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Abstract: Combined cooling, heating, and power (CCHP) system is an effective solution to solve
energy and environmental problems. However, due to the demand-side load uncertainty, load-
prediction error, environmental change, and demand charge, the energy dispatch optimization of the
CCHP system is definitely a tough challenge. In view of this, this paper proposes a dispatch method
based on the deep reinforcement learning (DRL) algorithm, DoubleDQN, to generate an optimal
dispatch strategy for the CCHP system in the summer. By integrating DRL, this method does not
require any prediction information, and can adapt to the load uncertainty. The simulation result
shows that compared with strategies based on benchmark policies and DQN, the proposed dispatch
strategy not only well preserves the thermal comfort, but also reduces the total intra-month cost by
0.13~31.32%, of which the demand charge is reduced by 2.19~46.57%. In addition, this method is
proven to have the potential to be applied in the real world by testing under extended scenarios.

Keywords: deep reinforcement learning; DoubleDQN; CCHP system; energy dispatch; demand
charge; uncertainties

1. Introduction

The utilization of fossil fuels has caused environmental problems globally, such as air
pollution and climate warming [1]. At the same time, energy consumption rises instead
of falling with the rapid depletion of energy resources, of which about 40% is used for
the production of cool, heat, and electricity [2]. Compared with the traditional energy
supply system, the combined cooling, heating, and power (CCHP) system can promote the
coordinated operation of the above three kinds of energy, which provides an effective way
to solve environmental and energy problems with high energy efficiency. As a consequence,
CCHP systems have been widely used in residential and office buildings, and hospitals in
the past decade [3–5].

Although high energy efficiency has been verified in engineering applications, existing
CCHP systems usually suffer from high operating costs, especially in summer. For example,
Shanghai, a city in southern China, has a subtropical monsoon climate with outdoor
temperatures up to 39 ◦C in summer, so a large amount of electricity is required to provide
cooling to balance the demand-side user’s high cooling demand, which leads to the surge of
CCHP system’s energy purchasing cost. Therefore, it is very necessary to optimize existing
systems to achieve optimal economic operation in summer while meeting the demand-side
energy load.

In the related literature, there are many studies focusing on optimizing the dispatch
strategy of the CCHP system. Ref. [6] established a dispatch model of the CCHP system
with the optimization goal of energy cost and carbon emission, and solved it by CPLEX
solver. Ref. [7] established a two-stage dispatch model for the CCHP system based on
quantity adjustment and proposed an iterative solution algorithm. Ref. [8] proposed an
improved bee colony algorithm to solve the multi-objective dispatching model, so as to
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balance economic benefits and environmental friendliness. Ref. [9] built a load prediction
model using neural networks, and proposed a feed-forward active operation optimization
method considering load prediction for the CCHP system. Refs. [10–12] improved the
traditional electric load following strategy and thermal load following strategy to improve
the matching degree of energy output and demand. Ref. [13] used a genetic algorithm to
optimize the dispatch strategy of the CCHP system to minimize the energy cost under
different operating circumstances. In addition, because of human activities and outdoor
weather conditions, there are dynamic uncertainties in the demand-side load, which brings
a severe challenge to the energy dispatch of the CCHP system. To solve this problem, some
studies tried to optimize the CCHP system dispatch strategy using model predictive control
(MPC) [14–16] and robust optimization [17–19] separately, and the dispatch result showed
that high-quality optimization depended on the accuracy of prediction.

Although the above studies have laid the solid foundation for the optimal energy
dispatch of the CCHP system, the impact of demand charge on the operating cost is not
considered. According to surveys, the so-called demand charge is already common among
power industries in countries including China, the U.S, and Sweden, and is generally
charged based on the electricity customers’ monthly peak power demand to the grid,
that is, the peak electric power purchase (in kW) regardless of timing, rather than the
cumulatively purchased electricity (in kWh) [20,21]. Additionally, some studies suggest that
introducing demand charge into the utility rate has two potential benefits: (1) incentivizing
smarter demand-side management; (2) guaranteeing the stability of the grid, and avoiding
power accidents that may endanger public safety, such as large-scale blackouts [22,23].
The presence of demand charge further increases the difficulty of CCHP system energy
dispatching. Therefore, in view of the above two factors, this paper will achieve the optimal
economic operation of the CCHP system in summer under the rate structure including
time-of-use electricity price and demand charge.

On the other hand, the optimization methods applied in all the above study works can
be categorized as model-based methods. Although the model-based method well reflects
the thermodynamic performance of the CCHP system and the internal mechanism of
demand-side load variation, it relies on the expert experience of modeling or the prediction
information of future uncertainty, which is difficult to adapt to dynamic changes of the
actual environment. Once the operating status and structure of the CCHP system change
with time, the model-based method needs to remake the dispatch strategy, which increases
the computational burden and greatly reduces the decision-making efficiency. Besides, the
model-based method often suffers from a low intelligence level and a long solution time,
which cannot meet the requirements for real-time operation.

Therefore, in view of the above limitations, this paper introduces deep reinforcement
learning (DRL) into the CCHP system energy dispatching problem. DRL is an emerging
technique that has received extensive attention in recent years. With its strong perception
and decision-making ability, DRL not only ensures real-time requirements, but also pro-
vides a model-free optimization approach to generate adaptive strategies without prior
knowledge of the environment, avoiding drawbacks of the model-based method. In this
sense, the DRL-based method has more advantages.

Studies have demonstrated that DRL can be used to solve complex high-dimensional
control and optimization problems such as in robots [24], games [25], and traffic con-
trols [26]. In the field of energy dispatching, DRL-based methods have also attracted broad
attention. Ref. [27] proposed a microgrid energy management method based on a deep Q
network to achieve higher economic benefits under stochastic conditions. Ref. [28] achieved
the optimal control of the heating, ventilation, and air conditioning (HVAC) system using
deep deterministic policy gradient (DDPG) to reduce energy costs and thermal discomfort.
After improving the traditional DDPG algorithm, ref. [29] proposed a dynamic dispatch
method for an integrated energy system based on improved DDPG, and verified the superi-
ority of this method. Ref. [30] used DRL to optimize the electricity dispatch of an all-electric
ferry, so as to achieve the dual-objective optimization of energy cost and load expected
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loss. Ref. [31] developed a microgrid energy management method using proximal policy
optimization (PPO) to deal with the uncertainties of renewable energy. Ref. [32] developed
a CHP system dispatch method using PPO, efficiently handling the wind-turbine failure
without rewriting constraints. Although these study works have made significant contribu-
tions, they only considered a simple optimization objective of minimizing costs due to grid
exchange and power generation, ignoring the impact of the demand charge mechanism
and the control of peak exchanging power, which may result in an extra ultra-high cost. In
addition, there is not only no benchmark policy designed to further verify the superiority
and generalization of the proposed method, but also no comprehensive discussion of its
potential application in real scenarios from multiple aspects.

Therefore, motivated by the above problems, this paper aims to develop a DRL-based
energy dispatch method for the CCHP system to achieve optimal economic operation in
summer. The innovation and main contributions are summarized as follows:

• We focus on the energy dispatch for the CCHP system in summer (EDCS) and for-
mulate the EDSC problem as a Markov decision process (MDP), in which the load
uncertainty, energy cost, demand charge, and energy balance are considered.

• DRL algorithm DoubleDQN is used to solve the formulated MDP and make dispatch
strategies for the CCHP system. In contrast to previous study works, the proposed
method directly makes decisions based on the current state, getting rid of the depen-
dence on the accuracy of prediction information and model description.

• By comparing with the DQN-based method and benchmark policies, the advantages
of the proposed method in computational efficiency, total intra-month cost saving, and
peak power purchase control are verified.

• From the aspects of dealing with unseen physical environments, load fluctuation, and
sudden unit failure, the potential of application in real scenarios is discussed.

The rest of the paper is organized as follows. The EDCS problem is mathematically
formulated in Section 2; the proposed DRL-based method is introduced in Section 3; the
case study is given in Section 4; finally, the conclusion is drawn in Section 5.

2. EDCS Problem Formulation

EDCS problem aims to efficiently manage the energy output of the CCHP system, to
achieve optimal economic operation in summer. Therefore, this section first introduces a
typical CCHP system, then establishes mathematical models of its key units, and finally
designs the objective function and constraints of the EDCS problem.

2.1. System Description
2.1.1. Structure of CCHP System

Figure 1 shows a typical CCHP system, which consists of an internal combustion
engine (ICE), absorption chiller (AC), electric chiller (EC), cooling tower (CT), gas boiler
(GB), storage tank (ST) and auxiliary equipment (AE). The high-grade heat generated by
the burning of natural gas is used to drive ICE to produce electricity, and the low-grade
waste heat is used to produce cool through AC. If ICE fails to meet the electricity load, it
will be supplemented by the grid. The cooling load is mainly satisfied by EC and AC, and
the low-grade heat generated during the cooling process will be released through CT. The
heating load is mainly satisfied by GB. Insufficient heating and cooling energy are supplied
by ST, while the operation of this system is assisted by AE.

Additionally, the following assumptions are made for the typical CCHP system:
(1) Demand-side user is directly connected to the grid, and thus the electricity load

only consists of ECs, AEs, and CT.
(2) ICEs and ECs run at rated power.
(3) ICEs and ACs run in a one-to-one matching mode, meaning the number of running

ICEs is equal to the number of running ACs at each time step.



Entropy 2023, 25, 544 4 of 20Entropy 2023, 25, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. Structure and energy flow of the typical CCHP system. 

Additionally, the following assumptions are made for the typical CCHP system: 

(1) Demand-side user is directly connected to the grid, and thus the electricity load 

only consists of ECs, AEs, and CT. 

(2) ICEs and ECs run at rated power. 

(3) ICEs and ACs run in a one-to-one matching mode, meaning the number of run-

ning ICEs is equal to the number of running ACs at each time step. 

2.1.2. Mathematical Model of Key Unit 

Mathematical modeling is carried out for key units of the CCHP system under sum-

mer conditions, including ICE, AC, EC, ST, and AE: 

(1) ICE 

The ICE electric power output 𝑃𝐼𝐶𝐸(𝑡) (kW) at time step t is defined according to the 

following equation: 

𝑃𝐼𝐶𝐸(𝑡) = {
𝑃𝑟𝑎𝑡𝑒𝑑

𝐼𝐶𝐸 , 𝑖𝑓 ICE 𝑖𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

where, 𝑃𝑟𝑎𝑡𝑒𝑑
𝐼𝐶𝐸  is the rated electric power generation of ICE (kW). Then, the ICE gas con-

sumption 𝑉𝐼𝐶𝐸(𝑡) (m3/h) and the low-grade waste heat 𝑄𝑤𝑎𝑠𝑡𝑒 (kW) can be calculated as 

follows: 

𝑉𝐼𝐶𝐸(𝑡) =
𝑃𝐼𝐶𝐸(𝑡)

𝜂𝐼𝐶𝐸 ∙ 𝜀𝐿𝐻𝑉
 (2) 

𝑄𝑤𝑎𝑠𝑡𝑒(𝑡) = (
1 − 𝜂𝐼𝐶𝐸

𝜂𝐼𝐶𝐸
) ∙ 𝑃𝐼𝐶𝐸(𝑡) (3) 

where, 𝜂𝐼𝐶𝐸 is the electric efficiency of ICE and 𝜀𝐿𝐻𝑉 is the low calorific value of natural 

gas (kWh/m3). 

(2) AC 

The AC cooling output 𝑄𝐴𝐶(𝑡) (kW) at time step t is jointly decided by the absorbed 

waste heat 𝑄𝑤𝑎𝑠𝑡𝑒(𝑡) and the coefficient of performance 𝐶𝑂𝑃𝐴𝐶, that is: 

𝑄𝐴𝐶(𝑡) = 𝑄𝑤𝑎𝑠𝑡𝑒(𝑡) ∙ 𝐶𝑂𝑃𝐴𝐶 (4) 

(3) EC 

The EC cooling output 𝑄𝐸𝐶(𝑡) (kW) at time step t is defined according to the follow-

ing equation: 

Figure 1. Structure and energy flow of the typical CCHP system.

2.1.2. Mathematical Model of Key Unit

Mathematical modeling is carried out for key units of the CCHP system under summer
conditions, including ICE, AC, EC, ST, and AE:

(1) ICE
The ICE electric power output PICE(t) (kW) at time step t is defined according to the

following equation:

PICE(t) =
{

PICE
rated, i f ICE is running

0, otherwise
(1)

where, PICE
rated is the rated electric power generation of ICE (kW). Then, the ICE gas con-

sumption V ICE(t) (m3/h) and the low-grade waste heat Qwaste (kW) can be calculated
as follows:

V ICE(t) =
PICE(t)

ηICE·εLHV
(2)

Qwaste(t) =
(

1− ηICE
ηICE

)
·PICE(t) (3)

where, ηICE is the electric efficiency of ICE and εLHV is the low calorific value of natural
gas (kWh/m3).

(2) AC
The AC cooling output QAC(t) (kW) at time step t is jointly decided by the absorbed

waste heat Qwaste(t) and the coefficient of performance COPAC, that is:

QAC(t) = Qwaste(t)·COPAC (4)

(3) EC
The EC cooling output QEC(t) (kW) at time step t is defined according to the

following equation:

QEC(t) =
{

QEC
rated, i f EC is running

0, otherwise
(5)

where, QEC
rated is the rated cooling generation of EC (kW). Then, the EC electric power

consumption PEC
e (t) (kW) can be calculated as the following equation:

PEC
e (t) = QEC(t)/COPEC (6)

where, COPEC is the coefficient of performance of EC.
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(4) ST
The energy storage relationship of ST between adjacent time steps is defined as the

following equation:
EST(t) = EST(t− 1)−QST(t)·∆t (7)

where, ∆t (h) is the time step interval, EST(t) (kWh) and QST(t) (kW) are the remaining
energy storage and the storing (QST(t) < 0) or releasing (QST(t) ≥ 0) power of ST at time
step t, respectively.

(5) CT and AE
Since the running of CT and AE are closely related to the operating status of other

energy supply units, the electricity consumption of CT and AE is allocated to ECs, ACs,
ICEs, and ST for the convenience of calculation, where ICE and AC are allocated as a whole
because of the matching mode, that is:

PCT
e (t) + PAE

e (t) = PEC
e,a (t) + PICE&AC

e,a (t) + PST
e,a (t) (8)

PEC
e,a (t) =

{
αEC·

(
nEC(t)

)2
+ βEC·nEC(t) + γEC, i f nEC(t) > 0

0, otherwise
(9)

PICE&AC
e,a (t) =

{
αICE·

(
nICE(t)

)2
+ β ICE·nICE(t) + γICE, i f nICE(t) > 0

0, otherwise
(10)

PST
e,a (t) =

{
αST ·

(
QST(t)

)2
+ βST ·

(
QST(t)

)
+ γST , i f QST(t) > 0

0, otherwise
(11)

where, PCT
e (t) and PAE

e (t) are the electric power consumption (kW) of CT and AE, respec-
tively; PEC

e,a (t), PICE&AC
e,a (t) and PST

e,a (t) are the allocated electric power consumption (kW)
of ECs, ACs, ICEs and ST, respectively; nEC(t) and nICE(t) are the number of running ECs
and running ICEs, respectively; α, β, γ are the electric power consumption coefficients.

2.2. Objective Function

Specifically, the objective of EDCS is to minimize the total intra-month cost CCCHP
total

(RMB), which is composed of the total energy cost CECT
total (RMB) and the total demand charge

CDC
total (RMB), by optimally dispatching each unit of the CCHP system. So, the objective

function can be defined as follows:

min CCCHP
total = min

{
CECT

total + CDC
total

}
(12)

CECT
total can be calculated by:

CECT
total = ∑T

t=1 cECT
t = ∑T

t=1

(
µgas·∆t·∑nICE(t)

i=1 V ICE
i (t) +

({
µgrid(t)·Pgrid(t)·∆t, i f Pgrid(t) > 0

µsell ·Pgrid(t)·∆t, otherwise

))
(13)

where, T (h) is the total time steps in a dispatch period, cECT
t (RMB) is the energy costs

at time step t, V ICE
i (t) (m3/h) is the gas consumption of ith running ICE; µgas (RMB/m3),

µgrid(t) (RMB/kWh) and µsell (RMB/kWh) are the natural gas price, and the purchasing
and selling electricity price, respectively.

CDC
total is obtained according to [33], and can be calculated by:

CDC
total = µdemand·max1≤t≤T

{
max

(
Pgrid(t), 0

)}
(14)
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where, max1≤t≤T

{
max

(
Pgrid(t), 0

)}
(kW) is the peak electric power purchase in a dispatch

period, µdemand (RMB/kW) is the unit price of the demand charge. Further, to allocate CDC
total

to each time step [34], Equation (14) can be mathematically transformed into:

CDCS
total = ∑T

t=1 cDCS
t = µdemand·∑T

t=1

(
t

T − 1
·Ppeak

t − t− 1
T − 1

·Ppeak
t−1

)
(15)

Ppeak
t = max

{
Ppeak

t−1 , max
(

0, Pgrid(t)
)}

(16)

where, cDCS
t (RMB) is the demand charge at time step t; Ppeak

t is the peak electric power
purchase (kW) in the last t time steps and defines Ppeak

0 = 0.
Therefore, the EDCS problem objective function can be eventually expressed as:

min CCCHP
total = min

{
∑T

t=1(c
EC
t + cDCS

t )
}

(17)

2.3. Constraints
2.3.1. Energy balance Constraints

The energy balance constraints of the CCHP system under summer conditions can be
listed as follows.

Cooling balance:

∑nEC(t)
i=1 QEC

i (t) + ∑nICE(t)
i=1 QAC

i (t) + QST(t) = Qd(t) (18)

where, QEC
i (t) (kW) and QAC

i (t) (kW) are the cooling output of ith running EC and ith
running AC at time step t, respectively; Qd(t) is the cooling load (kW).

Electricity balance:

∑nICE(t)
i=1 PICE

i (t) + Pgrid(t) = Pd(t) = ∑nEC(t)
i=1 PEC

e,i (t) + PCT
e (t) + PAE

e (t) (19)

where, PICE
i (t) (kW) and PEC

e,i (t) (kW) are the electric power output and consumption of ith
running ICE and ith running EC, respectively; Pgrid(t) (kW) is the exchanging of electric
power with the grid, Pgrid(t) > 0, if power is purchased, otherwise Pgrid(t) ≤ 0; Pd(t) is
the electricity load (kW).

2.3.2. Operational Constraints

Besides energy balance constraints expressed in Equations (18) and (19), there are
some operational constraints for energy supply units of the CCHP system.

ECs, ICEs, and ACs are constrained by the quantity. Hence,

0 ≤ nEC(t) ≤ nEC
max (20)

0 ≤ nICE(t) ≤ nICE
max (21)

0 ≤ nAC(t) ≤ nAC
max (22)

where nEC
max, nICE

max and nAC
max are the maximum number of ECs, ICEs, and ACs, respectively.

ST is constrained by the capacity and the storing/releasing power. Hence,

0 ≤ EST(t) ≤ EST
rated (23)∣∣∣QST(t)

∣∣∣ ≤ QST
max (24)

where, QST
max is the maximum storing/releasing the power of ST; EST

rated is the rated capacity
of ST and defines EST(0) = 0.
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3. DRL-Based EDSC Method

Since the EDCS objective function designed in Section 2.2 is to determine the output
of energy supply units at each time step so as to minimize the total intra-month cost, the
EDCS problem is essentially a sequential decision-making problem. In this section, we first
convert the EDCS problem into a Markov decision process (MDP), in which the energy
balance constraints and operational constraints of the CCHP system are considered. And
the DRL algorithm is adopted to find the optimal strategy for this MDP.

3.1. Converting of EDCS Problem into MDP

An MDP is usually defined as a tuple 〈S, A, p, r〉, where S is the state space, A is the
action space, p is the state transition probability, r : S× A→ r is the reward function. The
agent observes the current environment state s ∈ S and chooses an action a ∈ A(s), where
A(s) represents the set of all admissible actions at state s [35].

In this paper, the CCHP system is the environment where the agent is located, and the
interaction between the agent and the environment is shown in Figure 2: at time step t, the
agent observes the environment state st, and generates an action at based on the policy π
(policy is a mapping from state s to action a, that is, a = π(s)) to make dispatch strategy so
as to determine the output of energy supply units.
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Next, we convert the EDCS problem into an MDP, and the fundamental elements of
which are defined as follows.

(1) State
At time step t, the environment state information for the agent includes physical time,

remaining ST storage, peak electric power purchase obtained so far, purchasing electricity
price, and cooling load. Among them, the cooling load is a state variable with uncertainty,
which can’t be controlled by the agent. Thus, the state st (5-dimension) is described as:

st =
[
t, EST(t), Ppeak

t−1 , µgrid(t), Qd(t)
]

(25)

(2) Action

The aim of the EDCS problem is to decide the electric power output (∑
nICE(t)
i=1 PICE

i (t) +

Pgrid(t)) and the cooling output (∑
nEC(t)
i=1 QEC

i (t)+∑
nAC(t)
i=1 QAC

i (t)+QST(t)) of CCHP system.

In fact, after nICE(t) is decided, ∑
nICE(t)
i=1 PICE

i (t) and ∑
nAC(t)
i=1 QAC

i (t) can be determined by

Equations (1) and (4), respectively; after nEC(t) is decided, ∑
nEC(t)
i=1 QEC

i (t) can be determined
by Equation (5). Further, QST(t) and Pgrid(t) can be calculated by Equations (18) and (19),
respectively. In other words, the output of other energy supply units can be obtained
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immediately after nEC(t) and nICE(t) are jointly decided. Therefore, the agent’s action at at
time step t can be represented by nEC(t) and nICE(t), that is:

at =
[
nEC(t), nICE(t)

]
(26)

where, at ∈ A, and A is the set of all admissible actions that satisfy the EDCS constraints.
According to Equations (20) and (21), [0, nEC

max] and [0, nICE
max] are the range of nEC(t) and

nICE(t), respectively.
(3) Reward function
According to the EDCS objective function and constraints, the goal of the agent is to

minimize the total cost which is composed of the energy cost and demand charge, while
balancing the supply and demand of energy. In order to achieve this goal, the reward rt
received by the agent consists of the above three parts, and can be defined as:

rt = −λ1·cEC(t) +
[
−λ2·cDC(t)− θ·max

(
0, Ppeak

t − εpeak

)]
− λ3·∆Qd(t) (27)

where, λ1, λ2 and λ3 are the weighting factors, ∆Qd(t) is the cooling error (kW) (that is, the
difference between supply and demand of cooling power); θ·max

(
0, Ppeak

t − εpeak

)
is the

extra penalty obtained when the peak power purchase Ppeak
t is larger than the threshold

εpeak. The setting of rt transfers the total intra-month cost minimization problem to the
reward maximization form of the MDP.

From the viewpoint of MDP, the quality of chosen action a at the given environment
state s can be evaluated by the state-action value function Qπ(s, a):

Qπ(s, a) = Eπ

[
∑T

k=0 τk·rt+k|st = s, at = a
]

(28)

where, τε[0, 1] is the discount factor used to balance the future reward and current re-
ceived reward [36], Eπ [·] is the reward expectation under the policy π. The aim of the
agent is to find an optimal policy π∗, so as to maximize the function Qπ(s, a), that is,
π∗ = argmaxa∈AQπ(s, a).

On the other hand, the above MDP doesn’t define the state transition probability p. With
a full knowledge of p, the model-based method can solve Eπ

[
∑T

k=0 τk·rt+k|st = s, at = a
]

(that is, the Qπ value of action a) through fully observing the environment [37]. However,
due to the influence of dynamic uncertainty factors such as human activity, environmental
weather, and unit failure, the establishment of p model becomes extremely difficult, which
makes the model-based method, not a suitable solution.

Therefore, in this paper, the model-free DRL-based method is used to solve the EDCS
problem under the MDP framework. By interacting with the environment, the DRL-based
method can incrementally improve its decision strategy without any information on state
transition probability p.

3.2. DRL Solution
3.2.1. A Brief Review of DRL

Reinforcement learning (RL) is a paradigm of machine learning. With the assistance of
the Q table, the RL algorithm can iteratively update the state-action value function based
on the reward function defined in MDP [38]:

Q(st, at) ← Q(st, at) + ψ·[r(st, at) + τ·maxa∈AQ(st+1, at+1)−Q(st, at)] (29)

where, ψε[0, 1] is the learning factor.
DRL is the combination of deep neural network (DNN) and RL [39], the essence

of which is to approximate Q(s, a) through the nonlinear function. When encountering
problems with large state space, DRL utilizes DNN as the regression tool, which solves the
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potential dimension-explosion problem of the RL algorithm caused by the establishment of
a huge Q table [40].

Additionally, DRL can be generally divided into the value-based DRL algorithm for dis-
crete action space and the policy-based DRL algorithm for continuous action space [37,41].
Since the action space defined in Equation (25) is discrete, the value-based DRL algorithm
is adopted to generate a dispatch strategy for the CCHP system.

3.2.2. Basic Principles of Value-Based DRL Algorithm

A general DNN structure for the value-based DRL algorithm is shown in Figure 3.
Specifically, DNN is used to evaluate the Q value of each potential action corresponding to
the state s, and the agent will select the action with the highest Q value.
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A deep Q network (DQN) is a representative value-based DRL algorithm [42], which
has two DNNs named Q network and the target network. The training objective of DQN is
to minimize the loss function L(ω):{

L(ω) = E[yt −Q(st, at; ω))]2

yt = rt + τ·maxaQ(st+1, a; ω′)
(30)

where, yt is the target Q value, yt −Q(st, at; ω) is the time-difference error; ω and ω′ are
weight parameters of the Q network and target network, respectively.

However, as shown in Equation (30), Q values used for action evaluation and selection
in DQN are both outputs by the target network, which tends to cause overvaluation. In
order to solve this problem, a greedy-policy-based double deep Q network (DoubleDQN)
algorithm is proposed to decouple the evaluation and selection [43]. DoubleDQN evaluates
the Q value using the Q network and selects the action to take using the target network.
The target Q value is then:

yt = rt + τ·Q
(
st+1, argmaxaQ(st+1, a; ω); ω′

)
(31)

and the gradient ∇ω L(ω) provides the direction for DNN parameters updating, that is:{
∇ω L(ω) = E[2·(yt −Q(st, at; ω))·∇ωQ(st, at; ω)]

ω ← ω− ψ·∇ω L(ω)
(32)

where, weights ω is updated every step and copied to weights ω′ every fixed number
of steps. Additionally, a mechanism called experience replay is integrated into Dou-
bleDQN [44]. In this mechanism, the agent stores the experience et = (st, at, rt, st+1) at each
time step, and randomly extracts a batch of experience samples for the off-line training.
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3.2.3. Realizing EDCS with DoubleDQN

The framework of the DoubleDQN-based EDCS method is shown in Figure 4. For the Dou-
bleDQN network, the input is a 5-dimensional vector st =

[
t, EST(t), Ppeak

t−1 , µgrid(t), Qd(t)
]
,

and the outputs are the Q values of all potential actions.
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We use historical data of the CCHP system as environment states to train the Dou-
bleDQN algorithm offline. Its input includes physical time, ST storage, peak electric power
purchase, electricity price, and cooling load. After the offline training process shown in
Algorithm 1, the parameters of DoubleDQN will be fixed and used for the online decision-
making of the CCHP system.

The decision-making procedure of the proposed DoubleDQN-based EDCS method
can be found in Algorithm 2. When the dispatch begins, the weights ω of the Q network
trained by Algorithm 1 are loaded. At each time step t, the agent selects an action at based
on the current CCHP state st. Next, the action is executed by energy supply units, and
the CCHP environment transits to the next state st+1. Meanwhile, the agent receives the
reward rt and observes st+1 as the current state. This procedure repeats until the end of the
dispatch period. From the procedure, it can be found that the proposed method requires
no prediction information, realizing a direct mapping from the real-time state observation
to the CCHP system energy dispatching.
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Algorithm 1 Offline-training process of the DoubleDQN algorithm

1: Initialize parameters of Q network (ω) and target network (ω′).
2: for episode = 1 to M do:
3: Initialize s1 =

[
1, EESS(1), Ppeak

0 , µgrid(1), Qd(1)
]
.

4: for t = 1 to T do:
5: Select action at at given st using the greedy policy.
6: Execute at in the CCHP environment and transit to the next state st+1.
7: Get reward rt.
8: Store the experience (st, at, rt, st+1) in the experience replay buffer.

9:
Extract a mini-batch of experience (si

t, ai
t, ri

t, si
t+1) with the size N from the experience

replay buffer.
10: Calculate the loss function: L(ω) = E[rt + τ·Q(st+1, argmaxaQ(st+1, a;ω);ω′)−Q(st, at;ω))]2.
11: Update the weights of the Q network: ω = ω− ψ·∇ω L(ω).
12: Copy the weights ω into the target network every fixed number of time steps: ω′ = ω

13: end for
14: end for

Algorithm 2 Decision-making procedure of the proposed method

Input: Environment state observation st of time step t.
Output: Dispatch decision at for energy supply units.
1: Load the weights ω of the Q network trained by Algorithm 1.
2: for time step = 1 to T do:
3: Select action at = π(st; ω).
4: Execute at in the CCHP environment and transit to the next state st+1.
5: Get reward rt.
6: end for

4. Case Study

In this section, the effectiveness and superiority of the proposed method are verified
by comparison with the designed DQN-based method and benchmark policies. In addition,
the proposed method is further tested under extended scenarios.

4.1. Simulation Setup

In order to evaluate the proposed DoubleDQN-based EDCS method, a CCHP system
located in EXPO Site (Shanghai, China) is taken as a subject for the case study, the structure
of which is shown in Figure 1. The system provides cooling for 28 office buildings on
the site, and their working hours of them are from 6:00 to 18:00 on weekdays. This paper
uses the historical cooling load data of these buildings from 2018 to 2020 for the proposed
method of training and testing. The cooling load data from May to July is used to train, and
the cooling load data from August is used to test. The length of the dispatch period is 720 h
(that is, a full month). In addition, considering the buildings’ working hours, 19:00 on the
previous month’s last day and 18:00 on the current month’s last day are regarded as the
start and end indexes of the dispatch period, respectively.

The CCHP system parameters are provided in Table 1. Additionally, the demand
charge unit price µdemand, the natural gas price µgas and the selling electricity price µsell are
42 RMB/kW, 2.57 RMB/m3, and 0.568 RMB/kWh, respectively. The purchasing electricity
price µgrid is the time-of-use price: the valley tariff is 0.232 RMB/kWh (22:00~5:00), the
peak tariff is 1.062 RMB/kWh (8:00~10:00, 13:00~14:00 and 18:00~20:00), and the flat tariff
is 0.716 RMB/kWh at all other times.

The hyperparameters of DoubleDQN are shown in Table 2. Meanwhile, two common
DRL algorithms DQN and dueling deep Q network (DuelingDQN) are introduced for use in
subsequent subsections. Their hyperparameters are consistent with those of DoubleDQN.
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Table 1. CCHP system parameters.

Parameter Value Parameter Value

ηICE 0.46 αEC, βEC, γEC 0.013, 474.293, 1.615

nICE
max, nEC

max, nAC
max 2, 4, 2 αICE, β ICE, γICE −1.021, 1312.225, 0.005

PICE
rated, QEC

rated (kW) 1600, 4700 αST , βST , γST 0.005, 0.062, 2.970

QST
max (kWh) 10,000 COPEC 5.2

EST
rated (kWh) 70,000 COPAC 1.3

Table 2. Hyperparameters of DoubleDQN.

Description Training Value Description Training Value

Size of input 5 Mini-batch size 128
No. of hidden layers 3 Discount factor 0.925
Size of each hidden

layer 128, 512, 128 Learning rate 0.0005

Size of output 2 Weights of reward λ1: 5 × 10−5, λ2: 6 × 10−4,
θ: 0.002, εpeak: 3300

Activation function
for each hidden layer ReLU Optimizer Adam

The proposed algorithm is implemented using the deep learning framework PyTorch
1.8.0, and the simulation experiments are carried out on a computer equipped with AMD
Ryzen7 5700U CPU and 16 G RAM.

4.2. Off-Line Training Process

Figure 5 shows the cumulative reward performance of DoubleDQN, DQN, and Du-
elingDQN during the offline training process, where the full line represents the average.
In the beginning, since the DRL agent is unfamiliar with the environment, the selected
action results in a large variation in cumulative reward. As the training process con-
tinues, the agent begins to optimize the strategy to accumulate greater rewards. After
about 32 episodes, DuelingDQN starts to converge, which is slightly prior to DoubleDQN
(45 episodes) and DQN (68 episodes). However, DoubleDQN eventually obtains the great-
est cumulative reward at convergence, which is far higher than that of DuelingDQN. This
shows DoubleDQN’s superior learning performance in exploring the optimal strategy. Ad-
ditionally, due to DuelingDQN’s poor cumulative reward performance, it is not considered
in subsequent sections.
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4.3. Dispatch Result Evaluation

Well-trained DRL agents from both the DoubleDQN and DQN are run during the
test month (August 2020) to evaluate their dispatch results. Additionally, two benchmark
policies are designed for comparison. The benchmark policies are described as follows:
(a) Rule-based policy: during the valley electricity price period, ECs are given the priority
to providing cooling, followed by ST and ACs, and the priority is completely reversed
at all other times; (b) Shortsighted policy (based on DRL): the reward function defined
in Equation (27) only consists of the energy cost and cooling error, and DRL agents are
constructed using DQN and DoubleDQN, respectively.

The dispatch results and computational time of each method above are shown in
Table 3, where the cooling error is expressed by the ratio of the total error to the total load,
and the shortsighted policy is identified by the letter “a”.

Table 3. Dispatch results and computational time of each method.

Method Total Cost
(RMB)

Energy
Cost (RMB)

Demand
Charge (RMB)

Rate of Cooling
Error (%)

Total Online
Running Time (s)

Total Offline
Training Time (s)

Rule-based policy 1,678,249 1,524,251 153,998 0 20.27 -
DoubleDQN 1,152,830 1,013,176 139,654 0.312 1.44 973

DoubleDQN-a 1,256,845 995,455 261,390 0.608 1.46 995
DQN 1,154,421 1,011,638 142,783 0.550 1.41 1204

DQN-a 1,263,219 993,489 262,730 0.652 1.53 1013

As observed from Table 3, the three DRL methods have a significant advantage in on-
line running time. Compared with the rule-based policy, the average time for DoubleDQN,
DoubleDQN-a, DQN, and DQN-a to generate a set of dispatch decisions is reduced by
92.89%, 92.79%, 93.04%, and 92.45%, respectively. That’s because the rule-based policy
has to take a few seconds at each time step to make a series of logical judgments based on
different environment information, so as to output the dispatch strategy. On the contrary,
the DRL-based methods can make decisions in less than 4.25 ms by using the DNN that is
well trained during the off-line training phase, which is far less than the dispatch interval
of the rule-based policy. So, they can meet the requirements for real-time operation better.

It can be also found that the rule-based policy outperforms all DRL-based methods in
controlling the cooling error. However, since it can only rigidly make the dispatch strategy
according to the electricity price signal, the highest total cost is obtained as a consequence.
On the other hand, compared to the rule-based policy, DoubleDQN-a saves 34.69% in
energy cost while DoubleDQN saves only 32.53%, and a similar difference holds comparing
DQN-a to DQN. It suggests that the shortsighted policy can better save energy costs and is
more suitable for scenes without demand charges. However, DoubleDQN shows a greater
advantage in the demand charge, which is 2.19~46.57% lower than other methods, thus
obtaining the lowest total intra-month cost. Additionally, DoubleDQN also controls the
cooling error at a relatively low level, indicating the demand-side user’s comfort zone is
well preserved.

To explore DoubleDQN’s advantage in the demand charge, we compare the electricity
dispatch strategies of DoubleDQN, DoubleDQN-a, and rule-based policy for a typical week
of the test month, as shown in Figure 6. As observed, under DoubleDQN-a’s dispatch
strategy, the grid mainly supplies the electricity load, and the electric power purchase in
the flat electricity price period is far higher than other methods, especially reaching a peak
of 5739 kW in 70 h. However, under DoubleDQN’s dispatch strategy, the peak electric
power purchase is reduced from 3578 kW (rule-based policy) and 5739 kW (DoubleDQN-a)
to 3112 kW by increasing ICEs’ total electric power output, which greatly reduces the
demand charge and flattens the electric power purchase curve. Additionally, part of the
electricity load under this strategy is shifted to the nighttime when both the cooling load
and electricity price are relatively low, which saves energy costs and maintains electricity
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stability. Therefore, through the above comparison, it can be easily found that DoubleDQN
exhibits better capabilities of demand response and peak demand management.
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Figure 7 further illustrated the dispatch strategy of DoubleDQN for a typical day of
the test month. It can be observed that the supply and demand of electric and cooling
power are balanced throughout the day. As the electricity purchasing price is in the
valley period (19:00~5:00), ECs consume the electric power purchased from the grid for
providing cooling, and the redundant energy is stored in ST to release when requiring more
cooling (6:00~17:00). When the cooling load and electricity price are both relatively high
(9:00~16:00), ECs maintain the high total cooling output, while ICEs consume the natural
gas for electric power generation to curb the peak electric power purchase, and the waste
heat is used to produce cool through ACs in the corresponding period. This shows that
DoubleDQN can flexibly manage the output of multiple units according to the environment
information, so as to achieve the optimal energy dispatch.
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4.4. Extending the Proposed Method to Different Scenarios

In this subsection, different scenarios are designed to further test the proposed
DoubleDQN-based method, and the test month is still applied. The scenarios are:
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Scenario C1: The proposed method is tested in new CCHP system models generated
with different system parameters to test its generalization.

Scenario C2: The cooling load at each time step t randomly fluctuates in the range
of [1− α%, 1 + α%] to test the proposed method’s robustness to the uncertain load, where
α ∈ {5, 10, 15, 20}.

Scenario C3: Three typical unit failures are designed to test the proposed method’s
effectiveness in handling sudden unit failure. Those three-unit failures occur randomly at
each time step, and the probability distribution of which is shown in Table 4, where the
value pair (A, B) represents the maximum runnable number of ECs and ICEs at time step
t, respectively.

Table 4. Probability distribution of unit failures.

Unit Failure (A, B) Probability (%)

(4, 1) 35
(3, 2) 15
(3, 1) 5

4.4.1. Scenario C1

Ten new CCHP system models are generated with different system parameters, and the
variation of which follows a normal distribution N(ζ, 0.1ζ), where ζ is the raw parameter.
The dispatch results for these 10 models under DoubleDQN, DQN and rule-based policy
are compared in Figure 8. It can be observed that similar to the results in Table 3, the rule-
based policy obtains the lowest cooling error, while the highest energy cost and demand
charge are obtained at the same time; DQN obtains the lowest energy cost and highest
cooling error. In contrast, DoubleDQN can properly balance the above three objectives, and
thus stably bringing the lowest total cost and relatively lower cooling error to all CCHP
system models. Therefore, it can be easily concluded that DoubleDQN can adapt to unseen
physical environments after being trained offline in a fixed environment.
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4.4.2. Scenario C2

For each load fluctuation degree α, 150 experiments are carried out respectively, and
the MPC-based method, which is widely used to solve uncertainty problems, is introduced
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for the comparison. MPC-based method: (a) making dispatch decisions based on the rolling
load-prediction, and the selected rolling horizon is set as 4 h; (b) the load-prediction error
follows a normal distribution N(0, 0.2σ), where σ is the actual load value.

As shown in Figure 9, the dispatch results of DoubleDQN, DQN and MPC in a total
of 600 experiments are plotted and compared by violin plot. It can be observed that with
the increase of load fluctuation degree α, the three methods’ distributions of total cost and
cooling error become more divergent. However, compared with DQN and MPC, the results
of DoubleDQN show no significant discretization and achieve the lowest mean instead.
Especially when the load fluctuation degree α is 5%, the superiority of DoubleDQN is more
prominent. This shows that, unlike the MPC-based method, which relies on load-forecast
accuracy, DoubleDQN efficiently deals with the uncertain load by directly making dispatch
decisions based on real-time observations, and thus provides the dispatch strategy with
higher stability and economic benefits. So, the proposed method can be relatively easier
applied in real-world scenarios, especially when the prediction information is noisy or
even missing.
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4.4.3. Scenario C3

For the unit failures defined in Table 4, the corresponding DRL agents are constructed
using DoubleDQN and DQN respectively to be called on-demand during the operation
period of CCHP system. The dispatch results of DoubleDQN, DQN and rule-based policy
in 150 experiments are compared in Table 5.

Table 5. Dispatch results of each method.

Method
Total Cost (RMB) Ratio of Cooling Error (%)

Min Mean Max Min Mean Max

DoubleDQN 1,148,908 1,152,980 1,158,866 0.292 0.412 0.531

DQN 1,168,379 1,185,324 1,189,573 0.358 0.659 1.031

Rule-based
policy 1,644,612 1,683,547 1,691,356 0.014 0.305 0.804

It can be seen from the table that the average total cost of DoubleDQN is 2.72% and
31.51% lower than that of DQN and the rule-based policy, respectively. Meanwhile, Dou-
bleDQN also achieves better performance than these methods in terms of minimum and
maximum, maintaining relatively high economic benefits. On the other hand, compared
with DQN, DoubleDQN has obtained a performance closer to that of the rule-based policy
in controlling cooling error, well preserving the comfort zone for the demand-side user.
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Figure 10 further compares the dispatch strategies of DoubleDQN for a typical day
both under normal and faulty conditions, i.e., sudden unit failures. Under the faulty
condition, DoubleDQN increases the energy storage of ST by 42% by increasing the cool
production of ECs during the nighttime. Therefore, the higher storage allows ST to release
more cooling energy than the normal condition, so as to reduce the cool production of ECs
and ACs by 11% and 19% during the daytime, respectively. On the other hand, the electricity
load shows a trend of shifting from the daytime to the nighttime accordingly, which reduces
the purchasing electricity cost and the daytime ICE electricity generation. Therefore, it
can be easily concluded that by rationally planning the energy storage and release of ST,
DoubleDQN reduces the CCHP system’s dependence degree of both ECs and ICEs while
balancing the supply and demand, so as to efficiently handle unpredictable unit failures
during the operation period, which can meet the requirements for practical application.
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5. Conclusions

This paper focuses on the summer energy dispatching problem of the CCHP system.
Aiming at minimizing the total intra-month cost and balancing the supply and demand
of energy, a model-free DoubleDQN-based method is proposed to generate an optimal
dispatch strategy. Different from the traditional method, this method makes dispatch deci-
sions directly based on the real-time observed electricity price and cooling load, avoiding
the suboptimal dispatching problem caused by prediction error. Through the simulation
results, the following conclusions can be drawn:

(1) Compared with DRL algorithms DQN and DuelingDQN, DoubleDQN shows
better learning performance during off-line training and obtains the greatest cumulative
reward at convergence.

(2) The proposed method shows good demand response and peak shift ability. By
restraining the peak electric power purchase of the CCHP system to below 3112 kW, the
total intra-month cost is further reduced by 0.13~31.32% compared with the designed DRL
methods and the rule-based policy through greater demand charge advantage. In addition,
the method also considers the decision speed and thermal comfort, which not only meets
the requirements of real-time operation but also well preserves the comfort zone for the
demand-side user.

(3) In dealing with unknown system parameters, load uncertainty and sudden unit
failure, the proposed method provides the dispatch strategy with higher stability and
economic benefits for the CCHP system, showing strong generalization and potential for
application in real scenarios.

On the other hand, the future study work will focus on two directions: one is to
focus on the improvement of the traditional DRL algorithm to reduce the time and com-
puting resources in DRL training; the other is to include environmental pollution into
optimization indicators.
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Nomenclature

AC absorption chiller
Ppeak

t peak electric power purchase in last t time steps, kW
AE auxiliary equipment
CCHP combined cooling, heating and power Qd cooling load, kW
COP coefficient of performance QAC

i cooling output of ith running AC, kW
CT cooling tower QEC

i cooling output of ith running EC, kW
DC demand charge QEC

rated rated cooling generation of EC, kW
DRL Deep reinforcement learning QST storing/releasing power of ST, kW
EC electric chiller Qwaste low-grade waste heat, kW
ECT energy cost Qπ(s, a) state-action value function
GB gas boiler rt received reward at time step t
ICE internal combustion engine st environment state at time step t
ST storage tank V ICE

i gas consumption of ith running ICE, m3/h
at selected action of agent at time step t α, β, γ electric power consumption coefficients
ct cost at time step t, RMB

∆Qd
difference between supply and demand of cooling

Ctotal total cost, RMB power, kW
EST remaining energy storage of ST, kW εLHV low calorific value of natural gas, kWh/m3

nAC number of running ACs εpeak threshold of peak electric power purchase, kW
nEC number of running ECs ηICE electric efficiency of ICE
nICE number of running ICEs θ extra penalty of reward function
Pd electricity load, kW λ weighting factors of reward function
Pe electric power consumption of supply unit, kW µdemand unit price of demand charge, RMB/kW

Pe,a allocated electric power consumption of supply unit, kW
µgas natural gas price, RMB/m3

µgrid purchasing electricity price, RMB/kWh

PEC
e,i electric power consumption of ith running EC, kW

µsell selling electricity price, RMB/kWh
τ discount factor

Pgrid exchanging electric power with the grid, kW ψ learning factor
PICE

i electric power output of ith running ICE, kW ω/ω′ weight parameters of Q network/target network
PICE

rated rated electric power generation, kW
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