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Abstract: In the field of machine learning, vector quantization is a category of low-complexity
approaches that are nonetheless powerful for data representation and clustering or classification
tasks. Vector quantization is based on the idea of representing a data or a class distribution using a
small set of prototypes, and hence, it belongs to interpretable models in machine learning. Further,
the low complexity of vector quantizers makes them interesting for the application of quantum
concepts for their implementation. This is especially true for current and upcoming generations of
quantum devices, which only allow the execution of simple and restricted algorithms. Motivated by
different adaptation and optimization paradigms for vector quantizers, we provide an overview of
respective existing quantum algorithms and routines to realize vector quantization concepts, maybe
only partially, on quantum devices. Thus, the reader can infer the current state-of-the-art when
considering quantum computing approaches for vector quantization.

Keywords: vector quantization; quantum machine learning; prototype-based learning

1. Introduction

Quantum computing is an emerging research field, and the current wave of novelties
is driven by advances in building quantum devices. In parallel to this hardware develop-
ment, new quantum algorithms and extensions of already known methods like Grover
search emerged during the last few years, for example, for graph problems [1] or image
processing [2]. One field of growing interest is Quantum Machine Learning. On the one
hand, we can consider quantum algorithms to accelerate classical machine learning algo-
rithms [3,4]. On the other, machine learning approaches can be used to optimize quantum
routines [5].

In this paper, we focus on the first aspect. In particular, we consider the realization
of unsupervised and supervised vector quantization approaches by means of quantum
routines. This focus is taken because vector quantization is one of the most prominent
tasks in machine learning for clustering and classification learning. For example, (fuzzy-)
k-means or its more modern variants k-means and neural gas constitute a quasi-standard in
an unsupervised grouping of data, which frequently is the starting point for sophisticated
data analysis to reduce the complexity of those investigations [6–8]. The biologically
inspired self-organizing map is one of the most prominent tools for visualization of high-
dimensional data, based on the concept of topology preserving data mapping [9–12]. In the
supervised setting, (generalized) learning vector quantization for classification learning
is a powerful tool based on intuitive learning rules, which, however, are mathematically
well-defined such that the resulting model constitutes an adversarial-robust large margin
classifier [13–15]. Combined with the relevance learning principle, this approach provides
a precise analysis of the data features weighting for optimal performance, improving
classification decision interpretability and, hence, allows causal inferences to interpret the
feature influence for the classification decision [12,16,17].
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Further, the popularity of vector quantization methods arises from their intuitive
problem understanding and the resulting interpretable model behavior [8,10,18,19], which
frequently is demanded for acceptance of machine learning methods in technical or biomed-
ical applications [20–22]. Although these methods are of only lightweight complexity
compared to deep networks, frequently sufficient performance is achieved.

At the same time, the current capabilities of quantum computers only allow a limited
complexity of algorithms. Hence, the implementation of deep networks is currently not
realistic apart from any mathematical challenges for realization. Therefore, vector quantiza-
tion methods became attractive for the investigation of corresponding quantum computing
approaches, i.e., respective models are potential candidates to run on the limited resources
of a quantum device.

To do so, one can either adopt the mathematics of quantum computing for quantum-
inspired learning rules to vector quantization [23], or one gets motivation from existing
quantum devices to obtain quantum-hybrid approaches [24,25].

In this work, we are considering vector quantization approaches for clustering and
classification in terms of their adaptation paradigms and how they could be realized
using quantum devices. In particular, we discuss model adaptation using prototype shifts
or median variants for prototype-based vector quantization. Further, unsupervised and
supervised vector quantization is studied as a special case of set-cover problems. Finally,
we also explain an approach based on Hopfield-like associative memories. Each of these
adaptation paradigms comes with advantages and disadvantages depending on the task.
For example, median or relational variants come into play if only proximity relations
between data are available but with reduced flexibility for the prototypes [26,27]. Vector
shift adaptation relates to Minkowski-like data spaces with corresponding metrics, which
usually provide an obvious interpretation of feature relevance if combined with a task
depending on adaptive feature weighting. Attractor networks like the Hopfield model
can be used to learn categories without being explicitly trained on them [28]. The same
is true of cognitive memory models [29], which have great potential for general learning
tasks [30].

Accordingly, we subsequently examine which quantum routines are currently avail-
able to realize these adaptation schemes for vector quantization adaptation completely or
partially. We discuss the respective methods and routines in light of the existing hardware
as well as the underlying mathematical concepts. Thus, the aim of the paper is to give an
overview of quantum realizations of the adaptation paradigms of vector quantization.

2. Vector Quantization

Vector Quantization (VQ) is a general motif in machine learning and data compression.
Given a data set X ⊂ Rn with |X | = N data points xi, the idea of VQ is representing X
using a much smaller setW ⊂ Rn of vectors wi, where |W| = M� N. We will call these
vectors prototypes; sometimes, they are also referred to as codebook vectors. Depending on
the task, the prototypes are used for pure data representation or clustering in unsupervised
learning, whereas in the supervised setting, one has to deal with classification or regression
learning. A common strategy is the nearest prototype principle for a given data x realized
using a winner takes all rule (WTA-rule), i.e.,

s(x) = argminj=1,...,M
(
d
(
x, wj

))
∈ {1, . . . , M} (1)

for a given dissimilarity measure d in Rn and where ws is denoted as the winning prototype
of the competition. Hence, an appropriate choice of the metric d in use seriously influences
the outcome of the VQ approach. Accordingly, the receptive fields of the prototypes are
defined as

R
(
wj
)
= {xi ∈ X |s(xi) = j}

with X = ∪M
j=1R

(
wj
)
.
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2.1. Unsupervised Vector Quantization

Different approaches are known for optimization of the prototype setW for a given
dataset X , which are briefly described in the following. In the unsupervised setting, no
further information is given.

2.1.1. Updates Using Vector Shifts

We suppose an energy function

EVQ(X ,W) =
N

∑
i=1

EVQ(xi,W)

with local errors EVQ(xi,W) to be assumed as differentiable with respect to the prototypes
and, hence, the dissimilarity measure d is also supposed to be differentiable. Further, the
prototype setW is randomly initialized. Applying the stochastic gradient descent learning
for prototypes, we obtain the prototype update

∆wj ∝ −∂EVQ(xi,W)

∂d
(

xi, wj
) · ∂d

(
xi, wj

)

∂wj

for a randomly selected sample xi ∈ X [31]. If the squared Euclidean distance
dE
(

x, wj
)
=
(

x −wj
)2 is used as the dissimilarity measure, the update obeys a vector shift

∂dE
(

xi, wj
)

∂wj
= −2

(
x −wj

)

attracting the prototype wj towards the presented data xi.
Prominent in those algorithms is the well-known online k-means or its improved vari-

ant, the neural gas algorithm, which makes use of prototype neighborhood cooperativeness
during training to accelerate the learning process as well as for initialization insensitive
training [8,32].

Further, note that similar approaches are known for topologically more sophisticated
structures like subspaces [33].

2.1.2. Median Adaptation

In median VQ approaches, the prototypes are restricted to be data points, i.e., for a
given wj exists a data sample xi such that wj = xi is valid. Consequently,W ⊂ X holds.
The inclusion of a data point into the prototype set can be represented using a binary
index variable; using this representation, a connection to the binary optimization problem
becomes apparent.

Optimization of the prototype setW can be achieved with a restricted expectation
maximization scheme (EM) of alternating optimization steps. During the expectation step,
the data are assigned to the current prototypes, whereas in the maximization step, the
prototypes are re-adjusted with the median determination of the current assignments.
The corresponding counterparts of neural gas and k-means are median neural gas and
k-medoids, respectively [26,34].

2.1.3. Unsupervised Vector Quantization as a Set-Cover Problem Using ε-Balls

Motivated by the notion of receptive fields for VQ, an approach based on set covering
was introduced. In this scenario, we search for a set Wε ⊂ Rn to represent the data X
through prototype-dependent ε-balls

Bε

(
wj
)
=
{

x ∈ Rn|d
(

x, wj
)
< ε

}
(2)
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for prototypes wj ∈ Wε. More precisely, we consider the ε-restricted receptive fields
of prototypes

Rε

(
wj
)
= {xi ∈ X |sε(xi) = j}

for a given configurationWε, where

sε(x) =

{
j if s(x) = j and d

(
x, wj

)
< ε

∅ else

is the ε-restricted winner determination, and ‘∅’ denotes the no-assignment-statement.
Hence, Rε

(
wj
)

consists of all data xi ∈ X covered by an ε-ball such that we have
Rε

(
wj
)
⊆ Bε

(
wj
)
.

The task is to find a minimal prototype set Wε such that the respective cardinality
Mε is minimum while the unification Bε(Wε) = ∪Mε

j=1Bε

(
wj ∈ Wε

)
is covering the data

X , i.e., X ⊆ Bε(Wε) has to be valid. A respective VQ approach based on vector shifts is
proposed [35].

The set-covering problem becomes much more difficult if we restrict the prototypes
wj ∈ Wε to be data samples xi ∈ X , i.e., Wε ⊂ X . This problem is known to be NP-
complete [36]. A respective greedy algorithm was proposed [37]. It is based on a kernel
approach, taking the kernel

κε

(
xj, xi

)
=

{
1 if dE

(
xj, xi

)
< ε

0 else

as an indicator function. The kernel κε corresponds to a mapping

φε(xi) = (κε(x1, xi), . . . , κε(xN , xi))
T ∈ RN

known as kernel feature mapping [38]. Introducing a weight vector w ∈ RN , the objective

Eq,ε(X ) = min
w∈RN

‖w‖q

subject to 〈w,φε(xi)〉E≥1 ∀i

appears as the solution of a minimum problem depending on the parameter q in the
Minkowski-norm ‖w‖q. For the choice q = 0, we would obtain the original problem. How-
ever, for q = 1, good approximations are achieved and can be done efficiently using linear
programming [37]. After optimization, the data samples xi with wi ≈ 1 serve as prototypes.
The respective approach can be optimized online based on neural computing [39,40].

2.1.4. Vector Quantization by Means of Associative Memory Networks

Associative memory networks have been studied for a long time [9,41]. Among them,
Hopfield networks (HNs) [41,42] have gained a lot of attraction [30,43,44]. In particular, the
strong connection to physics is appreciated [45]; it is related to other optimization problems
as given in Section 3.2.3.

Basically, for X ⊂ Rn with cardinality N, HNs are recurrent networks of n bipolar
neurons si ∈ {−1, 1} connected to each other by the weights Wij ∈ R. All neurons are
collected in the neuron vector s = (s1, . . . , sn)

T ∈ {−1, 1}n. The weights are collected in
the matrix W ∈ Rm×m such that to each neuron si belongs a weight vector wi. The matrix
W is assumed to be symmetric and hollow, i.e., Wii = 0. The dynamic of the network is

si = sgn(〈s, wi〉E − θi) (3)

where

sgn(z) =

{
1 if z ≥ 0
−1 else
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is the standard signum function of z ∈ R and θi is the neuron-related bias generating
the vector θ = (θ1, . . . , θn)

T . According to the dynamic (3), the neurons in an HN are
assumed to be perceptrons with the signum function as activation [46,47]. Frequently, the
vectorized notation

s′ = sgn[Ws]− θ (4)

of the dynamic (3) is more convenient, emphasizing the asynchronous dynamic. The
network minimizes the energy function

EH(s) = −
1
2

sTWs + 〈s, θ〉E (5)

in a finite number of steps, with an asynchronous update dynamic [45].
For given bipolar data vectors xi ∈ X with dataset cardinality N � n, the matrix

W ∈ Rn×n is obtained with the entries

Wij =
1
N

N

∑
k=1

[xk]i · [xk]j =
1
N

N

∑
k=1

xk · xT
k − I (6)

where I ∈ Rn×n is the identity matrix. This setting can be interpreted as Hebbian
learning [45]. Minimum solutions s∗ ∈ {−1, 1}n of the dynamic (7) are the data samples xi.
Thus, starting with arbitrary vectors s, the network always relaxes to a stored pattern xi
realizing an association scheme if we interpret the starting point as a noisy pattern. The
maximum storage capacity of an HN is limited to cs =

N
n patterns with cs ≤ cmax ∼ 0.138.

Dense Hopfield networks (DHNs) are generalizations of HNs with general data patterns
xi ∈ X ⊂ Rn having a much greater storage capacity of cmax = 1 [48].

For the unsupervised VQ, an HN can be utilized using a kernel approach [49]: Let

p(x) =
1
N

N

∑
i=1

κφ(x, xi)

be an estimate of the underlying data density Rn based on the samples X ⊂ Rn with
|X | = N. Analogously,

q̂(x) =
1
M

M

∑
j=1

κφ

(
x, wj

)
≈ 1

N

N

∑
i=1

κφ(x, xi) · ai

is an estimate of the data density Rn based on the M prototypesW ⊂ Rn. The density q̂(x)
can be approximated with

q(x) =
1
N

N

∑
i=1

κφ(x, xi) · ai

for assignment variables ai ∈ {0, 1} collected in the vector a = (a1, . . . , aN)
T with the

constraint ∑N
i=1 ai = M. According to the theory of kernels, the kernel κφ relates to a map

φ : Rn → H, where H is a reproducing kernel Hilbert space (RKHS) endowed with an inner
product 〈·|·〉H such that 〈

φ(x)|φ
(
x′
)〉

H = κφ

(
x, x′

)

holds [38].
For a good representation of X with the prototype W , it is possible to minimize

the quantity

D̂(X ,W) = ‖EX [φ]− EW [φ]‖H,
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where EX [φ] and EW [φ] are the expectations of φ based on the sets X andW , respectively,
using the densities p(x) and q(x) [49]. We obtain

D̂(X ,W) =
1

N2 1TΦ1 +
1

M2 aTΦa− 2
N ·M 1TΦa

with 1 = (1, . . . , 1)T ∈ RN , Φ ∈ RN×N and Φij = κφ

(
xi, xj

)
. Because the first term

1TΦ1 does not depend on the assignment, minimization of D(X ,W) with respect to the
assignment vector a is equivalent to a minimization of

D(X ,W) =
1

M2 aTΦa− 2
N ·M 1TΦa

subject to the constraint
〈
1T , a

〉
E = M or, equivalently,

(
1T · a−M

)2
= 0 such that it

constitutes a Lagrangian optimization with the multiplier λL. Transforming the binary
vector a using s = 2 · a− 1 into a bipolar vector, the constraint minimization problem is
reformulated as

s∗ = argmins∈{−1,1}N

(
sTQs + 〈s, q〉E

)
(7)

with

Q =
1
4

(
1

M2 Φ− λL1 · 1T
)

and

q =
1
2

(
1

M2 Φ− λL1 · 1T
)
· 1−

(
2

M · N ΦT · 1 + 2 · λL ·M · 1
)

,

both depending on the Lagrangian multiplier λL. Thus, the problem (7) can be translated
into the HN energy E(s) with m = M, θ = q,

W = −2 ·Q− λL

2 ·M2 · I,

where I ∈ RN×N is the unity matrix and s∗ obtained using the HN dynamic (5).
Complex-valued Hopfield networks (CHN) are extending the HN concept to complex

numbers [50]. For this purpose, the symmetry assumption for the weights Wij is transferred
to the Hermitian symmetry Wij = W̄ij of the conjugates. As in the real case, the complex
dynamic is structurally given as in (3) but replacing the real inner product using the
complex-valued Euclidean inner product and, as the consequence of that, replacing the
signum function sgn(z), too. Instead of this, the modified ‘signum’ function

csgn(z) =





e0·i = 1 if 0 ≤ arg(z) < vR

e1·i·vR if vR ≤ arg(z) < 2vR
...

...
e(R−1)·ivR (R− 1) ·vR ≤ arg(z) ≤ R ·vR

for complex-valued z is used, with R being the resolution factor for the phase range
delimitation [51]. Thus, arg(z) is the phase angle of z and vR = 2π

R determines the partition
of the phase space. The Hebbian learning rule (6) changes to

Wij =
1
N

N

∑
k=1

[xk]i · [xk]j

and the energy of the CHN is obtained as

EH(s) = −
1
2

sTWs
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for zero bias, which delivers
s′ = csgn[Ws]

as the corresponding dynamic in complete analogy to (4). Note, for the resolution R = 2,
the usual HN is obtained.

2.2. Supervised Vector Quantization for Classification Learning

For classification learning VQ, we assume that the training data xi ∈ X ⊂ Rn are
endowed with a class label yi = c(xi) ∈ C = {1, . . . , C}. Besides the widespread deep
networks, which are powerful methods in classification learning but do not belong to VQ
algorithms, support vector machines (SVMs) are promising robust classifiers optimizing the
separation margin [52]. However, the support vectors, which determine the class borders
of the problem, sometimes are interpreted as prototypes such that SVM could be taken as a
supervised prototype classifier, too [53]. However, we do not focus on SVM here.

2.2.1. Updates Using Vector Shifts

Prototype-based classification learning based on vector shifts is dominated by the
family of learning vector quantizers (LVQ), which was heuristically motivated and already
introduced in 1988 [54]. These models assume that for each prototype wj ∈ W , we
have an additional class label c

(
wj
)
∈ C, such that at least one prototype is dedicated

to each class. For a given training data pair (xi, yi), let w+ denote the best matching
prototype ws determined with the WTA-rule (1) with additional constraint that yi = c(ws)
and d+(xi) = d(xi, w+) denotes the respective dissimilarity. Analogously, w− is the best
matching prototype ws′ with the additional constraint that yi 6= c(ws′) and d−(xi) =
d(xi, w−). The basic principle in all LVQ models is that if d = dE is the squared Euclidean
distance, the prototype w+ is attracted by the presented training data sample xi whereas
w− is repelled. Particularly, we have

∆w+ ∝ −2 ·
(
xi −w+

)
and ∆w− ∝ −2 ·

(
w− − xi

)
,

which is known as the attraction-repulsing-scheme (ARS) of LVQ.
The heuristic LVQ approach can be replaced by an approach grounded on a cost

function [55], which is based on the minimization of the approximated classification error

EGLVQ(X ,W) =
N

∑
i=1

EGLVQ(xi,W) (8)

with local errors
EGLVQ(xi,W) = fθ(µ(xi))

evaluating the possible classification mismatch for a given data sample xi. Thereby,

µ(xi) =
d+(xi)− d−(xi)

d+(xi) + d−(xi)
∈ [−1,+1]

is the so-called classifier function resulting in non-positive values when the sample xi
would be incorrectly classified. The function

fθ(z) =
1

1 + exp(−z · θ)

is the sigmoid, approximating the Heaviside function

H(z) =

{
1 if z > 0
0 else
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but keeping the differentiability. Following this definition, the updates for w+ and w−

in (8) are obtained as

∆w± ∝ −2 · f ′θ(µ(xi)) · d∓(xi)

(d+(xi) + d−(xi))
2 ·
(
xi −w±

)
,

realizing an ARS [55].
This variant of LVQ is known as Generalized LVQ and is proven to be robust against

adversarials [14]. For variants including metric learning, we refer to [12]. Complex-valued
GLVQ using the Wirtinger calculus for gradient calculations are considered [56].

Learning on topological structures like manifolds and subspaces follows the same frame-
work, considering attraction and repulsing more general in the respective vector spaces [57,58].
An interesting variant, where the prototypes are spherically adapted according to an ARS
to keep them on a hypersphere, was proposed—denoted as Angle-LVQ [59].

2.2.2. Median Adaptation

Median LVQ-like adaptation of prototypes for classification learning is possible [27].
This variant is based on an alternating optimization scheme similar to that of medoid
k-means and median neural gas but adapted to the classification-restricted setting.

2.2.3. Supervised Vector Quantization as a Set-Cover Problem Using ε-Balls

Another classification scheme can be based on prototype selection out of the training
samples and ε-balls [60]. In analogy to ε-balls for prototypes defined in (2), Data-dependent
counterparts are defined as

Bε(xi) =
{

xj|d(xi, xj) < ε
}

the union of which trivially covers X . The classification problem is then decomposed into
separate cover problems per class, as discussed in Section 2.1.3. For this purpose, each
ε-ball gets a local cost based on the number of covered points, punishing false classified
points using a penalty

1
|X | + |Bε(xi) ∩ (X \ Xc)|

where Xc is the set of all data points with the same class as xi. Combined with a unit
cost for not covering a point, a prize-collecting set-cover problem is defined that can be
transformed into a general set-cover problem. Hence, as an objective, the number of covered
and correctly classified data points has to be maximized while keeping the overall number
of prototypes low. We refer to [60,61] for detailed mathematical analysis. In particular,
a respective approach is presented [61], being similar to the optimization scheme from
support vector machines [52].

2.2.4. Supervised Vector Quantization by Means of Associative Memory Networks

Classification by means of associative memory networks is considered classifica-
tion using Hopfield-like networks [30]. An approach based on spiking neurons instead
of perceptron-like neurons in HNs as depicted in (3) was presented using a classical
spike-timing-dependent-plasticity (STDP) rule for learning to adapt HNs for classification
learning [62].

In contrast, a modified HN for classification can be used [63]. We suppose a dataset
X ⊂ Rn consisting of N samples distributed to C classes. A template vector ξc ∈ RN is
introduced for each class c ∈ C with ξc

i = 1 if c = yi and ξc
i = −1, otherwise. The states of

neurons sk are extended to be sk ∈ {−1, 1, 0} for k = 1, . . . , N constituting the vector s. We
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consider a diluted version of the Hopfield model, where the weight matrix W ∈ RN×N is
considered to be

Wij =

{
− C

N if yi = yj
C

2·N ∑C
c=1 ξc

i · ξc
j + 2− C else

realizing a slightly modified Hebb-rule compared to (6). The dynamic is still (3) as in the
usual Hopfield model. However, if a switch from sk = 1 to sk = −1 is observed as the
result of the dynamic, sk = 0 is set to switch of the respective neuron [63].

3. Quantum Computing—General Remarks

In the following, we use the terms quantum and classical computer to describe whether
a machine exploits the rules of quantum mechanics to do its calculations or not.

3.1. Levels of Quantum Computing

Quantum Algorithms can be classified into at least three levels: quantum-inspired,
quantum-hybrid, and quantum(-native), with increasing dependence on the capabilities of
quantum computers.

Working with the mathematical foundation of quantum computing may reveal new
insides into classical computing. In this view, classical algorithms appear in a new form,
which is not dependent on the execution on real quantum computers but incorporates the
mathematical framework of quantum systems to obtain specific variants of the original
algorithm. This category of algorithms is called quantum-inspired algorithms. For example,
in supervised VQ, an approach inspired by quantum mechanics has been developed, based
on standard GLVQ, but now adapted to problems where both the data and the prototypes
are restricted to the unit sphere [23]. Thus, this algorithm shows similarities to the already
mentioned classical Angle LVQ. However, in contrast to this, here, the sphere is interpreted
as a Bloch sphere, and the prototype adaptation follows unitary transformations.

While quantum-inspired algorithms only lend the mathematical background of quan-
tum computing, quantum-hybrid algorithms use a quantum device as a coprocessor to
accelerate the computations. The quantum chip is also referred to as Quantum Processing
Unit (QPU) [64]. The QPU is used to solve expensive computational tasks like searching or
high-dimensional distance calculations, whereas all other program logic, like data loading
or branching, is done using a classical machine.

The quantum-hybrid algorithm can also be defined in more rigorous terms. That is, a
quantum-hybrid algorithm requires, for example, “non-trivial amounts of both quantum
and classical computational resources” [64]. Following this definition, classical control
elements, like repetition until a valid state is found, are not considered hybrid systems.

Finally, as quantum-native algorithms, we would like to denote those algorithms that run
entirely on a quantum machine after the data is loaded into it. Because of the limitations
of the present hardware generation, their physical implementation is not feasible so far,
and therefore, ongoing research is often focused on quantum-hybrid strategies under the
prevailing circumstances.

3.2. Paradigms of Quantum Computing

Quantum Physics can be harnessed for computing using different kinds of computing
paradigms. Currently, there are two major paradigms intensively investigated and dis-
cussed for applications: Gate-based and adiabatic quantum computing. It can be shown that
both paradigms are computationally equivalent [65]. Nevertheless, it is interesting to con-
sider these two approaches separately, as they lead to different problems and solutions that
are better suited for their underlying hardware. There are several other paradigms, such as
measurement-based and topological quantum computing. We will not focus on them in
this paper but concentrate on gate-based and adiabatic methods as the most important.
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3.2.1. Gate Based Quantum Computing and Data Encoding

Classical computers store information as bits that are either 0 or 1. The smallest unit of
a quantum computer is called a qubit [66]. It can represent the classical states as |0〉 and |1〉.
Besides these basis states, every linear combination of the form

|ψ〉 = a |0〉+ b |1〉 with a, b ∈ C : |a|2 + |b|2 = 1.

is a valid state of a qubit. If ab 6= 0, the qubit is in a so-called superposition state. Alterna-
tively, the qubit can also be written as a wave function

ψ =

(
a
b

)

with the normalization constraint for a and b remains to be valid.
When measured, the qubit turns into one of the two classical states according to the

probabilities |a|2 and |b|2, respectively. In other words, during measurement, the state
changes into the observed one; this effect is called the collapse of the wave function. To
get the probabilistic information about a and b, it is, in general, necessary to measure a
state multiple times. Because of the collapsing wave function and the so-called no-cloning
theorem, this can only be achieved by preparing a qubit multiple times in the same known
manner [67].

A collection of qubits is called a quantum register. To represent the state of a quantum
register, we write |i〉 if the quantum register is the binary representation of the non-negative
integer i. The wave function for a register containing N qubits is represented by a normal-
ized complex vector of length 2N :

ψ =
2N−1

∑
i=0

ψi |i〉 =: |ψ〉 with
2N−1

∑
i=0
|ψi|2 = 1

with the complex amplitudes ψi ∈ C. For independent qubits, the state of the register is
the tensor product of its qubits, and otherwise, we say that the qubits are entangled. For
a deeper introduction to the mathematics of qubits and quantum processes, we recom-
mend [66,68] to the reader.

Basis Encoding

In classical computing, information is represented by a string of bits. Obviously, it is
possible to use coding schemes such as floating-point numbers to represent more complex
data structures, too. These methods can also be used on a quantum computer without
the application of superposition or entanglement effects. However, taking these quantum
effects into account enables quantum-specific coding methods.

Besides storing a single bit-sequence, a superposition of multiple sequences of the
same length can be stored in a single quantum register as

2N−1

∑
i=0

wi |xi〉 ,

where wi is the weight of the sequence xi. Thus, the measurement probability pi = |wi|2 is
valid. Algorithms that run on basis encoding often amplify valid solution sequences of a
problem by using interference patterns of the complex phases of various wi.

A state in this basis encoding scheme can be initialized using the Quantum Associative
Memory Algorithm [69].

Amplitude Encoding

In the amplitude encoding scheme, for a given complex vector x, its entries are
encoded inside the amplitudes ψi of a quantum register. For this purpose, first, the vector
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has to be normalized, choosing a normalization that limits the impact on a given task with
data distortion. If the vector size is not a power of two, zero padding is applied. We can
now, in the second step, initialize a quantum state with ψi = x̂i for the normalized and
padded vector x̂. A state in this amplitude encoding can be generated using a universal
initialization strategy [70].

A highly anticipated, but still not realized, hardware concept is the QRAM [71]. It is
key for the speedup of many quantum algorithms, but its viability remains open. Still, its
future existence is commonly assumed.

Gate-Based Quantum Paradigm

A common concept for quantum computing is the gate notation, originally introduced
by Feynman [72]. In this notation, the time evolution of a qubit is represented by a
horizontal line. Evolution is realized by quantum gates that are defined by a unitary matrix
applied to a number of qubits. Unitary matrices are vector norm preserving and, therefore,
they also preserve the property of being a wave function [68]. Combined with measurement
parts, we get a quantum circuit description. A quantum circuit can be seen as the quantum
counterpart to a logical circuit.

We will utilize the bundle notation given in Figure 1a to combine multiple qubits into
quantum registers. In some quantum routines, the concept of branching is used, where the
computation is only continued if measuring a qubit achieves a certain result. In Figure 1b,
the output of the circuit is only considered if the qubit is measured as zero. Finally, we use
the arrow notation in Figure 1c to represent garbage states. They do not contain usable
information anymore, but are still entangled qubits related to the system. We use the term
reset over garbage, or simply garbage problem, to emphasize the necessity of appropriately
handling this situation. Generally, since garbage states are usually entangled, they cannot
be reused, and hence, one resets them using un-computation, i.e., setting them to zero. Of
course, the details of the garbage problem are dependent on the circuit in use.

4

(a)

0

(b)
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3.2.2. Adiabatic Quantum Computing and Problem Hamiltonians

Adiabatic Quantum Computing (AQC) is a computing thought emerging from the
adiabatic theorem [73]. It is based on Hamiltonians, which describe the time evolution of
the system inside the Schrödinger Equation [74]. A Hamiltonian is realized as a Hermitian
matrix H. For adiabatic computing, the corresponding eigenequation is considered. Due to
the Hermitian property, all eigenvalues are real, and hence, they can be ordered. They are
known as energy levels, with the smallest one being called the ground state.

In this view, if a problem solution can be transformed into the ground state of a
known problem Hamiltonian HP, the adiabatic concept defines a quantum routine that
finds this ground state [75]. It starts from an initial Hamiltonian HB, with a known and
simple ground state preparation. On this initial state, usually the equal superposition of all
possible outcomes, a time-dependent Hamiltonian

H(t) =
1− t

T
HB +

t
T

HP,

that slowly shifts from HB to HP, is applied over a time period T. The adiabatic theorem
ensures that if the period T is sufficiently large, the system tends to stay in the ground
state of the gradually changing Hamiltonian. After application, the system is in the ground
state of HP with a very high probability. For a given problem, the final ground state is the
single solution or a superposition of all valid solutions. One solution is then revealed by
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measuring the qubits. If AQC is run on hardware, manufacturers use the term quantum
annealing instead to underline the noisy execution environment. The capabilities of a
quantum annealer are restricted to optimization problems by their design; it is not possible
to use the current generation for general quantum computing that is equivalent to the
gate-based paradigm.

The dynamic AQC can be approximated using discrete steps on a gate-based quantum
computer [76].

3.2.3. QUBO, Ising Model, and Hopfield Network

Depending on the theoretical background an author is coming from, three main
kinds of optimization problems are often encountered in the literature that share similar
structures and can be transformed into each other. First, the Quadratic Unconstrained
Binary Optimization problem (QUBO) is the optimization of a binary vector x ∈ {0, 1}n for
a cost function

y = xTAx = ∑
i≤j

Aijxixj

with a real valued upper triangle matrix A. Second, the Ising model is motivated by
statistical physics and based on spin variables, which can be in state −1 and 1 [67]. The
objective of the Ising model is finding a spin vector x ∈ {−1, 1}n, which optimizes

y = ∑
i

hixi + ∑
i<j

Jijxixj

with pairwise interactions Jij and an external field hi. A Quantum Annealer is a physical
implementation of the Ising Model with limited pairwise interactions. Binary variables b
can be transformed into spin variables s and vice versa by the relation

b =
1 + s

2
,

making the Ising model and QUBO mathematically equivalent. Third, the Hopfield energy
function (5) was introduced as an associative memory scheme based on Hebbian learn-
ing [42,45]. Its discrete form is equivalent to the Ising model if the neurons in this associative
memory model are interpreted as bipolar. All models are NP-hard and can, therefore, in
theory, be transformed into all NP problems. For a broad list of these transformations, we
recommend [77].

3.3. State-of-the-Art of Practical Quantum Experiments

In the last few years, the size of commercial gate-based general-purpose quantum
computers did grow from 27 (2019 IBM Falcon) to 433 qubits (2022 IBM Osprey). Thus,
the hardware has grown from simple physical demonstrators to machines called Noisy
Intermediate-Scale Quantum Computer (NISQ) [78]. However, this hardware generation is
still severely restricted by its size and a high error rate.

The latter problem could be solved using quantum error correction or quantum error
mitigation schemes. Quantum error mitigation is a maturing field of research, with frame-
works like Mitiq [79] being published. Common to most of these mitigation techniques is
that a higher number of physical qubits is required to obtain a single logical qubit with a
lower noise level, making the size problem the major one.

Different physical realizations of quantum computer hardware exist; we can only
give some examples. Realizations based on superconducting qubits for gate-based (IBM Q
System One) and for adiabatic (D-Wave’s Advantage QPU) are available. Further, quantum
devices that are based on photons (Xanadu’s Borealis) or trapped ions (Honeywell System
Model H1) exist.

For small toy application problems, it is possible to simulate the behavior of a quan-
tum computer by means of a classical computing machine. Particularly, single steps of the
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gate-based concept can be simulated using respective linear algebra packages. Otherwise,
circuits can be built in quantum computing frameworks, like IBM’s Qiskit [80] or Xanadu’s
Pennylane [81]. It is also possible to simulate AQC behavior for evolving quantum sys-
tems [82]. Quantum machines that are available through online access allow observing the
influence of noise on quantum algorithms based on tiny examples.

4. Quantum Approaches for Vector Quantization

The field of quantum algorithms for VQ is currently a collection of quantum routines
that can solve particular sub-tasks than complete algorithms available for practical applica-
tions. Combinations of those routines with machine learning approaches beside traditional
VQ-learning have been proposed for different fields, for example, in connection to support
vector machines [83] or generative adversarial networks [84].

In this section, we present two strategies to combine classical prototype-based vec-
tor quantization principles for VQ with appropriate quantum algorithms. Thereby, we
roughly follow the structure for unsupervised/supervised vector quantization learning, as
explained in the Sections 2.1 and 2.2.

By doing so, we can replace, on the one hand, single routines in the (L)VQ learning
schemes using quantum counterparts. On the other, if we can find a VQ formalism that
is based on a combinatorial problem, preferably a QUBO, several quantum solvers have
already been proposed and, hence, could be used to tackle the problem.

4.1. Dissimilarities

As previously mentioned at the beginning of Section 2, the choice of the dissimilarity
measure in vector quantization is crucial and influences the outcome of the learning. This
statement remains true also for quantum vector quantization approaches. However, in
the quantum algorithm context, the dissimilarity concepts are closely related to the coding
scheme as already discussed in Section 3.2. Here it should be explicitly mentioned that
the coding can be interpreted as quantum feature mapping of the data into a Hilbert space,
which is the Bloch-sphere [4,23]. Hence, the dissimilarity calculation represents distance
calculations in the Bloch sphere. However, due to this quantum feature mapping, the
interpretation of the vector quantization algorithm with respect to the original data space
may be limited, whereas, within the Bloch sphere (Hilbert space), the prototype principle
and interpretation paradigms remain true. Thereby, the mapping here is analogous to the
kernel feature mapping in support vector machines [38] as pointed out frequently [85–87].

Two quantum routines are promising for dissimilarity calculation: the SWAP test [88]
and the Hadamard test, used in quantum classification tasks [89,90]. Both routines generate
a measurement that is related to the inner product of two normalized vectors in the Bloch
sphere. These input vectors are encoded using amplitude encoding. The strategies differ in
their requirements for state preparation.

The SWAP test circuit is shown in Figure 2. This circuit is sampled multiple times.
From these samples, the probability distribution of the ancilla bit is approximated, which is
connected to the Euclidean inner product by

pa(|0〉) =
1
2

(
1 + |〈x|wk〉|2

)
.

Thus, we can calculate the inner product from the estimated probability and, hence, from
that, the Euclidean distance.

Another but similar approach [89,90], which is based on the Hadamard gate, some-
times denoted as a (modified) Hadamard test, is shown in Figure 3. For this circuit, the
probability of measuring the ancilla in zero state is

pa(|0〉) =
1
2
(1 + Re{〈x|wk〉}).
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Due to the superposition principle, it is possible to run these tests in parallel on
different inputs. This method was demonstrated to work [91] and has been further adapted
and improved [25] in this way that the test is applicable on different vectors by means of
appropriately determined index registers. It is not possible to read out all values at the end,
but it is proposed as a possible replacement of QRAM in some cases [91]. Whether this
parallel application can replace QRAM in the VQ application is an open question.

Version March 7, 2023 submitted to Entropy 13 of 22

reset

reset

1

N

N

ancilla H H

data Prepare |x⟩

data Prepare |w⟩

SWAP test

Figure 2. The SWAP-test to measure the dissimilarity between the states |x⟩ and |w⟩ using the ancilla
qubit.
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ancilla qubit.

4.2. Winner Determination

Winner determination in prototype-based unsupervised and supervised vector quanti-
zation is one of the key ingredients for vector-shift-based adaptation for learning as well as
median variants, which both inherently follow the winner-takes-all (WTA) principle (1).
Obviously, the winner determination is not independent of the dissimilarity determination
and, in quantum computing, is realized as a minimum search according to the list of all
available dissimilarity values for a current system state.

An algorithm to find a minimum is the algorithm provided by Dürr and Høyer [92,93],
which is, in fact, an extension of the often referenced Grover search [94]. Another sophis-
ticated variant for minimum search based on a modified swap test, a so-called quantum
phase estimation and the Grover search has been proposed [95]. Connections to the similar
k-nearest neighbor approach were shown [96].

4.3. Updates Using Vector Shift

The normalization of quantum states places them on a hypersphere; this allows the
transfer of the spherical linear interpolation (SLERP) to a quantum Computer [25]. This
method is known as qSLERP, and the respective circuit is depicted in Figure 4. The qSLERP-
circuit takes the two vectors |x〉 and |w〉 as input as well as the angle θ between them,
which can be derived from the inner product and the interpolation position. The ancilla bit
is measured, and the result in the data register is only kept if the ancilla is in the zero state.
To store the result, the probability of the state of the data register has to be determined
using repeated execution of the circuit.
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Figure 4. qSLERP circuit.

From a mathematical point of view, the qSLERP approach is similar to the update
used in Angle-LVQ [59] for non-quantum systems.

4.4. Median Adaptation

A selection task based on distances in median approaches is the Max–Sum Diversifica-
tion problem; it can be mathematically transformed into an equivalent Ising model [97].
Other median approaches in VQ depend on the EM algorithm, like median k-means
(k-medoids). A quantum counterpart of expectation maximization [98] was introduced
as an extension of the q-means [99], a quantum variant of k-means. The authors showed
the application of a fitting Gaussian Mixture Model. A possible generalization to other
methods based on EM needs to be verified.

4.5. Vector Quantization as Set-Cover Problem

Above, in Section 2.1.3, we introduced the set-cover problem for unsupervised vector
quantization. The QUBO model is NP-hard. Hence, at least in theory, the NP-complete
set-cover problem can be transformed into it. A transformation from a (paired) set cover to
the Ising model and, therefore, to QUBO can be solved with AQC [100]. Taking the view
of vector quantization, the following transformation of an unsupervised ε-ball set-cover
problem to a corresponding QUBO formulation can be done [77]:

Let {Bε(xi)} with i ∈ {1, . . . , N} be the set of ε-balls surrounding each data point
xi ∈ X . We introduce binary indicator variables zi, which are zero if Bε(xi) does not belong
to the current covering, and it is one elsewhere. Further, let ck be the number of sets Bε(xi)
with zi = 1 and xk ∈ Bε(xi), i.e., ck counts the number of covering ε-balls in the current
covering. In the next step, we code the integer variables ck using binary coding according
to let ck,m = 1 iff ck = m and zero otherwise. We impose the following constraint

N

∑
m=1

ck,m = 1 : ∀k ,

reflecting that the binary counting variables are consistent, and exactly one is selected. The
second constraint establishes logical connections between the selected sets in the considered
current covering and the counting variables by requiring that

∑
i|xk∈Bε(xi)

zi =
N

∑
m=1

m · ck,m : ∀k ,

where m ≥ 1 ensures that every point is covered. These constraints can be transformed
into penalty terms using the squared differences between the left and the right side for
each. Then the clustering task is to minimize the sum of all indicator variables zi, taking
the penalty terms into account. Using the explained construction scheme, this resulting
cost function only contains pairwise interactions between binary variables without explicit
constraints. Therefore, the set-cover problem is transformed into a QUBO problem.

Analog considerations are valid for the supervised classification task.

4.6. Vector Quantization by Means of Associative Memory

One of the first quantum associative memories based on a Hopfield network (HN)
approach was proposed in 2000 [69]. Recently, a physical realization based on an actual
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quantum processor was provided [101]. As shown before, the HN energy function is
identical to the QUBO problem, which can be solved by applying the quantum strategies in
Section 4.7. Further, AQC for VQ was proposed, using HNs as an intermediate model [49].

A connection between gate-based quantum computing and HNs can be shown [102].
There, a solver based on Hebbian learning and mixed quantum states is introduced. The
connection to complex-valued HN, as discussed in Section 2.1, is straightforward.

4.7. Solving QUBO with Quantum Devices

While we transformed most problems into QUBO in the previous subsections, we now
connect them to quantum computing. Different strategies based on quantum computing
hardware are available to solve QUBO problems. Heuristic approaches exist for many
commercially available hardware types, from quantum annealers and gate-based computers
to quantum devices based on photons.

Solve QUBO with AQC

A commercial approach in quantum annealing to solve QUBO or Ising models is
described in the white paper [103] using the Company D-Wave. The solving of QUBO
problems is the major optimization problem that is proposed to run on the limited hardware
of a quantum annealer. According to this, the binary variables are physically implemented
as quantum states. Values of the model interactions are implemented using couplers
between pairs of qubits. Restrictions of the hardware make it necessary to order and map
the qubits accordingly. The major open question about AQC is whether the length of the
period grows slowly enough to be feasible.

Solve QUBO with Gate-Based Computing

For gate-based quantum computers, a heuristic called QAOA can approximately solve
QUBO problems [104]. It contains two steps, first, optimizing a variational quantum circuit
and second, sampling from this circuit. The ansatz of this circuit is a parametrized alternat-
ing application of the problem Hamiltonian and a mixing Hamiltonian. The expected value
of the state gets then minimized using a classical computer, and different strategies have
been proposed. With the found (local) minima, the quantum circuit gets executed, and the
output gets sampled. Heuristically, low-energy states have a high chance of being sampled.
It should be emphasized that it remains to be proven that QAOA has a computational
advantage for any type of problem.

Solve QUBO with Photonic Devices

Gaussian Boson Sampling is a tool realized using quantum photonic computers, a
kind of quantum hardware that has potential physical benefits that could lead to fast
adoption. Quantum photonic devices introduce new types of quantum states into the field
of quantum computing, like Fock states or photon counts. Gaussian Boson Sampling is
seen as a near-term approach to utilizing quantum photonic computers. A solving strategy
for QUBO by means of an Ising model taking a hybrid approach using Boson-sampling has
been presented [105].

4.8. Further Aspects—Practical Limitations

Impact of Coding

We can replace all steps in the vector shift variant of VQ with quantum routines, but
it is not possible to build up a complete algorithm so far. The main difficulty is that these
atomic parts do not share the same encoding.

One example of this fact is the SWAP-test: Here, the result is stored as the probability
of a qubit being in state |0〉. However, we have to get rid of the phase information to obtain
a consistent result. Otherwise, this could lead to unwanted interference. A possible solution
could be the exploration of routines based on mixed quantum states. However, the use of
a Grover search is inconvenient for this task because it is based on basis encoded values,
while the dissimilarity measures are stored as probabilities.
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Impact of Theoretical Approximation Boundaries and Constraints

Some algorithms use probability or state estimation with sampling because it is im-
possible to directly observe a quantum state. For example, the output of the SWAP test
has to be estimated using repeated measurements. The problem with an estimation of
a measurement probe is well-known [25,90]. The field of finding the best measurement
strategy for state estimation is called quantum tomography.

Another theoretical boundary is the loading of classical data to a real quantum device.
Initializing an arbitrary state efficiently would be possible within the framework and
regarding the implementation of the QRAM concept. However, the efficiency of those
approaches is demanded because of the repeating nature of most algorithms and from the
perspective of the non-cloning theorem.

Impact of Noisy Circuit Execution

The noisy nature of the current quantum hardware defeats most, if not all, of the theo-
retical benefits of quantum algorithms. A combination of improved hardware and quantum
error correction will potentially solve this issue, allowing large-scale quantum computers.

5. Conclusions

The abstract motif of vector quantization learning has several adaptation realiza-
tions based on distinct underlying mathematical optimization problems. Vector shifts in
prototype-based vector quantizers frequently are obtained as gradients of respective cost
functions, whereas set-cover problem-related optimization belongs to binary optimization.
Associative memory recalls rely on attractor dynamics. For these diverse paradigms, we
highlighted (partially) matching quantum routines and algorithms. Most of them are,
unfortunately, only heuristics. Further, their advantages over classical approaches have not
been proven in general. However, the wide range of quantum paradigms, quantum algo-
rithms, and quantum devices capable of assisting vector quantization translates into a broad
potential of vector quantization for quantum machine learning. It is not possible to predict
which quantum paradigm will succeed in the long term. Therefore, there is no outstanding
vector quantization approach for quantum computing at the moment. But because many of
the presented approaches can be transformed into QUBO problems, improved quantum
solvers of each paradigm would have a strong impact. Especially, discrete strategies like
median vector quantization, which are heavily restricted by classical computers, could
become feasible. In other words, if a quantum advantage can be demonstrated in the future,
vector quantization will likely benefit, but the direction will be set with improvements in
the construction of quantum devices.

Finally, we want to emphasize that the overview in the paper is not exhaustive. For
example, a possible connection that was not introduced above is the use of the probabilistic
nature of quantum computing in combination with the probabilistic variants of Learning
Vector Quantization [106].

However, we also should mention that the question of possible quantum supremacy,
or even quantum advantages, is currently still considered an open problem in the literature.
It has been discussed to be merely a weak goal for quantum machine learning [107]. Due to
the lack of the existence of sufficient hardware today, it is also not possible to compare real
runtimes adequately.

Nevertheless, the theoretical understanding of the respective mathematical concepts
and their physical realization is important for progress in quantum computing and, hence,
also in quantum-related vector quantization.
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