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Abstract: As a promising information theory, reinforcement learning has gained much attention.
This paper researches a wind-storage cooperative decision-making strategy based on dueling double
deep Q-network (D3QN). Firstly, a new wind-storage cooperative model is proposed. Besides
wind farms, energy storage systems, and external power grids, demand response loads are also
considered, including residential price response loads and thermostatically controlled loads (TCLs).
Then, a novel wind-storage cooperative decision-making mechanism is proposed, which combines
the direct control of TCLs with the indirect control of residential price response loads. In addition,
a kind of deep reinforcement learning algorithm called D3QN is utilized to solve the wind-storage
cooperative decision-making problem. Finally, the numerical results verify the effectiveness of D3QN
for optimizing the decision-making strategy of a wind-storage cooperation system.

Keywords: wind farm; energy storage system; reinforcement learning; deep neural networks

1. Introduction

Since the beginning of the 21st century, higher requirements for energy conservation,
emission reduction, and sustainable development have been put forward as a result of the
increasing pressure from the use of global resources. Thus, clean energy has gained much
attention, which further accelerates the global energy transformation [1–3]. At present, the
commonly used clean energy sources include wind energy, solar energy, and tidal energy.
Among these clean energy sources, wind energy outperforms with its rich resources, low
cost, and relatively mature technology [4,5].

However, because of the great correlation between wind energy and environmental
information, its power generation is characterized by randomness, uncontrollability, and
volatility, which seriously affects the power balance and threatens the stable and safe
operation [6]. Equipping the wind farm with an energy storage system can alleviate the
above problems to a certain extent [7–10]. Therefore, how to realize a high-efficient wind-
storage cooperative decision-making is a key issue for promoting the full absorption of
wind energy [11,12].

Reinforcement learning, also known as a promising information theory, is a machine
learning method based on environmental feedback information [13,14]. Its decision theory
is very suitable for issues containing complex environments and multiple variables. At
present, some studies have proven the feasibility and effectiveness of the energy allocation
strategy using reinforcement learning in the field of power system, such as load frequency
control on the generation side and market competition strategy [15–18].

Despite several works that have proposed reinforcement learning methods for wind-
storage cooperative decision-making, some issues still exist, as follows:

(1) The flexible loads embedded in the wind-storage cooperative framework have not
been developed sufficiently in the existing literature. In [11,19–21], the authors did not
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focus on the favorable effect of the flexible loads in the proposed wind-storage model. As
an example, flexible loads were considered in [22], where the benefits from the suitable
management of demand-side flexible loads were validated. However, the detailed formula
for when the load in the price response load model should be shifted was not given.

(2) The exploration of reinforcement learning methods for wind-storage cooperative
decision-making needs to be enhanced. In [19,20,23,24], a deep Q-learning strategy was
considered in wind-storage systems. However, the main mechanism of the deep Q-learning
strategy is to select the actions that can obtain the maximum benefits according to the Q
values, which are constructed by the state and action. It has been reported that using the
same networks to generate the Q values and its maximum estimated value will result in
the maximizing deviation issue, which tends to deteriorate the network accuracy.

Motivated by the above analysis, a novel wind-storage cooperative decision-making
model including demand-side flexible loads is developed in this paper, which compre-
hensively considers the direct or indirect control of various power components, improves
the reasonable allocation ability of the energy controller, and enhances the economy and
stability of the power grid. Moreover, in order to tackle the defects of the traditional deep Q-
learning method, the dueling double deep Q-network (D3QN), which is constructed by two
networks (the evaluation network and target network), is developed for the wind-storage
cooperative decision-making control mechanism in this study.

The remainder of this study is organized as follows: wind-storage cooperative model
and D3QN are presented in Section 2. In Section 3, the wind-storage cooperative decision-
making algorithm using D3QN is presented. The algorithm evaluation details and the
numerical results are presented in Sections 4 and 5. Section 6 presents the conclusions.

2. Wind-Storage Cooperative Model and D3QN
2.1. Wind-Storage Cooperative Decision-Making Model

This study mainly focusses on a wind-storage cooperative model, including wind
turbines and energy storage systems, which also is connected to the external power grid.

The architecture of the wind-storage cooperative model is shown in Figure 1. Three
layers exist: the electricity layer, information layer, and signal layer. The electricity layer
includes a distributed energy resources (DER) based on wind power, an energy storage
system (ESS) for the storage and release of wind power energy, a group of thermostatically
controlled loads (TCLs), and a group of price responsive loads. The information layer is
composed of a two-way communication system between the external power grid, each
power module, and the energy controller (EC). Information such as electricity price, as well
as the battery charge and discharge status are transmitted in the information layer. The
signal layer transmits the control signals sent by the energy controller to each controllable
module. The whole system model has three direct control points, namely, the switch control
of TCLs, the charging and discharging control of ESS, and the trading control of energy on
the external power grid.

At the same time, the whole wind-storage cooperative model can also be regarded as a
multi-agent system. Each module in the system is regarded as an autonomous agent, which
can interact with the environment and other agents. Moreover, the simple or complex
behavior of each agent is controlled by its internal model. The models used in each module
of the whole wind-storage cooperation model will be introduced in detail below.

2.1.1. External Power Grid

Because of the intermittent and uncontrollable characteristics of DER, the use of DER
alone may not be able to balance the relationship between supply and demand in the power
grid. Therefore, the external power grid is considered as the regulatory reserve in this
system model. The external power grid can provide electric energy immediately when
the wind-storage energy is insufficient, and the external power grid can also accept the
excess electricity when the wind energy is in surplus. The transaction price is defined by
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the real-time price in the power market. The market prices are expressed as (Pu
t , Pd

t ), where
Pu

t and Pd
t represent the increased and decreased price, respectively.
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Figure 1. Wind-storage cooperative model.

2.1.2. Distributed Energy Module

Wind turbines are considered as the distributed energy equipment in this study.
Specifically, actual wind data from a wind farm in Finland [25] are directly used to construct
the model of DER. DER shares the currently generated electric energy information Gt with
the energy controller.

2.1.3. Energy Storage System Module

In order to reasonably optimize the allocation of energy and reduce the cost of energy
consumption, this study uses the community energy storage system, rather than a separate
household storage battery. As a centralized independent energy storage power station
invested by a third party, the community energy storage system can integrate and optimize
the allocation of the dispersed energy storage resources from the power grid side, power
supply side, and user side.

For each time step t, the dynamic model of ESS is defined as follows [26]:

Bt = Bt−1 + ηcCt −
Dt

ηd
(1)

where Bt ∈ [0, Bmax] is the electric energy stored by ESS at time t, and Bmax is the maximum
storage capacity of ESS. ηc and ηd are the charging and discharging efficiency coefficients of
energy storage equipment, respectively, and (ηc, ηd ) ∈ (0, 1]2. The variables Ct ∈ [0, Cmax]
and Dt ∈ [0, Dmax] represent charge and discharge power, respectively, which are limited
by the maximum charge and discharge rate Cmax and Dmax of ESS, respectively.

The state-of-charge variable of ESS is defined as BEC:

BECt =
Bt

Bmax
× 100% (2)

When the energy controller releases the charging signal, ESS obtains the current
electricity stored in the battery and verifies the feasibility of the charging operation by
referring to the maximum storage capacity Bmax and the maximum charging rate Cmax.



Entropy 2023, 25, 546 4 of 23

Then, ESS stores the corresponding electricity according to the actual situation and the
remaining excessive electricity will be sold to the external power grid. When ESS receives
the discharge signal, it verifies the relevant conditions again to judge the operational
feasibility and provides the electricity accordingly. If ESS cannot fully provide the requested
electricity, the insufficient part will be automatically provided by the external power grid,
and the agent will need to pay the relevant costs.

2.1.4. Thermostatically Controllable Load

Thermostatically controllable loads (TCLs) are characterized by their large size, flexible
control, and energy conservation. In this study, it is assumed that the vast majority of
households are equipped with TCLs, such as air conditioners, water heaters, and refrig-
erators. These TCLs can be directly controlled in each time unit t and the control signal
comes from the TCL aggregator. As EC directly controls TCL equipment, this study defines
that TCL will only be charged for power generation costs Cgen in order to compensate TCL
users. To maintain the comfort of users, each TCL is equipped with a backup controller,
which can keep the temperature within an acceptable range. The backup controller receives
the on/off operation ui

t from the TCL aggregator and modifies its action by verifying the
temperature constraints. The specific definitions are as follows:

ui
b,t =


0 i f Ti

t > Ti
max

ui
t i f Ti

min < Ti
t < Ti

max
1 i f Ti

t < Ti
min

(3)

where ui
b,t is the on/off action of the ith TCL backup controller at t, Ti

t is the operating
temperature of the ith TCL at t, and Ti

max and Ti
min are the upper and lower temperature

boundaries set by the client, respectively. The differential equation of the temperature
change in the building is designed as follows [27]:

.
T

i
t =

1
Ci

a
(T0

t − Ti
t ) +

1
Ci

m
(Ti

m,t − Ti
t ) + Li

TCLui
b,t + qi (4)

.
T

i
m,t =

1
Ci

m
(Ti

t − Ti
m,t) (5)

where Ti
t , Ti

m,t, and T0
t are the indoor air temperature, indoor solid temperature, and

outdoor air temperature at t, respectively, Ci
a and Ci

m are expressed as the equivalent heat
capacity of indoor air and solid, respectively, qi is the thermal power provided by indoor
temperature control equipment, and Li

TCL is the rated power of TCL.
Finally, the state of charge (SoC) is used to represent the relative position of the current

temperature Ti
t within the expected temperature range. The SoC of each TCL at t is defined

as follows:

SoCi
t =

(Ti
t − Ti

min)

(Ti
max − Ti

min )
(6)

2.1.5. Resident Price Response Load

Some power demands exist from household that the energy controller cannot directly
control in the residential load [28]. This study assumes that the daily electricity consumption
of residents is composed of the daily basic electricity consumption and the flexible load
affected by the electricity price. The flexible load can operate in advance or later within the
acceptable time range and can be transferred according to the power generation situation of
DER, such that the resource utilization rate can be improved and the household electricity
expenditure can also be reduced. In this module, each household i has a sensitivity factor
βi ∈ (0, 1) and a patience parameter λi, in which the sensitivity factor β represents the
percentage of load that can be operated in advance or later when the price decreases or
increases, and the patience parameter λ represents the hours to repay the transferred load.
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For example, when the electricity price is high, this part of the load can be cut now and
operated after λi.

At t, the load Li
t of household i is modeled by the following formula:

Li
t = Lb,t − SLi

t + PBi
t (7)

SLi
t = Lb,t ∗ βi ∗ δt (8)

where Lb,t represents the daily basic load of residents, Lb,t > 0, and Lb,t follows the daily
consumption pattern, which can be inferred from the average daily consumption curve of
residential areas. SLi

t is the shift load (SL) defined by (8), where δt represents the electricity
price level at t. Therefore, SLi

t is positive when the price is high, i.e., δt > 0, then SLi
t > 0,

and when the price is low, i.e., δt < 0, then SLi
t < 0. The positive transfer load will be

repaid after a certain period of time λ. The negative transfer load is the electricity provided
in advance, so it will exist in the future. The loads to be compensated can be formulated
as follows:

PBi
t =

t−1

∑
j=0

ωi,j ∗ SLi
j (9)

where ωi,j ∈ {0, 1} represents the compensation degree for the transferred load at j. Gener-
ally, the closer t minus j is to λi, the higher ωi,j is. In addition, the compensation action also
should be related to the electricity price, i.e., ωi,j becomes smaller when δt > 0. Therefore,
ωi,j can be designed as follows:

ωi,j = clip

(
−δt ∗ sign(SLi

j)

2
+

t− j
λi

, 0, 1

)
(10)

clip(X, a, b) =


a i f X < a
X i f a ≤ X ≤ b
b i f X > b

(11)

Given (10), when δt > 0, one can obtain SLi
t > 0 and sign(SLi

j) > 0, then
−δt∗sign(SLi

j)

2 < 0,
which means that ωi,j becomes smaller and the positive transfer load almost cannot be
compensated in the case of a high price [29,30].

2.1.6. Energy Controller

In this study, EC can extract the information provided by different modules and the
observable environment to determine the best supply and demand balance strategy. EC
mainly manages the power grid through four control mechanisms, as shown in Figure 2,
including TCL direct control, price level control, energy deficiency action, and energy
excess action.

(1) TCL direct control

At each time step t, EC will allocate a certain amount of electric energy for TCLs. Then,
they will be distributed to each TCL through a TCL aggregator. The TCL aggregator judges
the priority of energy distribution according to the power delivered by EC and the SoC of
each TCL, and then determines the on/off action of each TCL: TCL with a lower SoC has a
higher priority in energy allocation than TCL with a higher SoC. The TCL aggregator also
operates as an information aggregator transmitting the real-time average SoC information
of the TCL cluster to EC [31]. The specific transmission process is shown in Figure 3.
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(2) Price level control

In order to effectively utilize the elastic benefits of the residential price response load,
EC must determine the electricity price level δt at each time step t. In order to ensure
the competitiveness of the system model proposed in this paper, a pricing mechanism is
designed: The price can fluctuate around the median value, but the average price of the
daily electricity price Pavg cannot exceed 2.9% of the market electricity price provided by
power retailers [32]. From a practical point of view, the electricity price at the DR side is
discrete, and its fluctuation is affected by the electricity price level δt. So, the real-time
electricity price is selected from five values:

Pt ∈ (Pmarket + δt ∗ cst) (12)

where δt ∈ {−2,−1, 0, 1, 2}, cst is the constant to determine the specific increment or
reduction in electricity price.

In addition, the model also pays attention to the electricity price level δt at each
moment. When the sum of the previous electricity price levels is higher than the set
threshold, the market electricity price is adjusted to Pmarket instead of the price given by the
agent. The effective electricity price level δt,e f f is defined as follows:

δt,e f f =


δt i f

t
∑

j=0
δt ≤ threshold

0 i f
t

∑
j=0

δt > threshold
(13)

(3) Energy deficiency action



Entropy 2023, 25, 546 7 of 23

When the power generated from DER cannot meet the power demand, EC can dispatch
the energy stored in ESS or purchase energy from an external power grid. EC will determine
the energy priority between ESS and an external power grid. In addition, if the high priority
energy is ESS but the electricity stored in ESS cannot meet the power demand, the remaining
power will be automatically supplied by an external power grid.

(4) Energy excess action

When the electricity generated by local DER exceeds the electricity demand, the excess
electricity must be stored in ESS or be sold to an external power grid. In this case, EC also
will determine the priority between ESS and the external power grid. If ESS is the preferred
option and it has reached the max capacity, the remaining electricity will be automatically
transmitted to an external power grid.

2.2. D3QN

In this section, the basic principle of DQN (deep Q-network) and SARSA
(state−action−reward−state−action) is presented first.

The train mechanism of DQN can be formulated as follows:

Qk+1(s, a) = Qk(s, a) + αEk (14)

Ek = R + γargmaxa′Q(s′, a′)−Q(s, a) (15)

Using (14), one can find that the update iteration needs to achieve the approxi-
mation of the action-value function value (i.e., Qk+1(s, a) = Qk(s, a)), which means
R + γargmaxa′Q(s′, a′)−Q(s, a)→ 0 . Thus, the DQN network parameters can be up-
dated by minimizing the mean square error loss function in the DQN algorithm.

The difference in the SARSA algorithm lies in how the Q value is updated. Specifically,
when the agent with the SARSA algorithm is in the state s, it selects the action a according
to the ε− greedy, and then observes the next state s′ from the environment, and selects the
action a′ again. The sequence {s, a, r, s′, a′} is stored in the empirical replay set, and the
calculation of the target Q value also depends on it. The core idea of the SARSA algorithm
can be simplified as follows:

Q(s, a)← Q(s, a) + α[R + γargmaxa′Q(s′, a′)−Q(s, a)] (16)

In the existing study, DQN and SARSA have been developed for the wind-storage
cooperative decision-making algorithm. However, both DQN and SARSA use Q(s, a) and
maxQ(s′, a′) produced by the same network to update the Q network parameter ω, which
leads to the variation in the timing difference goal and a reduction in the convergence
performance. Therefore, in view of the above possible problems, this paper uses the
D3QN algorithm to optimize the model decision. The specific improvements are collected
as follows:

(1) Referring to the double DQN (DDQN) algorithm, two neural networks with
the same structure are constructed as the estimation network Q(s, a, ω) and the target
network Q′(s, a, ω′), respectively. The estimation network is used to select the action
corresponding to the maximum Q value, and its network parameters are constantly updated.
The target network is used to calculate the target value y, and its network parameters are
fixed, but they are updated by using the current estimated network parameters value at
regular intervals. The parameters in the target network are fixed for a period of time,
which makes the convergence target of the estimated network relatively fixed, which is
beneficial to the convergence of the algorithm model, and also avoids the agent selecting
the overestimated suboptimal action. The overestimation problem of the DQN algorithm
can also be effectively solved.

(2) In this paper, the structure of the deep neural network is adjusted. Referring to
dueling DQN based on competitive architecture, the main output is divided into two parts:
one part is the state-value function V(S, ω, α), which represents the current state; the other



Entropy 2023, 25, 546 8 of 23

part is the advantage function A(S, A, ω, β), which judges the additional value level of each
action for the current state. The neural network structure of DQN is shown in Figure 4, and
the neural network structure of D3QN is shown in Figure 5.
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Finally, the output of the Q network is obtained by the linear combination of the
output of the state-value function network and the advantage function network:

Q(S, A, ω, α, β) = V(S, ω, α) + A(S, A, ω, β) (17)

However, (17) cannot identify the respective functions of V(S, ω, α) and A(S, A, ω, β)
in the final output. In order to reflect this identifiability, the advantage function is generally
set as the single action advantage function minus the average value of all of the action
advantage functions in a certain state, so it can be modified as follows:

Q(S, A, ω, α, β) = V(S, ω, α)+

A(S, A, ω, β)− 1
A ∑

a′∈A
A(S, a′, ω, β) (18)

The flow chart of D3QN is shown in Figure 6:
In Figure 6, the D3QN algorithm stores the experience gained from the interaction

in the experience pool one by one. After a certain amount is accumulated, the model
randomly extracts a certain batch of data from the experience pool in each step to train
the neural network. These randomly extracted experiences break the correlation between
data, improve the generalization performance, and benefit from the stability of network
training. Meanwhile, in Figure 6, the D3QN algorithm constructs two neural networks with
the same structure, namely, the estimated network QE(S, A, ω, α, β) and the target network
QT(S, A, ω′, α′, β′). The estimated network is used to select the action and parameter ω
is updated constantly. The target network is used to calculate the temporal difference of
the target value. Parameter ω′ is fixed and replaced with the latest estimated network
parameter ω at regular intervals. ω′ remains unchanged for a period of time, resulting
in a relatively fixed convergence goal of the estimated network QE, which is beneficial
for convergence. The actions of the maximum function generated by the estimated net-
work and the target network are not necessarily the same. Using QE to generate actions
and QT to calculate the target value can prevent the model from selecting the overesti-
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mated sub-optimal actions and can effectively solve the overestimation problem of the
DQN algorithm.
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3. Wind-Storage Cooperative Decision-Making Based on D3QN

In this section, wind-storage cooperative model will be converted into a discrete
Markov decision-making process (MDP). According to the reinforcement learning mech-
anism, the one-day state of the model is discretized into 24 states. In addition, the MDP
in this paper takes the online environmental information as the state space, the set of
command actions executed by the energy controller as the action space, and the income
of electricity sellers as the reward function. The interaction process between the energy
controller and the system power environment is shown in Figure 7.

3.1. State Space

The state space is composed of the information that the agent needs to use when
making decisions at each time step t, including the controllable state component SC, the
external state component SX , and the time-dependent component ST . The controllable state
information includes all environmental variables that the agent can directly or indirectly
affect. In this study, the controllable state information is composed of TCL’s average SoC,
ESS’s charge and discharge state BSCt, and the pricing counter Cb

t [33]. The external state
information consists of all variables, such as the temperature information Tt, the wind
power generation Gt, and the electricity price Pu

t . When the algorithm is implemented,
the external state information directly uses the real data set, so it is assumed that the
controller can accurately predict the values of three variables in the next moment. The
time-dependent component information includes the information strongly related to time
in the model, where Lb,t represents the current load value based on the daily consumption
mode, and t represents the hours of the day.

The state space is expressed as follows:

st ∈ S = SC × SX × ST (19)

st = [SoCt, BSCt, Cb
t , Tt, Gt, Pu

t , Lb,t, t] (20)

In the implementation process, the electricity price is not given directly. Firstly, the
initial electricity price is set. When the price should be increased or decreased, the pricing
counter Cb

t will be added or subtracted by 1. Then, the electricity price becomes the initial
price plus the product between Cb

t and the unit electricity price.



Entropy 2023, 25, 546 10 of 23

Entropy 2023, 25, x FOR PEER REVIEW 10 of 25 
 

 

network 
' ' '( , , , , )TQ S A    . The estimated network is used to select the action and pa-

rameter   is updated constantly. The target network is used to calculate the temporal 

difference of the target value. Parameter '  is fixed and replaced with the latest esti-

mated network parameter   at regular intervals. '  remains unchanged for a period of 

time, resulting in a relatively fixed convergence goal of the estimated network 
EQ , which 

is beneficial for convergence. The actions of the maximum function generated by the esti-

mated network and the target network are not necessarily the same. Using 
EQ  to gener-

ate actions and 
TQ  to calculate the target value can prevent the model from selecting the 

overestimated sub-optimal actions and can effectively solve the overestimation problem 

of the DQN algorithm. 

3. Wind-Storage Cooperative Decision-Making based on D3QN 

In this section, wind-storage cooperative model will be converted into a discrete Mar-

kov decision-making process (MDP). According to the reinforcement learning mecha-

nism, the one-day state of the model is discretized into 24 states. In addition, the MDP in 

this paper takes the online environmental information as the state space, the set of com-

mand actions executed by the energy controller as the action space, and the income of 

electricity sellers as the reward function. The interaction process between the energy con-

troller and the system power environment is shown in Figure 7. 

 

Figure 7. Interaction process between the energy controller and the system environment. 

3.1. State Space 

The state space is composed of the information that the agent needs to use when 

making decisions at each time step t , including the controllable state component CS , the 

external state component XS , and the time-dependent component TS . The controllable 

                 

       

           

      

      

     

          

        

                 

   

Figure 7. Interaction process between the energy controller and the system environment.

3.2. Action Space

The action space consists of four parts: TCL action space Atcl , price action space AP,
energy shortage action space AD, and energy excess action space AE. Among them, the
TCL action space consists of four possible actions. The price action space consists of five
possible actions. There are two possible actions in the energy shortage and excess action
space, that is, the priority between ESS and the external power grid. Therefore, the whole
action space contains 80 potential combinations of these actions, which can be expressed
as follows:

at = (atcl , aP, aD, aE)t (21)

at ∈ A = Atcl × AP × AD × AE (22)

3.3. Reward Function and Penalty Function

The main form of deep reinforcement learning (DRL) to solve problems is to maximize
the reward function. The purpose of using DRL in this paper is to maximize the economic
profits of the electricity sellers. Thus, the reward value can be selected as the operating
gross profit, i.e., the income from selling electricity to the demand-side and the external
power grid minus the cost of wind power generation and purchasing electricity from an
external power grid. Therefore, the reward function Rt and penalty function Costst are
defined as follows:

Rt = Revt − Costst (23)

Revt = Pt ∑
loads

Li
t + Cgen ∑

TCLs
Li

TCLui
b,t + Pd

t Es
t (24)

Costst = CgenGt + (Pu
t + Ctrimp)EP

t + Ctrexp ES
t (25)

where Cgen is the energy price charged to TCL, and it is also the cost of wind power
generation. Gt refers to the wind power generation amount. Pd

t and Pu
t are the decreased

price and increased price respectively, i.e., the energy price sold to or purchased from an
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external power grid [25]. ES
t and EP

t are the amount of energy sold to or purchased from an
external power grid, respectively. Ctrimp and Ctrexp are the power transmission costs from
the interaction with the external power grid.

4. Implementation Details

Before the algorithm evaluation, implementation details are given in this section.
The computer configuration and environment configuration are collected as Widows11,

python3.8, tensorflow1.14; CPU is AMD R7-5800H; GPU is RTX3060; and the memory is
16 GB.

The network structure of the DQN and SARSA algorithms consists of an input layer,
two fully connected hidden layers, and an output layer. The activation function of neurons
is the ReLU function. In addition, in order to prevent the phenomenon of over fitting after
model training, this paper applies the dropout section for neural network training. The
number of neurons in the network input layer is the same as the dimension of the system
state space, and the number of neurons in the output layer is the same as the dimension of
the system action space. The D3QN algorithm adds a competitive network to the structure
of the first two algorithms, diverting the abstract value obtained from the full connection
layer into two branches. The upper path is the state value function V(s), which represents
the value of the state environment itself, and the lower path is the state dependent action
advantage function A(s, a), which represents the additional value brought by selecting
an action in the current state. Finally, these two paths are aggregated to obtain the Q
value of each action. This competitive structure can theoretically learn the value of the
environmental state without the influence of action, making the practice effect better.

In the training process of the neural network, the discarding rate in dropout is 70%,
the sample storage capacity of experience playback set is 500, the scale batch used for each
small batch is 200, the reward attenuation coefficient is 0.9, and the target network update
interval N is 200. The detailed network structure diagrams of DQN, SARSA, and D3QN
are shown in Figures 8 and 9.
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Figure 8. Network structure diagram of the DQN algorithm and SARSA algorithm.
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Figure 9. Network structure diagram of the D3QN algorithm.

The proposed decision-making algorithm will be deployed in the cloud server for
real-world applications. Generally, the cloud sever possesses enough computational power
to execute the DL-based methods.

5. Algorithm Evaluation

In this section, the simulation evaluation is presented to validate the proposed control
mechanism. This paper selects the wind power data of a wind farm in Finland. In the
wind-storage cooperative model, the control cycle of ESS is 1 day, i.e., 24 intervals. In
addition, the parameters involved in the whole system model are summarized in Table 1.

Table 1. Parameters in the system model.

Parameter Value

ESS

ηc 0.9
ηd 0.9

Cmax 250 kW
Dmax 250 kW
Bmax 500 kWh

DER

Gt 1% of the hourly wind power generation (kW)
Cgen 32 €/MW

Power grid

Pd
t Reduced electricity prices

Pu
t Increased electricity prices

Ctrimp 9.7 €/MW
Ctrexp 0.9 €/MW
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Table 1. Cont.

Parameter Value

TCL

Ntcls 100 (Number of TCL)
T0

t Outdoor temperature hourly
Ci

a N (0.004, 0.0008)
Ci

m N (0.3, 0.004)
qi N (0, 0.01)

Li
TCL N (1.5, 0.01) (kW)

Ti
min 19

Ti
max 35

Load

NL 150
NL Basic load of residents
λi N (10, 6) (kW)
βi N (0.4, 0.3)

Other parameters

D 24
δt {−2,−1,0,1,2}
cst 1.5

threshold 4
Pmarket 5.48 €/kW

Parameters involved in the algorithm

NA 80
Atcl {0,50,100,150}
AP {−2,−1,0,1,2}
AD {ESS,Grid}
AE {ESS,Grid}
γ 0.9
t 1 h

5.1. Comparisons of Training Results
5.1.1. Penalty Value Curve

The penalty value is composed of the cost of wind power generation, the purchas-
ing power from the external power grid, and power transaction. Figure 10 shows the
total cost paid by the wind power producers in each training cycle (episode) during the
learning process. The penalty value decreases with the increase in training times and it
gradually converges.

It can be seen that the convergence performance of D3QN is superior to its rivals.
Although the penalty value using DQN shows a downward and gradual convergence
trend, it still vibrates obviously, which is caused by the defects of DQN. D3QN uses two
Q networks to calculate the target Q value and the estimated Q value, respectively, which
directly reduces the correlation and greatly improves the convergence performance.

5.1.2. Reward Value Curve

Figure 11 shows the reward value curve during the training process, i.e., the income
obtained by the wind farm from the external environment in the operation. The specific
training time, final reward mean value, and performance improvement rate between the
three algorithms are summarized in Table 2. It can be seen that the final reward value of
D3QN is higher than that of the other two algorithms, so the overall performance of the
system model based on D3QN has been improved.
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Table 2. Training results between three algorithms.

Algorithm Training Time (s) Average Value of
Final Reward

Performance
Improvement Rate

DQN 196.0111 1.2443 -
SARSA 415.5845 1.6239 30.5%
D3QN 244.1469 1.7909 43.93%

5.2. Comparison of Application Results
5.2.1. 10 Day Revenue Comparison

In order to give a more intuitive understanding of the performance difference for
DQN, SARSA, and D3QN, this section selects the data from 10 days in a year, and analyzes
the daily total profit obtained by the system model with the three algorithms, as shown in
Figure 12.
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It can be seen that the daily income using SARSA and D3QN is higher than that of
DQN within 10 days. Moreover, the total profit of D3QN is better than that of SARSA in 9
out of 10 days, which also validates the superiority of D3QN.

5.2.2. Daily Electricity Trading Comparison

This section will compare the behavior of the three algorithms in the specific one-
day. The one-day data of the environment is shown in Figure 13, including the outdoor
temperature, wind power generation, electricity prices, and residential load.
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Figure 15. TCLs status and power exchange using SARSA: (a) TCLs and (b) power exchange. 

 
(a) 

Figure 15. TCLs status and power exchange using SARSA: (a) TCLs and (b) power exchange.

Entropy 2023, 25, x FOR PEER REVIEW 21 of 25 
 

 

 
(b) 

Figure 15. TCLs status and power exchange using SARSA: (a) TCLs and (b) power exchange. 

 
(a) 

Figure 16. Cont.



Entropy 2023, 25, 546 20 of 23

Entropy 2023, 25, x FOR PEER REVIEW 22 of 25 
 

 

 
(b) 

Figure 16. TCLs status and power exchange using D3QN: (a) TCLs and (b) power exchange. 

In Figures 14–16, the SoC of TCLs reflects the change in indoor temperature for resi-

dents. This paper sets the constant temperature range of TCLs as 19~25 °C. When the 

charging state of TCLs is 0%, it means that the indoor temperature of residents is less than 

or equal to 19 °C; when the charging state is 100%, it means that the indoor temperature 

is greater than or equal to 25 °C. It can be seen that SARSA and D3QN can allocate suffi-

cient energy to TCLs when the wind power generation is sufficient, where its state can 

reach saturation as soon as possible, such that the system can keep the room temperature 

stable, and gives residents a warm and comfortable experience. In addition, SARSA selects 

multiple transactions to ensure the income, and D3QN decisively sells a large amount of 

power to obtain more income when wind energy is sufficient and the electricity price is 

the highest. 

5.2.3. Computational Efficiency Comparison 

In order to demonstrate the computational efficiency of the proposed D3QN, the 

training time, decision-making time, the number of trainable parameters, and perfor-

mance improvement rate are summarized in Table 3. It takes 196.0111 and 415.5845 s for 

DQN and SARSA to reach convergence, respectively, while the proposed D3QN takes 

244.1469 s. Furthermore, although D3QN possesses the largest number of trainable pa-

rameters, the decision-making time of D3QN is close to the other two algorithms, which 

demonstrates that D3QN can be implemented in real-world applications. From Table 3, 

one can conclude that the computational cost of D3QN is slightly larger than DQN and 

SARSA, which is still in an acceptable range. However, it should be noted that it is mainly 

because of many trainable parameters. Moreover, the performance improvement rate of 

D3QN is the biggest, which is an important criterion to evaluate different algorithms. Gen-

erally, it is worth increasing some computational complexity while the performance can 

gain enough improvement. 

  

Figure 16. TCLs status and power exchange using D3QN: (a) TCLs and (b) power exchange.

In Figures 14–16, the SoC of TCLs reflects the change in indoor temperature for
residents. This paper sets the constant temperature range of TCLs as 19~25 ◦C. When
the charging state of TCLs is 0%, it means that the indoor temperature of residents is
less than or equal to 19 ◦C; when the charging state is 100%, it means that the indoor
temperature is greater than or equal to 25 ◦C. It can be seen that SARSA and D3QN can
allocate sufficient energy to TCLs when the wind power generation is sufficient, where
its state can reach saturation as soon as possible, such that the system can keep the room
temperature stable, and gives residents a warm and comfortable experience. In addition,
SARSA selects multiple transactions to ensure the income, and D3QN decisively sells a
large amount of power to obtain more income when wind energy is sufficient and the
electricity price is the highest.

5.2.3. Computational Efficiency Comparison

In order to demonstrate the computational efficiency of the proposed D3QN, the
training time, decision-making time, the number of trainable parameters, and performance
improvement rate are summarized in Table 3. It takes 196.0111 and 415.5845 s for DQN
and SARSA to reach convergence, respectively, while the proposed D3QN takes 244.1469 s.
Furthermore, although D3QN possesses the largest number of trainable parameters, the
decision-making time of D3QN is close to the other two algorithms, which demonstrates
that D3QN can be implemented in real-world applications. From Table 3, one can conclude
that the computational cost of D3QN is slightly larger than DQN and SARSA, which is
still in an acceptable range. However, it should be noted that it is mainly because of
many trainable parameters. Moreover, the performance improvement rate of D3QN is
the biggest, which is an important criterion to evaluate different algorithms. Generally,
it is worth increasing some computational complexity while the performance can gain
enough improvement.
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Table 3. Computational efficiency comparison between three algorithms.

Algorithm Training Time (s) Decision-Making
Time (s)

The Number of
Trainable

Parameters

Performance
Improvement

Rate

DQN 196.0111 0.347 8980 -
SARSA 415.5845 0.354 19,080 30.5%
D3QN 244.1469 0.390 27,160 43.93%

6. Conclusions

Considering external conditions such as wind energy resources, demand response
load, and market electricity price, this paper puts forward a new research method of wind-
storage cooperative decision-making based on the DRL algorithm. The main work of this
paper is summarized as follows:

(1) This paper proposes a new wind-storage cooperative model. Based on the con-
ventional model including wind farms, energy storage systems, and external power grids,
this paper also takes into account a variety of flexible loads based on demand response,
including residential price response loads and thermostatically controllable loads (TCLs).
Meanwhile, this model also can be applied to other renewable energy sources, such as photo-
voltaic power generation, hydroelectric power generation, and thermal power generation.

(2) This paper proposes a new wind-storage cooperative decision-making mechanism
using D3QN, which takes the energy controller as the central allocation controller of the
system energy, realizing the direct control of TCLs and the indirect control of the residential
price response load, and the management of priority between ESS and the external power
grid in the case of sufficient or insufficient energy.

(3) It is worth mentioning that the application of the D3QN algorithm is a new attempt
in the research field of wind-storage cooperative decision-making. Based on the historical
data of wind farm and market electricity prices, the effectiveness of D3QN in dealing
with the wind-storage cooperative decision-making problem is verified, and the superior
performance of D3QN is also analyzed.
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