. First, building a theoretical guarantee on the consis-
tency of our estimator for the true number of clusters under DCDFM is an attractive and
challenging task. Second, determining the exact condition under which estimating the
number of clusters is possible under DCDFM is a challenging problem. Third, in this paper,
we are mainly interested in DCDFM for non-overlapping weighted networks, but the idea
can be extended to overlapping weighted networks [70]. Fourth, in this paper, we estimate
the number of communities for weighted networks generated from DCDFM by Equation (3)
when we choose the methodM as the spectral method nDFA. If we letM be algorithms
developed in [48–54] to fit their weighted stochastic blockmodels for weighted networks,
we wonder that we can also estimate K for these models through Equation (3). We leave
them for the future.
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