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Abstract: Blind deconvolution is a method that can effectively improve the fault characteristics of
rolling bearings. However, the existing blind deconvolution methods have shortcomings in practical
applications. The minimum entropy deconvolution (MED) and the optimal minimum entropy decon-
volution adjusted (OMEDA) are susceptible to extreme values. Furthermore, maximum correlated
kurtosis deconvolution (MCKD) and multipoint optimal minimum entropy deconvolution adjusted
(MOMEDA) are required prior knowledge of faults. On the basis of the periodicity and impact of
bearing fault signals, a new deconvolution algorithm, namely one based on maximum correlation
spectral negentropy (CSNE), which adopts the particle swarm optimization (PSO) algorithm to solve
the filter coefficients, is proposed in this paper. Verified by the simulated vibration model signal and
the experimental simulation signal, the PSO–CSNE algorithm proposed in this paper overcomes the in-
fluence of harmonic signals and random pulse signals more effectively than other blind deconvolution
algorithms when prior knowledge of the fault is unknown.

Keywords: blind deconvolution; correlation spectral negentropy; particle swarm optimization algo-
rithm; harmonic interference; random pulse; feature extraction

1. Introduction

The rolling bearing is one of the key components of rotating machinery. Accidents of
machine crashes and deaths due to bearing failures occur from time to time, so it is of great
significance for the state detection and fault diagnosis of rolling bearings [1–3]. However, due
to the complexity of the working conditions, the measured vibration signal is non–stationary,
and the impact component of the early fault bearing vibration signal reflecting the fault
characteristics is relatively weak. The blind deconvolution methods can extract the periodic
pulse pattern of the fault bearing, so they are widely used in bearing fault diagnosis.

The minimum entropy deconvolution (MED) method allows blind deconvolution of
vibration signals, thus eliminating the effect of the transfer path and highlighting the shock
signal in the signal [4]. MED is widely used in fault diagnosis. H. Endo [5] used MED to
enhance the filtering technique on the basis of the autoregressive model to improve its
fault detection results. N. Sawalhi [6] combined MED and spectral kurtosis to improve
the results of envelope analysis in fault diagnosis. Although MED can reduce the shock
pulse signal, kurtosis is very sensitive to random pulses and is susceptible to interference
from random pulses. The maximum correlation kurtosis deconvolution (MCKD) finds the
optimal filter coefficients to maximize the correlation kurtosis [7]. Compared with MED,
MCKD can extract the periodic pulse components effectively. MCKD needs to set the fault
period when used, and it cannot obtain the fault period adaptively. Miao et al. [8] calcu-
lated the autocorrelation of the envelope signal to estimate the iteration period. Zhang [9]
adaptively selected key parameters in MCKD using the grasshopper optimization algo-
rithm. To eliminate the limitations of the MCKD method, McDonald [10] proposed the
optimal minimum entropy deconvolution adjusted (OMEDA) and multipoint optimal
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minimum entropy deconvolution adjusted (MOMEDA) methods. OMEDA is based on the
D–Norm criterion, which can maximize the convolution of individual pulses in the signal
without an iterative process, but OMEDA is susceptible to noise. MOMEDA is based on
the multi–point D–Norm criterion, which introduces a target vector to achieve accurate
extraction of continuous multi–point shock components in bearing fault signals. However,
the deconvolution results of MOMEDA depend on the a priori knowledge of the fault
period. Xiao [11] determined the fault period by using MKurt and calculated the filter
size of MOMEDA by using the advance–retreat algorithm. Cheng [12,13] optimized MED,
MCKD, OMEDA, and MOMEDA by solving the filter coefficients with a standard particle
swarm optimization algorithm based on generalized spherical coordinate transformation.
Buzzoni [14] introduced a novel blind deconvolution algorithm based on an indicator of
cyclostationarity The indicator has a high periodicity and can effectively eliminate the
effect of random pulses. However, one of the input parameters of this algorithm requires
an exact cycle frequency. To solve this problem, Zhang [15] proposed an adaptive maxi-
mum second–order cyclostationarity blind deconvolution (ACYCBD) to estimate the cycle
frequency using envelope harmonic product spectrum (EHPS).

In this paper, a novel blind deconvolution method is proposed to overcome the
difficulties applied to rolling bearing fault diagnosis. Correlation spectral negentropy is
not only not susceptible to harmonics and random pulses but also has periodicity, and its
selection as a criterion does not require a priori knowledge of the fault period. In addition,
the new blind deconvolution algorithm has the advantage of fewer input parameters, and
the results are less affected by the input parameters.

The remainder of this paper is structured as follows. Section 2 presents the specific
introduction of the blind deconvolution based on maximum correlation spectral negentropy.
Section 3 describes the details of the overall framework of the presented methodology. In
Sections 4 and 5, simulation model signal and experimental data are analyzed to investigate
the effectiveness of the proposed methodology. Finally, Section 6 draws the conclusions.

2. The Blind Deconvolution Method
2.1. The Method of Blind Deconvolution

The core of the blind deconvolution problem is to design an inverse filter f to extract
the periodic pulse characteristics do from the fault signal x. That is, to deconvolve x:

d = x ∗ f = (do ∗ h) ∗ f ≈ do, (1)

where h is the unknown transmission path, f is the finite impulse response (FIR) filter, d is
the estimated fault feature information, and ∗ is the convolution operation.

The bearing fault signal x can be regarded as composed of multiple components:

x = hd ∗ do + hu ∗ u + hn ∗ n, (2)

x =


x1
x2
...

xN

, do =


d1
d2
...

dN

, u =


u1
u2
...

uN

, (3)

where x denotes the bearing fault signal, do means the periodic fault component, u is the
unknown other component, n is the Gaussian white noise component, and hd, hu, and hn
are the corresponding vibration transmission paths.

Substituting Formula (2) into Formula (1), the theoretical formula for blind deconvolu-
tion in bearing fault diagnosis can be obtained:

d = (hd ∗ do + hu ∗ u + hn ∗ n) ∗ f ≈ do, (4)
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f =


f1
f2
...
fL

, (5)

2.2. The Proposed Blind Deconvolution Method
2.2.1. A New Criterion of Blind Deconvolution

Periodic pulses in the vibration signal are caused by bearing failure. A correlation
exists between the pulse produced by the preceding hit and the pulse produced by the
following impact. The signal’s autocorrelation may draw attention to its periodic character.
In contrast, it is challenging to identify comparable elements in the random pulse and
noise components, and there is little autocorrelation. The more visible the fault information
is, the higher the negentropy value is. Therefore, in this paper, the correlation spectral
negentropy [16] was chosen as the blind deconvolution indicator.

If the signal is x(t) and x( f ; ω, ∆ω) denotes the complex envelope of the signal in the
frequency domain of [ω− ∆ω/2; ω + ∆ω/2], then the energy in this frequency domain
can be represented by the squared envelope as

εx(t; ω, ∆ω) = |x(t; ω, ∆ω)|2, (6)

The unbiased autocorrelation, calculated on the basis of the squared envelope, can be
defined as

R̂xx(τ; ω, ∆ω) =
1

N − q

N−q

∑
j=1

∣∣x(tj; ω, ∆ω)
∣∣2∣∣x(tj + τ; ω, ∆ω)

∣∣2, (7)

where τ = q/ fs means the delay factor, and q = 0, 1, 2, 3 . . . N − 1.
The instantaneous energy obtained by the squared envelope can be described as

εR( f ; ω, ∆ω) =
∣∣R̂XX

′( f ; ω, ∆ω)
∣∣, (8)

where
∣∣R̂XX

′( f ; ω, ∆ω)
∣∣ denotes the complex envelope in the frequency domain.

Correlation spectral negentropy (CSNE) that is analyzed in this paper can be expressed as

∆Iε(ω; ∆ω) = −Hω(ω; ∆ω) = −

−
〈

εR( f ; ω, ∆ω)2〈
εR( f ; ω, ∆ω)2

〉 ln
εR( f ; ω, ∆ω)2〈
εR( f ; ω, ∆ω)2

〉〉
, (9)

2.2.2. Maximization Criterion Based on Correlation Spectral Negentropy

By improving the finite impulse response (FIR) filter, the blind deconvolution approach
based on maximum CSNE seeks to remove the impact of the transmission path. It is
assumed that a FIR filter is employed to maximize the CSNE, which will raise the fault
pulse with a high CSNE in the signal while lowering noise and other associated components
with a low CSNE. The filter f is the result of the following maximization problem:

maxCSNE = max∆Iε(ω; ∆ω), (10)

Inspired by [12], particle swarm optimization (PSO) algorithm was utilized to optimize
the solution of the inverse filter. On the basis of the observation of the activity behavior
of bird clusters, the PSO algorithm uses the sharing of information by individuals in the
group to move the whole group, evolving from disorder to order in the problem–solving
space, to obtain the optimal solution. As a global optimization algorithm, PSO algorithm is
particularly suitable for solving optimization problems with high–dimensional complex
structures. The inverse filter with better performance is solved using PSO, and CSNE is
used as the objective function for optimization.
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Using the generalized spherical coordinate transformation, the filter f = [ f1, f2, · · · , fL]
T

can be expressed as

f1 = cos(θ1)
f2 = sin(θ1) cos(θ2)
...
fL−1 = sin(θ1) · · · sin(θL−2) cos(θL−1)
fL = sin(θ1) · · · sin(θL−2) sin(θL−1)

− π ≤ θs ≤ π, s = 1, 2, · · · , L− 1, (11)

where L is the length of the filter, and θs means the angel parameter in the range of [–π, π].
The search space for deconvolution is

ΩL−1 = [−π, π]× [−π, π]× · · · [−π, π] ⊂ RL−1, (12)

Then, the deconvolution problem becomes the following optimization problem:

Θopt
{

CSNE[ f (Θopt)]
}
≥ CSNE[ f (Θ)], ∀Θ ∈ ΩL−1, (13)

where Θ = [θ1, θ2, · · · , θL−1] denotes the angle vector, and CSNE( f ) represents the CSNE
of the filtered signal.

2.2.3. The Optimization of the Filter Length L

The kurtosis is particularly sensitive to impact. The larger the kurtosis value is,
the more the impact the component accounts for. If the fault frequency in the envelope
spectrum is prominent, the kurtosis value of the envelope spectrum is larger. Therefore,
the kurtosis of envelope spectrum (ESK) [17] is used to measure the deconvolution effect of
the original signal by PSO–CSNE. ESK can be described as

ESK =

N
∑

n=1
ES4

n(
N
∑

n=1
ES2

n

)2 , (14)

where ES means the envelope spectrum of the original signal, and N denotes the length of
the original signal.

Set the optimization range of the filter length L to [10, 200], set the step size to 10,
calculate the ESK of the signal after deconvolution with different L values, and take the
corresponding one when the ESK is the largest. The filter length is the optimal value.

3. The Proposed Fault Diagnosis Framework

In order to solve the problem of bearing fault feature extraction affected by harmonics
and random pulses, this paper proposes a blind deconvolution algorithm based on the
maximum correlation spectral negentropy. Its flowchart is depicted in Figure 1, and the
specific description of the corresponding steps is given as follows:

Step 1: Input the fault signal x, search for the filter length L, and determine the optimal
value, taking the maximum value of the envelope spectrum kurtosis as the evaluation standard.

Step 2: Load the fault signal x, the optimal filter length L, the population size S, and
the maximum number of iterations Imax.

Step 3: Use the PSO method to solve the optimization problem of Equation (13) and
obtain the best angle vector Θopt.

Step 4: Calculate the optimal filter fopt according to Formula (11) and obtain the
filtered signal d.

Step 5: Perform envelope spectrum analysis on the filtered signal d.
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Figure 1. The block diagram of the proposed fault diagnosis framework.

4. Simulation Signal Analysis

In order to verify the effectiveness of the method, simulated bearing fault signals were
used. In addition to the periodic pulse signal o(t), the bearing simulation signal may also
include the harmonic signal h(t), the random pulse signal r(t), and the Gaussian white noise
signal n(t). The sampling frequency is 9000, and the number of sampling points is 4096.

The periodic pulse signal o(t) produced by outer race defect is described as follows [18],
and its parameters are listed in Table 1:

o(t) =

[
M−1

∑
i=0

Dh(t− iTo)

]
∗ [A1e−ξ2π fnt · cos(2π fdt)], (15)

where M denotes the number of impulses, D means single pulse intensity, A1 is amplitude, ξ
is system damping ratio, fn and fd mean the natural frequency and the resonance frequency,
respectively, and T0 means the fault period.

Table 1. Parameters of the period pulse signal o(t).

Parameter M D A1 ξ fn (Hz) fd (Hz) T0 (s)

Value 41 1 1 0.05 2000 1998 1/90
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The harmonic signal h(t) can be formulated as follows [19], and its parameters are
shown in Table 2:

h(t) = A2 sin(2π f1t) + A3[0.6 + 0.5 sin(2π f2t)] + A4 sin(2π f3t− π/3), (16)

Table 2. Parameters of the discrete harmonic signal d(t).

Parameter A2 A3 A4 f 1 (Hz) f 2 (Hz) f 3 (Hz)

Value 1.2 0.5 0.2 40 30 150

The random pulse signal r(t) is formulated as follows [20], where M1 means the
number of random impulses and is set to 1, and Pj denotes the amplitude of j–th random
impulse and P1 is set to 8. The parameters of system damping ratio ξ1, the natural frequency
f n1, and the resonance frequency f 4 are listed in Table 3.

r(t) =
M1

∑
j=1

Pje−ξ12π fn1t sin(2π f4t), (17)

Table 3. Parameters of the random impulse signal r(t).

Parameter P1 M1 ξ1 fn1 (Hz) f 4 (Hz)

Value 8 1 0.03 2500 2499

In order to prove the superiority of the deconvolution index selected in this paper,
four indicator values of the periodic pulse signal, the harmonic signal, and the random
pulse signal are compared. It can be seen from Table 4 that the kurtosis value and the Gini
coefficient of the random pulse signal are larger than those of the periodic pulse, that is, the
kurtosis and the Gini coefficient are easily affected by the random pulse. It can be observed
that CSNE is not affected by either the harmonic signal or random pulse signal. It can
be concluded that the CSNE performs better than the other two indicators in the case of
unknown failure period.

Table 4. The comparison of three deconvolution indicators.

Kurtosis Gini CSNE

o(t) 0.0028 0.7516 0.726

h(t) 0.0005 0.3476 0.0069

r(t) 0.0802 0.9921 0.5549

4.1. The Vibration Model with Harmonic Interference

The first case is to analyze the simulation bearing with discrete harmonic interference.
The time–domain waveform of the simulated signal is shown in Figure 2. Figure 2a–c are
the time–domain waveform diagrams of the periodic pulse signal o(t), the harmonic signal
h(t), and the Gaussian white noise signal n(t). Figure 2d shows the simulated bearing outer
ring fault signal synthesized by these three signals. It can be seen from Figure 2d that
periodic pulses are submerged by the other two signals. Figure 3 is the envelope spectrum
of the fault signal x(t). Although there are peaks at f o and its harmonic frequencies, their
amplitude is low (The five red dotted lines refer to f o, 2f o, 3f o, 4f o, and 5f o, respectively).
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Figure 2. The time−–domain waveform of the simulated signal: (a) the periodic pulse signal o(t);
(b) the harmonic signal h(t); (c) the Gaussian white noise signal n(t) (SNR = 3 dB); and (d) the
simulated bearing outer ring fault signal x(t).

Entropy 2023, 25, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 2. The time−–domain waveform of the simulated signal: (a) the periodic pulse signal o(t); (b) 
the harmonic signal h(t); (c) the Gaussian white noise signal n(t) (SNR = 3 dB); and (d) the simulated 
bearing outer ring fault signal x(t). 

 
Figure 3. The envelope spectrum of the simulated signal x(t). 

Figure 4 shows the ESK value of the PSO–CSNE filtered signal under different filter 
lengths. According to Figure 4, when the filter length is 140, the ESK value is the largest. 
Therefore, the filter length is selected to 140. The results were compared with the results 
of the PSO–MED, PSO–OMEDA, PSO–MCKD, and PSO–MOMEDA methods to highlight 
the advantages of PSO–CSNE. The filtered signals of five deconvolution methods are 
shown in Figure 5. It can be observed that the periodic pulses in PSO–OMEDA are almost 
submerged by noise, and the periodic pulses in PSO–MCKD and PSO–MOMEDA are also 
not obvious enough. The results show that PSO–MED and PSO–CSNE are not affected by 
the harmonic component and noise. The envelope spectrums of filtered signal using the 
five deconvolution methods are described in Figure 6. As can be observed from Figure 6, 
although the outer ring failure frequency fo and its harmonics can be observed in the en-
velope spectrum of all the five algorithms, the amplitudes of PSO–MED and PSO–CSNE 
are larger than those of the other three deconvolution algorithms. 

(a
)

A
m

pl
itu

de
   

   
   

   
  

(b
)

A
m

pl
itu

de
   

   
   

   
   

   
  

(c
)

A
m

pl
itu

de
   

   
   

   
   

   
  

(d
)

A
m

pl
itu

de
   

   
   

   
   

   
  

0 100 200 300 400 500
Frequency (Hz)

0

0.5 fo 2fo 3fo 4fo 5fo

Figure 3. The envelope spectrum of the simulated signal x(t).

Figure 4 shows the ESK value of the PSO–CSNE filtered signal under different filter
lengths. According to Figure 4, when the filter length is 140, the ESK value is the largest.
Therefore, the filter length is selected to 140. The results were compared with the results
of the PSO–MED, PSO–OMEDA, PSO–MCKD, and PSO–MOMEDA methods to highlight
the advantages of PSO–CSNE. The filtered signals of five deconvolution methods are
shown in Figure 5. It can be observed that the periodic pulses in PSO–OMEDA are almost
submerged by noise, and the periodic pulses in PSO–MCKD and PSO–MOMEDA are also
not obvious enough. The results show that PSO–MED and PSO–CSNE are not affected by
the harmonic component and noise. The envelope spectrums of filtered signal using the
five deconvolution methods are described in Figure 6. As can be observed from Figure 6,
although the outer ring failure frequency f o and its harmonics can be observed in the
envelope spectrum of all the five algorithms, the amplitudes of PSO–MED and PSO–CSNE
are larger than those of the other three deconvolution algorithms.
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the figure shows the filter length with the maximum ESK value.)
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Figure 5. The time–domain waveforms after five deconvolution methods: (a) PSO–MED; (b) PSO–
OMEDA; (c) PSO–MCKD; (d) PSO–MOMEDA; and (e) PSO–CSNE.

4.2. The Vibration Model with Both Harmonic Interference and Random Impulse Interference

In this section, a case of simulated signal with both harmonic interference and random
pulse interference was employed to evaluate the performance of the proposed method.
As shown in Figure 7, the mixed signal x(t) consists of the periodic impulse signal o(t)
produced by the outer race, harmonic signal h(t), random impulse signal r(t), and Gaussian
white noise signal n(t). It can be seen from Figure 7d that the periodic impulse is masked by
harmonics interference, random pulse, and noise. Affected by the interference component,
the outer race fault characteristic frequency in the envelope spectrum is not obvious, which
is not enough to diagnose the fault, as shown in Figure 8.
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Figure 6. The envelope spectrum of the filtered signals using five deconvolution methods: (a) PSO–
MED; (b) PSO–OMEDA; (c) PSO–MCKD; (d) PSO–MOMEDA; and (e) PSO–CSNE.
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Figure 7. The time–domain waveform of the simulated signal: (a) the periodic pulse signal o(t);
(b) the harmonic signal h(t); (c) the random pulse signal r(t); (d) the Gaussian white noise signal n(t)
(SNR = 3 dB); and (e) the simulated bearing outer ring fault signal x(t).
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Figure 8. The envelope spectrum of the simulated signal x(t).

The result in Figure 9 demonstrates that the optimal filter length is 20. Thus, setting
the length of the filter to 20, the results of using the five deconvolution methods are
illustrated in Figures 10 and 11, respectively. Figure 10 plots the time–domain waveform
of the filtered signals. The amplitudes of random impulse in filtered signals using PSO–
MED and PSO–OMEDA are larger than the other methods. Furthermore, the result of
PSO–CSNE has the lowest amplitude of random impulse and a more obvious periodicity.
The envelope spectrums obtained using the PSO–MED and PSO–OMEDA have a poor
performance, such that there is only 2f o in the envelope spectrums; PSO–CSNE does not
require prior knowledge of fault frequency but has more obvious fault frequencies and
harmonics than PSO–MCKD and PSO–MOMEDA, which do require prior knowledge, as
shown in Figure 11.
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Figure 9. ESK value of the PSO–CSNE filtered signal under different filter lengths. (The red arrow in
the figure shows the filter length with the maximum ESK value.)
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Figure 10. The time–domain waveforms after five deconvolution methods: (a) PSO–MED; (b) PSO–
OMEDA; (c) PSO–MCKD; (d) PSO–MOMEDA; and (e) PSO–CSNE.
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Figure 11. The envelope spectrum of the filtered signals using five deconvolution methods: (a) PSO–
MED; (b) PSO–OMEDA; (c) PSO–MCKD; (d) PSO–MOMEDA; and (e) PSO–CSNE.
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5. Experiment Simulation Signal Analysis

The experimental data come from the Bearing Data Center of the University of Case
Western Reserve [21]. The test bench includes a three–phase induction motor on the left,
a torque sensor and coupling in the middle, and a dynamometer on the right. Acceleration
sensors are installed on the motor drive end, fan end, and support base. The test bench can
test two types of bearings, namely the SKF6205 bearing installed on the drive end of the
motor and the SKF6203 bearing installed on the fan end. Electric spark technology is used
to simulate the pitting phenomenon in engineering practice, process faults of different sizes
in the inner rings, outer rings, and rollers of the rolling bearing.

5.1. Inner Race Fault at a Rotation Speed of 1730 rpm

The data of the inner ring fault bearing with a fault size of 0.014 inches at the fan
end was selected for analysis. The motor speed is 1730 rpm, the sampling frequency is
12 kHz, and the inner ring fault characteristic frequency is 142.73 Hz. The middle segment
containing 16384 continuous points with random pulses was selected. The time–domain
waveform and envelope spectrum of the original signal before processing are displayed in
Figures 12 and 13. It can be seen that the original signal contains obvious random pulse
components, the background noise is large, the impact characteristics are not obvious, and
it is difficult to diagnose the fault from the envelope spectrum.
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Figure 12. The time–domain waveform of the original signal.
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The filter length can be obtained from Figure 14. The deconvolution results of PSO–
MED, PSO–OMEDA, PSO–MCKD, and PSO–MOMEDA are compared with that of the
proposed method to prove its advantage. As can be seen from Figure 15, PSO–MED,
PSO–OMEDA, PSO–MCKD, and PSO–MOMEDA have poor deconvolution performance
because there are still obvious random pulses in the filtered signal. Although there is
a random pulse in the filtered signal of PSO–CSNE, the periodic pulse can be observed.
The envelope spectrum of the filtered signals using five deconvolution methods are shown
in Figure 16. The peak at f i can be observed in all envelope spectrums, but the amplitude
of Figure 16e is larger than the others. In addition, there is a peak at 2f i only in Figure 16a,e.
Furthermore, the envelope spectrum of PSO–MED has peaks at f i and 2f i, but there are too
many interference components at surrounding frequencies. In summary, when there are
random pulses in the signal, the deconvolution performance of PSO–CSNE performs better
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than the other four deconvolution algorithms (The five red dotted lines refer to f i, 2f i, and
3f i, respectively).
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5.2. Roller FAULT at a Rotation Speed of 1772 rpm

The data of the roller fault bearing with a fault size of 0.014 inches at the fan end was
selected for analysis to illustrate the superiority of the proposed method. The motor speed
is 1772 rpm, the sampling frequency is 12 kHz, and the roller fault characteristic frequency
is 117.84 Hz. The middle segment containing 16384 continuous points with random pulses
was selected. The time–domain waveform and envelope spectrum of the original signal
before processing are displayed in Figures 17 and 18. It can be observed that the original
signal contains an obvious random pulse, the background noise is heavy, and the impact
characteristics are not obvious to diagnosis from the envelope spectrum.
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Figure 18. The envelope spectrum of the original signal.

The filter length was set to 140 according to Figure 19. Figures 20 and 21 show the
outcomes of these five methods as a plot. The random pulse in Figure 20e is attenuated,
despite the fact that it is still visible in the time domain plots of all five filtered signals.
It is clear that the noise in Figure 21a,b interferes with the ability to distinguish between
the fault characteristic frequencies and their multiples. In Figure 21c,d, only the fault
characteristic frequency can be identified; the multiplier frequency cannot. Not only is
roller fault frequency f b identified in Figure 21e, but also is 2fb. (The five red dotted lines
refer to f b, 2f b, and 3f b, respectively). It demonstrates that PSO–CSNE outperforms the
other four approaches in terms of deconvolution results.
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in the figure shows the filter length with the maximum ESK value.)
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6. Conclusions

A blind deconvolution method based on correlation spectral negentropy was proposed
to address the shortcomings of existing blind deconvolution methods that are vulnerable to
random pulses and require a priori knowledge. The envelope spectral kurtosis is used as
an indicator to select the optimal filter length for the blind deconvolution method proposed
in this paper. By comparing the envelope spectrum of the deconvoluted signals, it is
demonstrated that the method in this paper can avoid the interference of harmonics and
random pulses better than other blind deconvolution algorithms without the need for
a priori knowledge. In this paper, only the effect of blind deconvolution for extracting fault
features at smooth speed is discussed, and further improvement of blind deconvolution at
variable speed will be discussed next.
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