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Abstract: Support vector machine (SVM) is a widely used and effective classifier. Its efficiency and
accuracy mainly depend on the exceptional feature subset and optimal parameters. In this paper, a
new feature selection method and an improved particle swarm optimization algorithm are proposed
to improve the efficiency and the classification accuracy of the SVM. The new feature selection method,
named Feature Selection-score (FS-score), performs well on data sets. If a feature makes the class
external sparse and the class internal compact, its FS-score value will be larger and the probability
of being selected will be greater. An improved particle swarm optimization model with dynamic
adjustment of inertia weight (DWPSO-SVM) is also proposed to optimize the parameters of the SVM.
By improving the calculation method of the inertia weight of the particle swarm optimization (PSO),
inertia weight can decrease nonlinearly with the number of iterations increasing. In particular, the
introduction of random function brings the inertia weight diversity in the later stage of the algorithm
and the global searching ability of the algorithm to avoid falling into local extremum. The experiment
is performed on the standard UCI data sets whose features are selected by the FS-score method.
Experiments demonstrate that our algorithm achieves better classification performance compared
with other state-of-the-art algorithms.

Keywords: optimization; SVM; FS-score; particle swarm optimization; feature selection

1. Introduction

Support vector machine (SVM) is one of the most popular machine learning methods,
which is based on the statistical learning theory and the structural risk minimization
principle [1]. Moreover, it has unique advantages in solving practical problems, such as
small sample data sets as well as nonlinear and high-dimensional pattern recognition [2–4].
In SVM, the kernel function selection is a key part for nonlinear problems. The Radial
Basis Function (RBF), as the most common kernel function, has the characteristics of fewer
optimized parameters and better classification performance in terms of accuracy and
stability, especially for high-dimensional data. However, the classification effect of the SVM
is related to two factors. The first one is the quality of the input data set. The greater the
degree of data set differentiation, the better the algorithm effects. The second one is the
value of the error penalty parameters and the kernel parameters. In order to achieve the
best classification effect and the maximum generalization of the SVM, many researchers
have proposed different solutions to solve the two issues above.

One of the most widespread methods for selecting these two key parameters is using
the grid algorithm to traverse and compare iteratively. This method can achieve relatively
good results, but it is time-consuming [5]. Therefore, some researchers proposed using the
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meta-heuristic algorithm to find the best parameter value within the specified range [6–9].
The most commonly used meta-heuristic algorithms are the genetic algorithms. They
perform well in solving large-scale nonlinear problems [10,11]. However, they are easy
to fall into the local optimal value and fail to find the global optimal solution [12–14],
since the algorithm follows the natural law of information exchange and evolution among
populations. Another meta-heuristic algorithm used to find the optimal parameters is
particle swarm optimization (PSO), which mimics the information exchange between birds
in searching for food to find the optimal result in the population. Each iteration of the
algorithm will be adjusted according to the results of the previous iteration, which greatly
improves the efficiency. Compared with the cross-mutation of the genetic algorithm, it
is more targeted, which weakens its randomness. However, the PSO algorithm is as
easy as the genetic algorithm to fall into local optimum, resulting in large errors in the
results [15,16]. Mafarja et al. proposed the Binary Dragonfly Algorithm for minimizing
all features using the wrapper feature selection algorithms to enhance the classification
accuracy [17]. By taking a mutational approach and scanning the area surrounding the
explorers, Binary Al-Biruni Earth Radius Optimization is able to deliver cutting-edge
exploration capabilities. It ensures diversity and thorough exploration by shuffling the
order of responses between repetitions [18]. Khafaga et al. proposed the Binary Dipper
Throated Optimization (bDTO) method to optimize the weighted ensemble model by
the DTO algorithm. Once the significant features are selected, the optimized weighted
ensemble model is employed to predict the gain values of metamaterial antenna [19].
The Binary Cat Swarm Optimization (BCSO) algorithm includes two major modes: tracing
and seeking modes. However, the traditional BCSO has the chance of becoming trapped in
the local optima [20].

Many scholars have improved the PSO algorithm in recent years. The most common
method is the change of inertia weight, which can improve the global search ability of the
algorithm [21–23]. Inertial weight w is a very important parameter in the PSO algorithm,
which plays an important role in the global searching ability of the algorithm. It increases
the diversity of the population and speeds up the convergence speed. Clerc proposed that
the value of w was 0.729 [24,25]. Trelea suggested that w should be 0.6 [14,26]. The smaller
w is, the stronger the local search ability of the algorithm is and, consequently, the faster
the algorithm converges. However, it is easier to fall into local convergence, and its search
ability in new regions is relatively deficient. The larger w is, the stronger the global search
ability of the algorithm is, and the more diversity the population reflects. However, it is
easy to miss the optimal point when w is large, thus leading to non-convergence. Therefore,
it is of importance to adjust the value of w dynamically to obtain the right value at different
times. At the earliest, Shi and Eberhart proposed adjusting the inertia weight w by the way
of linear decline [27]. In their view, the minimum value of w is taken as the bottom line,
and the value of w decreases linearly from the maximum to the minimum with the number
of iterations. As the actual optimization process is nonlinear and complex, the linear decline
way is not in line with the actual rules of optimization. It did not consider the situation of
all the particles in the population and had no strong adjustment, so it is easy to fall into
local optimum and cannot obtain better results.

Later, Shi and Eberhart introduced the random inertia weighting strategy, which
changed the value of w by introducing a random function [27]. Some scholars put forward
the nonlinear decreasing method to adjust the inertia weight, such as the decreasing in-
ertia weight adjustment strategy in the form of a parabola by Chatterjee and Siarry [28].
Jiang et al. used the change of cosine function to realize the nonlinear decreasing strat-
egy [24]. This nonlinear decreasing method improves the searching efficiency of the
algorithm to a certain extent. It can overcome the premature convergence of the algorithm
and reduce the probability of falling into local extreme value to a certain extent [29–31].
Lu et al. introduced the concept of personalized inertia weight. This method judges the
current position of each particle by comparing its fitness with the average fitness of the
population. Based on the state, the inertia weight of a particle with a better position is
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reduced, and the particle is focused on the development of the current region. For the
particles in poor positions, the inertia weight of the particle is increased, causing the particle
to focus on potential area exploration [32].

In the above algorithms, the values of w in the early stage are large, so they have a
strong global search ability. However, with the decrease of w in the later stage, the algorithm
easily falls into the local optimum, resulting in the loss of population diversity, and the
convergence speed of the algorithm will also slow down. Therefore, in the later part of the
algorithm, the w value will still become very small. In this way, the group does not have
diversity, it is easy to fall into a local extreme value, and it does not have a strong global
search ability. At the same time, the cosine function cannot be adjusted in time for specific
situations. The flexibility of the equation is poor [33–35].

The application of SVM relies on training in corresponding data sets to build corre-
sponding models. The rapid development of modern society leads to the explosive growth
of all kinds of information and data [36]. The growth is not only in quantity but also
in more and more diversified forms of data, such as text documents, pictures and gene
sequences [37]. Faced with such massive data and complex forms of expression, it is
impossible to carry out the practical application without filter and process. At the same
time, the relationship and characteristics of massive data in modern society also have wider
application space [38,39]. Therefore, data screening and dimension reduction of complex
data are becoming more and more important, while the feature selection method is the key
to achieving the above applications. Feature selection is a widely used data processing
method, which selects the conforming features and excludes the non-conforming features
according to the set evaluation criteria [40]. New data sets are obtained by the feature
selection of the original data sets, which can improve the accuracy and efficiency of the
algorithm in classification, regression, prediction and other tasks. It makes the models we
generate more accurate and easier to understand.

The main methods of feature selection include wrapping, filtering and embedded
methods. Most feature selection methods are derived and improved from these three
methods. Some scholars use SVM classifier for feature selection. When redundant features
or interference features exist, the performance of the classifier will be significantly reduced.
In addition, forward feature selection and backward feature selection are commonly used
in feature selection by classifier. Different feature selection methods should be applied to
data sets with different characteristics.

In order to further improve the accuracy of SVM classification, we intend to solve it
from two different perspectives. First, an efficient new multi-class feature selection method
is proposed, which is simple and intuitive. When using the hybrid model of particle
swarm optimization support vector machine (PSO-VM) to evaluate the proposed feature
selection method, not only the accuracy is greatly improved but also the training time is
shortened, and a good effect is achieved. Then, to address the drawback of the elementary
PSO algorithm where it is easy to fall into local optimum, a method based on the dynamic
change of the inertia weight is proposed to optimize the PSO, which can enhance the global
searching ability of PSO and expand the diversity of the population. The improved PSO
algorithm is used to optimize the parameters of SVM, which improves the performance
of the model and enhances the generalization ability of the model. In summary, the main
contributions of this paper are presented as follows:

1. A new feature selection method is proposed. In the formula, the numerator is the
sum of the mean values of the variances between classes, and the denominator is the
dispersion coefficient to measure the dispersion degree of each eigenvalue within the
class. When the numerator is larger and the denominator is smaller, the gap between
classes will be larger and the gap within each class will be smaller. The discretization
coefficient can describe the differences between classes more accurately and have
a better performance than other ways. The proposed feature selection method can
improve the classification accuracy and shorten the training time of the classifier.
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2. An improved method for the inertia factor in PSO is proposed, which dynamically
changes the inertia factor. We use the logarithmic function and random number to
improve the changing process. It not only ensures that the inertia weight can decrease
nonlinearly but also meets the necessary conditions for its convergence. In addition, a
random function is introduced to ensure that the algorithm has a strong search ability
in the early stage, and it will not be premature in the later stage. This algorithm can
improve the accuracy of the search.

3. The proposed feature selection method is combined with the proposed Dynamic
Weighted Particle Swarm Optimization (DWPSO) algorithm to improve the classifica-
tion accuracy of the SVM and shorten the whole experiment time.

This paper is organized as follows. Section 2 introduces the method of the feature
selection. Section 3 makes a brief introduction to SVM, PSO and introduces the DWPSO-
SVM model. Section 4 describes the experiments performed and the obtained results.
Section 5 discusses the main conclusions and future work.

2. Feature Selection

In this section, the new feature selection method called FS-score is detailed. By using
this method, the key features can be selected, and the redundant or irrelevant features can
be eliminated so as to build a better representation of data and improve both the accuracy
and computation efficiency of classification algorithms.

The feature selection method selects the most effective feature for classification. Multi-
classification feature selection refers to the feature selection on the data sets with multiple
classes. To solve the problem of low classification accuracy of multi-classes and multi-
feature data sets, the method to improve the efficiency of the algorithm and shorten the
running time is proposed. The feature selection method is described as follows:

Given data set Q ∈ Rm, xk is the k-th sample in the data set, where k = 1, 2, 3 . . . n(n > 2),
and nj is the number of samples of class j. Then, the FS-score value of the i-th feature in the
data set is calculated below.

Fi =
∑

p
j=1 (xj

i − xi)
2

qi
(1)

qi = ∑p
j=1

√
∑

nj
k=1 ((xk)

j
i − xj

i)
2

xj
(2)

In Equations (1) and (2), xj
i is the average characteristic value of the i-th feature in the j-th

class. xi is the average characteristic value of the i-th feature in the whole data set. p is the
total number of classes. (xk)

j
i is the characteristic value, where j, k and i refer to the j-th

class, the k-th sample and the i-th feature, respectively.
The proposed feature selection method is based on the value of Fi. In Equation (1),

the numerator is the sum of the mean values of the variances between classes, and the
denominator is the dispersion coefficient to measure the dispersion degree of each eigen-
value within the class. The discretization coefficient can be used to describe the differences
between classes more accurately. When the numerator is larger and the denominator is
smaller, the gap between classes will be bigger and the gap within classes will be smaller.
This feature will play an important role in the classification, and the discrimination ability
of the feature will be stronger. Therefore, when the Fi value is larger, the probability of this
feature being selected is higher.

The principle upheld by the feature selection method is that the larger the gap between
categories and the smaller the gap within categories, the better the classification effect
will be. In many other methods, numerators represent the approximate sum of distances
between classes. If there is an extreme value, it is very easy to cause a too large or too small
result, which will cause interference in the process of feature selection. In the FS-score
method, the numerator is the sum of the mean values of various inter-class variances; it
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can avoid the interference caused by extreme values on feature selection. The denominator
is the discrete coefficient to measure the dispersion degree of each feature value within the
class. Using the discrete coefficient will make the description of the difference between
classes more accurate and more intuitive.

The algorithm process will be elaborated in order, and the specific process is described
in detail in Algorithm 1.

Algorithm 1 An effective feature extraction method
Input: The data set Q ∈ Rm, the penalty parameters C, the kernel parameter γ, the number

of iterations m.
Procedure:
1: Value preprocessing: using g = g′−mina

maxa−mina
to scale the eigenvalue. g is the scaled value,

g, is the original value of the feature, maxa and mina are the upper and lower bounds
of the original eigenvalue, respectively.

2: For the ith sample, i = 1, 2 . . . , L. Calculating Fi using Equations (1) and (2). According
to the Fi value of features, the features are divided into u groups in descending order
(u = 5 ∼ 10).

3: Calculating the accuracy for each group.
Output: accuracy ∈ Rm

3. DWPSO-SVM Model
3.1. Support Vector Machines

The initial theory of SVM is based on the principle of maximizing the interval and
minimizing the structural risk. For practical problems, there are a variety of SVM-derived
algorithms, such as the linear SVM, the nonlinear SVM and the least squares SVM. For the
traditional dichotomous linear SVM, the hyperplane is used to classify the linearly separable
dichotomous data sets [12,41]. Given a dichotomous data set T{xi, yi}(i = 1, 2 . . . n), where
xi ∈ Rn, yi ∈ {−1, 1}, for the dichotomous linearly separable data set in the Rn space, there
will be multiple linear classification hyperplanes with the expression ωTx + b = 0. The con-
vex quadratic programming model of the linear separable SVM is described as follows:

min
ω,b
‖ω‖ ∗ 1

2 s.t. yi
(
ωTxi + b

)
≥ 1, i = 1, 2 . . . n (3)

According to this constraint condition, the training sample points of the two classes are di-
vided into both sides of the two hyperplanes parallel to the classification hyperplane [11,42].
Sometimes, some sample points of the two classes are too close. In this case, the hyper-
plane obtained according to Equation (3) cannot properly separate these sample points.
To enhance the generalization ability and robustness of the model, the convex quadratic
programming problem of the linear SVM is obtained by adding the relaxation variable εi
and the penalty parameter C.

min
ω,b,ε

1
2‖ω‖2 + C ∑n

i=1 εi

s.t. yi
(
ωTxi + b

)
+ εi ≥ 1, i = 1, 2 . . . n,

(4)

where εi ≥ 0, i = 1, 2 . . . n. Equation (4) is a minimization problem that is difficult to solve.
It is difficult to find a hyperplane with a large margin while controlling the total amount
of relaxation variables [43–45]. The penalty parameter C is used to balance the two terms.
This model can be solved by maximizing the dual Lagrangian formula LD(α) as follows.

max LD(α) =
n

∑
i

αi −
m

∑
i,j=1

αiαjyiyj
(
xi ∗ xj

)
∗ 1

2
, (5)



Entropy 2023, 25, 531 6 of 23

where 0 ≤ α < C, i = 1, 2 . . . n,
n
∑
i

αiyi = 0. ω and b can be solved directly. In practical

problems, the samples of many data sets cannot be separated linearly. Hence, a nonlinear
classifier is needed to separate the data sets through the nonlinear mapping. So, the SVM
can solve the problem in a higher-dimensional space. We implement this process by using
the following kernel function instead of the dot product.

max LD(α) =
n

∑
i

αi −
1
2

m

∑
i,j=1

αiαjyiyjK
(
xi, xj

)
, (6)

where 0 ≤ α < C, i = 1, 2 . . . n,
n
∑
i

αiyi = 0. α is the Lagrange multiplier. In this paper, the

kernel function is chosen to be the radial basis, while the PSO algorithm and the improved
PSO algorithm are used to find the best penalty parameter C and the kernel parameter γ.
The radial basis kernel function is described as follows.

K(xi, xj) = exp(−γ||xi − xj||2) (7)

Small samples, high latitude, nonlinearity, and local minimum points are all diffi-
culties that the SVM model excels at handling when using optimization theory. It solves
the problems of pattern categorization, dimensionality disaster, and over-learning at the
same time, while it has great generalization, global optimal performance and learning
ability. It has been extensively utilized and has effectively solved numerous pattern
recognition challenges.

Many scholars developed strategies for improving and modifying the SVM model.
Osuan et al. devised and implemented a decomposition technique for face detection in
1997. A sequential optimization approach was suggested by Platt in 1998. The purpose of
the technique is to supplement the original method with some variables or functions [46].
Suykens et al., for example, presented the LS-SVM approach, which increased support
vector sparsity and proposed a sparse approximation strategy for regression issues [47].
In addition, there are more algorithms, such as the dynamic weighted LS-SVM, Huber ap-
proximation algorithm and Do Lagrangian multiplier collaborative optimization algorithm.
To improve the efficiency of optimization, S S. Keerth proposed the nearest point algorithm
to improve the efficiency [48]. Mavroforakis et al. developed an intuitive application for
understanding geometric optimization algorithms for the geometric framework of SVM
classification issues in terms of geometric methods [49]. In terms of incremental algorithms,
Ahmed presented the SVM incremental training method, which selected a small batch of
traditional quadratic programming algorithms as increments, allowing the support vector
and new samples to be blended for training [50].

Scholars have discovered that the SVM method offers numerous advantages as a
result of ongoing in-depth research. It can ensure that the extreme value solution has been
found to be the global best solution. This also proves that the SVM method is capable of
generalizing unknown samples. Some SVM models and approaches have shown strong
promotion ability in numerous application domains and have been widely employed
as a result of these advantages. Face detection and recognition, handwritten numbers
recognition, text classification, speech recognition, picture recognition, image classification,
and the like are some of the most common applications in the field of pattern recognition.
Several pattern recognition challenges have been solved satisfactorily.

3.2. DWPSO-SVM

The PSO algorithm was put forward by Dr. Eberhart and Dr. Kennedy in 1995. It
is a population intelligent algorithm designed by imitating the study on the predation
behavior of birds while observing the predation situation [51,52]. In the proposed method,
DWPSO is used to find the two best parameters values of the SVM. Scholars have put
forward improvement measures to the PSO algorithm from different perspectives; most of
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them improve the change way of inertia weight, which uses different types of calculation
methods to slow down the speed of inertia weight reduction in the later period of the
algorithm. However, these methods all have the limitations and shortcomings. In particular,
although these algorithms delay the decreasing trend of the inertia factor of the PSO
algorithm in the later period, the trend does not change. It is still likely to lead to the
local extreme value. The DWPSO-SVM improves the problem that the inertia factor of the
PSO algorithm easily falls into local convergence in the later stage of the algorithm, and it
achieves a better effect. However, compared with the grid algorithm, the DWPSO-SVM
still gives non-optimal parameter values with some probability. However, the efficiency of
the time-consuming grid algorithm is poor, and its practical application effect is not good.

Different from the genetic algorithm, the DWPSO-SVM does not need to go through
steps such as crossover, mutation and evolution, and it avoids the complex evolutionary
operation. It uses mobile search in the whole area, and it can dynamically adjust its search
strategy according to the current situation. As all the particles are searching and moving
at the same time, it is an efficient parallel search strategy. Moreover, the algorithm is not
sensitive to the size of the population, and the number of the population has no obvious
effect on the effectiveness of the algorithm [24,27]. Here, we introduce the fundamental
PSO algorithm, which has the following formula.

vi =vi + c1 ∗ rand() ∗ (pbesti − xi)

+ c2 ∗ rand() ∗ (gbesti − xi)
(8)

xi = xi + vi (9)

In Equations (8) and (9), i = 1, 2 . . . N , N denotes the total number of particles in this
swarm. vi denotes the velocity of the particle, rand() denotes a random number whose
value is between (0, 1), xi denotes the current position of the particle in space, c1 and c2
are learning factors, and usually, a fixed value will be selected. The maximum value of
vi is Vmax. If vi is greater than Vmax during iteration, then vi = Vmax. pbesti and gbesti,
respectively, represent the best-known position of the particle itself and the best-known
position of particle swarm globally [53,54].

Equations (8) and (9) are called elementary particle swarm equations. The standard
particle swarm equation will be introduced below. The specific equation is expressed
as follows.

vi =w ∗ vi + c1 ∗ rand() ∗ (pbesti − xi)

+ c2 ∗ rand() ∗ (gbesti − xi)
(10)

Compared with Equation (8), Equation (10) is only modified in the first term. w is
called the inertial factor, and its value is non-negative. The magnitude of its value will
affect the motion of particles in space. When its value is large, the global optimization
ability is strong, but the local optimization ability is weak conversely. When its value is
small, the global optimization ability is weak, but the local optimization ability is strong.
The introduction of w has greatly improved the performance of the PSO algorithm, and it
can flexibly adjust the global and local search ability according to different actual situations.
Equations (9) and (10) refer to the standard PSO algorithm together [55,56].

Next, we present the proposed PSO algorithm based on the improved inertial weight
in detail. At the same time, the improved PSO algorithm is used to optimize the parameters
of the SVM classifier. This section mainly includes the model elaboration and the algorithm.

A method is proposed about dynamically changing the inertia factor, which can adjust
the variation trend of the equation according to the specific situation. The specific method
is described as follows:
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The natural logarithm is used to control the reduction of inertia weight. rand() is a
random generation function, which can increase the diversity of the population in the later
stage of the algorithm to avoid premature maturity. The specific formula is presented in
detail as follows.

w(t) =wmin + (
wmax − wmin

2
) ∗ 1

ln(e + (kz)2)

+
(wmax − wmin)

2
∗ rand()

(11)

where the value of wmax is 0.9 and wmin is 0.4 [45], z = t/T, k is a random number from
0 to 1. In Equation (11), the second part is used to reduce the inertia weight gradually
through the logarithmic function 1

ln(e+(kz)2)
. k is the regulating factor, which can adjust the

decreasing trend of inertia weight. The weight of inertia is large in the early period, and as
z becomes larger, the first term of the equation becomes smaller. In this case, the third
term of the equation adjusts the value of w(t) in time. The value will increase randomly
to ensure the diversity of the population and to avoid premature convergence. Therefore,
it can be seen from Equation (11) that this algorithm not only ensures that the inertia
weight can decrease nonlinearly but also meets the necessary conditions for its convergence.
In addition, rand() (random function) is introduced to ensure that the algorithm has a
strong search ability in the early stage, and it will not be premature in the later stage, so as
to improve the accuracy of the search.

The DWPSO-SVM classifier is utilized to classify the data set after feature selection
by using the proposed FS-score method. The kernel selected by the SVM classifier is RBF
kernel. The improved particle swarm optimization algorithm is used to find the optimal
penalty factor C and the parameter γ in the kernel function of SVM. We evaluate the
DWPSO-SVM method according to the evaluation indexes. As the data sets are used after
feature selection, there is no need to scale the eigenvalues of each sample in the data set. We
divide the data sets into three independent parts: training set, monitoring set and test set.
The training set is used to train the DWPSO-SVM classifier including the feature selection
step. The monitoring set is used to optimize the model such as the number of features
and other parameters in the model to avoid overfitting. The test set is used to test the
predictive ability of the model independently. The whole algorithm is introduced detailed
in Algorithm 2.

Algorithm 2 The DWPSO algorithm to optimize the parameters of the SVM
Input: the data set after feature selection Q ∈ Rm, the range of the penalty parameter C,

the range of kernel parameter γ, the number of iterations m.
Procedure:
1: Calculating w(t) using Equation (11) in the PSO algorithm.
2: Q is divided into the training set and the testing set, and it is trained on the DWPSO-

SVM classifier.
3: For the ith iteration, i = 1, 2 . . . , m. If the iteration number = m, testing begins.
4: Using Equations (12), (13) and (14) to calculate accuracy, TNR and TPR.
Output: accuracy ∈ Rm,TNR, TPR ∈ [0, 1]

4. Experimental Results and Discussions
4.1. Experiments Settings

All experiments in this paper are conducted on a personal computer with an Intel
8-generation i5 processor, 2.4 GHz, 8 GB of RAM, and Windows 10. The code runs on
Matlab 2016 and is used to experiment with the Libsvm toolkit. All the data sets used in the
proposed FS-score method are the standard UCI data sets, while the data sets used in the
DWPSO-SVM method are the data sets after being feature selected by the FS-score method
on the standard UCI data sets. The values of the two parameters of the RBF kernel function
in SVM used in our experiment [57] are C in [0, 32,000] and γ in [0, 10]. The characteristics
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of the data sets, such as the numbers of features and instances, are shown in Table 1.
According to the preliminary experimental results, the maximum number of iterations
is set to 150, and all experiments converge within 150 generations. The initialization of
agents used in the proposed method refers to [58]. Various evaluation criteria are used to
evaluate the effectiveness of the proposed approach. The specific evaluation criteria will
be described in detail. To verify the effectiveness of our proposed method, the method of
averaging ten random trials is used. The original data set is divided into K parts. All of
the parts except the K-th part are trained. The K-th part tests the classification effect and
returns the value of the classification evaluation index being used. Here, K is set to 10.

Table 1. The data sets from the UCI repository.

Data Set Features Instances Classes Feature Characteristics Data Set Characteristics

Australia 14 690 2 Categorical, Real Multivariate, Time-Series
Breast cancer 9 277 2 Categorical Multivariate
CMC 9 1473 3 Categorical, Integer Multivariate
Diabetes 9 768 2 Categorical, Integer Multivariate, Time-Series
Germen 24 1000 4 Integer, Real Multivariate
Heart 14 270 2 Categorical, Integer, Real Multivariate
Ionosphere 34 351 2 Integer, Real Multivariate
Iris 4 150 2 Real Multivariate
Dnatest 180 1186 3 Integer Multivariate, Time-Series
Sonar 60 208 2 Integer Multivariate, Text
Vehicle 18 846 4 Real Multivariate, Integer
Vowel 3 871 6 N/A Image
Wdbc 30 569 2 Real Multivariate, Data-Generator
Wine 13 178 3 Integer, Real Multivariate
Air 64 359 3 Real Multivariate, Time-Series
Farm Ads 54,877 7143 2 N/A Text
Oclar 3916 3916 5 Integer Text
Arcene 10,000 900 2 Real Multivariate

4.2. Evaluation Criteria

In this subsection, the PSO-SVM classifier is used to demonstrate the effectiveness of
our proposed feature selection method. The kernel function selected by the classifier is
the RBF. The accuracy of classification is used as the criterion to evaluate the effectiveness
of the proposed feature method. Its value is calculated according to the confusion matrix.
Table 2 indicates the actual category of the samples as well as the predicted category, where
1 denotes positive and −1 denotes negative.

Table 2. The confusion matrix.

Actual Class

1 −1

Predicted class 1 True Positive (TP) False Negative (NP)
−1 False Positive (FP) True Negative (TN)

According to the confusion matrix above, the accuracy of the classifier is defined as
Equation (12).

Accuracy =
TP + TN

TP + FP + NP + TN
(12)

At the same time, the training time of the test samples is considered as a part of the
evaluation criteria. When the accuracy difference is within the acceptable range, the fewer
features selected, the shorter the training time, and the higher the efficiency of the algorithm.
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To evaluate the effectiveness of our proposed DWPSO method, we take advantage
of the hybrid matrix mentioned in Table 2 to evaluate our proposed model. Among all
the evaluation indexes, accuracy is considered to be the most important metric to evaluate
the classification effect. In addition to the accuracy, other corresponding indicators for
different types of data sets are also adopted to accurately evaluate the effects. Sensitivity
(TPR) and specificity (TNR) are two common evaluation indexes for dichotomous data sets.
The specific Equations (13) and (14) are described in detail.

TPR = precision =
TP

TP + FP
(13)

TNR =
TN

TN + FP
(14)

For binary data sets, the ROC curve and AUC value can also be used to evaluate the
classification performance. The ROC curve is the receiver operating characteristic curve.
Each point on the curve reflects the sensitivity to the same signal stimulus. The vertical
axis of the curve is TPR, and the horizontal axis is FPR. ROC shows the tradeoff between
sensitivity and specificity. The closer the curve is to the left and upper boundary of the
coordinate axis, the better the classification effect of the classifier will be. The area contained
under the ROC curve is the AUC value. Similarly, according to the definition of the ROC
curve, the larger the AUC value is, the better the classification effect will be.

4.3. Results of Feature Selection with FS-Score

In this part of the experiment, 15 data sets from the standard UCI data set are used
(Australia, CMC, Diabetes, Dnatest, Germen, Heart, Iris, Sonar, Vehicle, WDBC, Wine, Air,
Farm Ads, Oclar, Arcene). First, FS-scores of the features are calculated, and the features
are sorted from the largest to the smallest according to the FS-score value. Then, they are
divided into four to ten groups based on the number of features. The first group has at least
one feature and at most 15 ranked top by the FS-score. The actual number is determined
based on the number of features in the data set. The second group, based on the first group,
adds one or more features whose FS-score just stays behind the first group. For example,
the data set Iris has a total of four features, and these features are grouped into four groups.
The first group has a feature, the second group adds a feature to the first, and the third
group adds a feature to the second. The data set Sonar has a total of sixty features, which
are divided into six groups. The first set of features is ten, and each subsequent set of
features adds ten to the previous set of features.The order of addition is from large to small
by Fi. The feature groups are formed in this way until the last feature group contains all
the features. The classification results of some data sets are presented in Figure 1. Finally,
the best feature group is determined according to the criteria of the highest classification
accuracy and the least selected features. Table 3 shows the optimal number of features and
the feature subsets selected for all data sets.
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Figure 1. Changes in the accuracy of each data set with the increase in the number of features.

Table 3. The optimal feature subset.

Data Set No. of Selected Features Selected Features

Australia 11 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14
CMC 5 1, 2, 3, 4, 8
Diabetes 7 1, 2, 3, 4, 5, 6, 8
Dnatest 28 5, 18, 44, 47, 50, 68, 72, 82, 83, 85, 90, 93, 97,

99, 100, 105, 111, 120, 123, 126, 129, 150, 156, 162, 171,
174, 180

Germen 15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17
Heart 12 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
Iris 4 1, 2, 3, 4
Sonar 40 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48

Vehicle 10 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16
Wdbc 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30
Wine 8 1, 3, 4, 5, 7, 10, 12, 13
Air 57 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64

Farm Ads 1858 N/A
Oclar 435 N/A
Arcene 175 N/A

It can be seen from Figure 1 that the accuracy of all data sets fluctuates with the
increase of the number of selected features. This means that many or few features do have
a big impact on the accuracy of the data set. The few features make the model poorly
learned. The excessive features will increase the training time and affect the efficiency.
Moreover, the useless or redundant features will decrease the accuracy of the classifier.
For the 14 selected data sets, the accuracy changes with the number of selected features,
and the accuracy does not always increase with the number of features. Take the data
set Sonar as an example: it has the highest accuracy at 40 features and decreases when
the number of features continues to increase. As shown in Tables 1 and 3, the number
of features selected from some data sets (Iris, Vehicle, Diabetes, Australia) is close to that
of the original data set when the accuracy reaches the highest. For example, the data set
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Diabetes has only one feature reduced compared to the original data set, while the data set
Australia has only three features reduced compared to the original data set, although the
number of features in these data sets is small. However, for some data sets (Farm Ads,
Oclar, Arcene) with a large number of original features, the number of selected features at
the time of reaching the highest accuracy is much lower than before after feature selection.
For example, the data set Farm Ads decreases from 54,877 features to 1858 features, and the
data set Oclar decreases from 3916 features to 435 features.

As the number of features decreases, the training time of the algorithm reduces
significantly. As shown in Table 4, the training time of the data sets with a large number of
features decreases significantly. For example, the training time of the Germen data set is
reduced by nearly 15 min, and the training time of the CMC data set is reduced by nearly
7 min. Therefore, in the case of improved accuracy, the training time is greatly reduced,
while the efficiency of the algorithm is greatly improved.

Table 4. The comparison of the training time before and after feature selection.

Data Set
Training Time (s)

Full Features Selected Features Percentage of Improvement (%)

Australia 321 244 31.56
CMC 1382 987 40.02
Diabetes 305 295 3.38
Dnatest 4156 497 836.28
Germen 2245 1322 69.82
Heart 105 98 7.14
Iris 4 4 0.00
Sonar 62 44 40.91
Vehicle 782 610 28.20
Wdbc 478 430 11.16
Wine 54 46 17.39
Farm Ads 103,478 8758 1081.52
Oclar 8634 3287 162.67
Arcene 6438 1265 408.93

Accuracy is the most important evaluation index of the algorithm. It can be seen
from Table 5 (optimal values are marked in bold) that the accuracy of most data sets has
been greatly improved after feature selection. The accuracy is one to four percent higher.
For example, the accuracy of data set Australia increases by 0.89%, and the accuracy of
CMC increases by 4.26%. Some data sets have little or no improvement in accuracy as
the data set itself has few features, and each of its features has a significant impact on the
accuracy of classification. Therefore, the feature selection method reduces the number of
features by only one or even no reduction, so its accuracy is improved relatively low.

4.4. Evaluation on DWPSO-SVM

In this part of the experiment, the DWPSO-SVM algorithm we proposed will be
compared with the combination of the basic PSO algorithm and SVM, namely the PSO-
SVM algorithm, and different evaluation indexes will be used for comparison. In addition to
the PSO-SVM algorithm, the improved PSO-SVM algorithms and other types of algorithms
related to SVM are also be compared. The UCI data sets listed in Table 1 are used for the
experiment, and all features are selected by the FS-score method.

As shown in Table 6, experiments on 16 standard UCI data sets are conducted with
feature selection in the improved PSO. The evaluation criteria we used are accuracy, TPR,
and TNR. Ten experiments are performed for each data set to obtain the average value
of all indicators. Among them, the values of TPR and TNR for data sets of three or more
categories are expressed by N/A.



Entropy 2023, 25, 531 15 of 23

Table 5. The accuracy of PSO-SVM before and after feature selection.

Data Set
Accuracy (%)

Full Features Selected Features

Australia 83.56 ± 1.72 84.45 ± 1.81
CMC 49.59 ± 2.15 53.85 ± 4.55
Diabetes 75.08 ± 3.07 77.54 ± 4.8
Dnatest 54.92 ± 0.76 90.91 ± 3.13
Germen 49.50 ± 3.10 53 ± 2.43
Heart 80.57 ± 2.15 83.57 ± 2.87
Iris 95.4 ± 3.27 97 ± 3.33
Sonar 85.36 ± 4.28 89.29 ± 4.25
Vehicle 71.83 ± 2.94 73.63 ± 4.13
Wdbc 96.81 ± 2.44 98.55 ± 2.83
Wine 98.42 ± 2.22 100 ± 0
Farm Ads 47.48 ± 2.32 77.78 ± 5.43
Oclar 62.13 ± 7.18 74.74 ± 4.23
Arcene 67.37 ± 7.34 81.54 ± 5.86

Table 6. The comparison between the DWPSO-SVM (improved algorithm) and the PSO-SVM.

Data Set
DWPSO-SVM PSO-SVM

TPR (%) TNR (%) Accuracy (%) TPR (%) TNR (%) Accuracy (%)

Australia 88.89 91.11 87.41 ± 3.75 97.14 87.27 84.45 ± 1.81
Breast cancer 21.05 94.83 74.89 ± 4.49 25 92.98 71.43 ± 6.47
Diabetes 80 87.18 79.66 ± 4.56 56.76 87.65 74.86 ± 5.44
Germen N/A N/A 57.00 ± 5.29 N/A N/A 57.00 ± 3.43
Heart 88.89 76.47 85.71 ± 2.86 83.78 75.76 82.86 ± 3.78
Ionosphere 90.48 100 93.46 ± 2.26 85 100 91.50 ± 2.26
Iris N/A N/A 98.67 ± 1.15 N/A N/A 96.00 ± 2.00
Sonar 90 94.44 91.67 ± 2.06 84.62 93.33 86.90 ± 2.10
Vehicle N/A N/A 78.08 ± 4.31 N/A N/A 75.11 ± 5.14
Vowel N/A N/A 84.51 ± 3.45 N/A N/A 77.93 ± 5.33
Wdbc N/A N/A 99.03 ± 1.45 N/A N/A 98.07 ± 0.84
Wine N/A N/A 100 ± 0 N/A N/A 96.86 ± 0.12
CMC N/A N/A 54.38 ± 1.18 N/A N/A 53.48 ± 1.94
Farm Ads 83.65 92.73 87.33 ± 3.42 77.89 84.46 79 ± 4.21
Oclar N/A N/A 81.46 ± 3.12 N/A N/A 77.35 ± 2.45
Arcene 86.43 89.67 89.65 ± 4.65 83.83 85.94 83.75

The results in Table 6 show that compared with the PSO algorithm, the DWPSO
algorithm significantly improves the performance of the classifier on 16 data sets. Based on
the accuracy, TPR, TNR, and other evaluation indexes, the proposed algorithm performs
better than the basic PSO algorithm in most of the 16 data sets. For example, on the Vowel
and Diabetes data sets, the accuracy of the indicators is 6.58% and 4.8% higher, respectively,
than the algorithm before improved. For the Sonar data set, the TPR and TNR values for the
DWPSO-SVM algorithm are 90% and 94.44%, respectively. Compared with the PSO-SVM
algorithm, the results are respectively improved 5.48% and 1.11%. At the same time, its
accuracy improves 4.77%. Although the accuracy is not high in some data sets, it also drops
slightly for TPR and TNR. However, in general, compared with the PSO-SVM algorithm,
the DWPSO-SVM algorithm has improved significantly in terms of classification accuracy.
Meanwhile, the nonparametric statistical significance analysis is conducted to prove the
strength of the proposed algorithm. As shown in Table 7, DWPSO-SVM is not significantly
different from PSO-SVM at 0.05 level by the Kruskal–Wallis variance analysis.
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Table 7. Kruskal–Wallis variance analysis.

Descriptive statistics

N Min Q1 Median Q3 Max

DWPSO-SVM 13 54.38 76.485 85.71 96.065 100
PSO-SVM 13 53.48 73.145 82.86 93.75 98.07

Rank

N Mean rank Sum rank

DWPSO-SVM 13 14.88462 193.5
PSO-SVM 13 12.11538 157.5

Test statistics

Chi-Square DF P > Chi-Square

0.85236 1 0.35588

In addition, other improved algorithms concerning the particle swarm inertia factor
in recent years are also compared. It is combined with SVM in the same way as the
DWPSO-SVM; other experimental conditions, parameters and configurations are the same.
The DWPSO-SVM algorithm and other eight comparison algorithms are run on 12 data sets
selected by the FS-score method, and its evaluation index is the accuracy of the classifier.
The generation number and iteration number of all the compared algorithms have been
listed in Table 8 (optimal values are marked in bold). As shown by the experimental results
in Table 9 (optimal values are marked in bold), the accuracy of the proposed DWPSO-SVM
algorithm is higher than that of other comparison algorithms in nine data sets. However,
in the other three data sets, the classification accuracy is inferior to other comparison
algorithms. For example, on the data sets Australia and Breast Cancer, the classification
accuracy of the RAND-SVM method is the highest.

Table 10 (optimal values are marked in bold) shows the comparison between the
DWPSO-SVM algorithm and other types of algorithms. Each algorithm adopts its default
parameters and settings. The highest value of the classification accuracy on each data set has
been shown in bold. It can be seen that in the nine data sets we adopted, the DWPSO-SVM
algorithm has the highest accuracy.

Three data sets with different orders of magnitude have been selected for the memory
experiment. For Iris, the data set with the least features, the memory occupied by the
DWPSO-SVM method during training is 237 M due to the smallest number of samples.
For Oclar, the data set with thousands of features, it takes up 2.32 GB of memory for training.
For Farm Ads with about 50,000 features, it takes up 7.37 G of memory, which is almost
the full memory. The time complexity of the algorithm is O(n2), and the running time of
the DWPSO-SVM algorithm on different data sets are is shown in Table 11. The spatial
complexity of the algorithm is O(n).

To evaluate the classifier’s ability to distinguish categories, the ROC curves of the
data sets Australia and Breast Cancer are drawn. As shown in Figures 2 and 3, the closer
the curve is to the left and upper part of the coordinate axis, the better the classification
ability of the classifier is. The larger the area of the curve is, the better the performance
of the classifier. The area under the curve is the AUC value. We also calculate the AUC
values of the Australian and Breast Cancer data sets under the DWPSO-SVM and PSO-SVM
algorithms, which are illustrated in Figures 2 and 3, respectively. From the perspective of
the AUC value, the AUC value of the DWPSO-SVM algorithm is greater than that of the
previous two data sets.
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Table 8. Number of generations when the algorithm reaches convergence.

Data Set DWPSO-SVM RAND-SVM SWISPSO-SVM ALGPSO-SVM AIWPSO-SVM IIWPSO-SVM IDWPSO-SVM DSOPSO-SVM PSO-A

Australia 93 ± 2.31 90 ± 3.21 103 ± 2.43 93 ± 1.32 92 ± 2.33 114 ± 3.42 115 ± 3.38 117 ± 3.12 110 ± 2.12
Breast cancer 77 ± 1.54 67 ± 3.45 86 ± 3.21 102 ± 4.33 130 ± 2.63 127 ± 2.39 132 ± 2.93 140 ± 2.45 128 ± 3.31
Heart 87 ± 2.53 97 ± 3.32 102 ± 3.73 80 ± 2.67 100 ± 3.56 94 ± 1.54 93 ± 1.56 88 ± 2.15 100 ± 3.21
Ionosphere 98 ± 2.12 92 ± 2.13 108 ± 3.11 100 ± 2.45 80 ± 2.15 94 ± 3.21 102 ± 3.18 94 ± 2.15 98 ± 2.16
Iris 96 ± 2.41 100 ± 1.12 118 ± 2.54 110 ± 1.15 103 ± 2.12 111 ± 2.15 115 ± 3.12 110 ± 2.15 102 ± 3.17
Sonar 89 ± 3.12 110 ± 1.27 95 ± 3.12 95 ± 2.17 114 ± 3.22 109 ± 1.24 92 ± 2.12 107 ± 2.87 100 ± 2.65
Vehicle 79 ± 2.12 90 ± 2.74 85 ± 3.52 90 ± 2.15 84 ± 1.28 82 ± 3.85 86 ± 2.16 85 ± 1.67 83 ± 1.42
Vowel 84 ± 1.67 97 ± 2.12 90 ± 1.43 100 ± 3.16 90 ± 3.12 95 ± 2.14 98 ± 1.43 104 ± 3.14 112 ± 3.16
Wdbc 97 ± 2.15 108 ± 4.12 100 ± 1.41 110 ± 2.15 113 ± 3.15 120 ± 1.34 118 ± 2.14 112 ± 1.45 117 ± 2.65
Wine 100 ± 0.87 120 ± 2.67 139 ± 3.56 108 ± 1.44 115 ± 1.78 112 ± 2.45 136 ± 3.12 114 ± 1.54 115 ± 1.34
Farm Ads 87.33 ± 3.42 77.43 ± 3.23 81.24 ± 2.34 63.34 ± 4.53 77.62 ± 4.29 63.45 ± 4.23 71.51 ± 3.62 83.56 ± 3.67 61.26 ± 4.18
Oclar 81.46 ± 3.12 82.34 ± 4.34 79.23 ± 3.24 53.34 ± 34 69.34 ± 3.61 52.45 ± 5.23 69.23 ± 6.16 75.57 ± 3.17 52.77 ± 3.67
Arcene 89.65 ± 4.65 81.34 ± 45 83.56 ± 5.23 66.56 ± 25 78.21 ± 1.66 71.23 ± 3.35 85. ± 4.32 87.23 ± 5.19 67.72 ± 3.82

Table 9. The accuracy comparison of the DWPSO-SVM algorithm and other types of the PSO-SVM.

Data Set DWPSO-SVM RAND-SVM SWISPSO-SVM ALGPSO-SVM AIWPSO-SVM IIWPSO-SVM IDWPSO-SVM DSOPSO-SVM PSO-A

Australia 87.41 ± 3.57 89.26 ± 2.23 82.59 ± 6.3 85.56 ± 3.8 89.26 ± 3.01 83.33 ± 0.74 83.33 ± 2.54 82.59 ± 1.42 84.07 ± 3.06
Breast cancer 74.89 ± 4.49 89.26 ± 2.81 73.05 ± 2.08 70.56 ± 4.86 67.97 ± 1.82 67.97 ± 5.66 74.19 ± 3.53 73.76 ± 5.15 74.33 ± 4.51
Germen 57.00 ± 5.29 53.5 ± 4.35 47.00 ± 2.45 46.00 ± 5.08 49.50 ± 8.17 49.00 ± 4.72 50.00 ± 3.89 51.5 ± 4.35 57.00 ± 3.87
Heart 85.71 ± 2.86 85.67 ± 3.30 78.10 ± 3.60 77.14 ± 5.15 82.38 ± 4.59 84.29 ± 5.15 83.33 ± 3.60 84.29 ± 1.43 82.86 ± 1.43
Ionosphere 93.46 ± 2.26 95.42 ± 1.13 90.20 ± 1.96 96.07 ± 3.40 96.73 ± 1.13 95.42 ± 3.00 92.16 ± 5.19 95.42 ± 3.00 94.12 ± 1.96
Iris 98.67 ± 1.15 96.67 ± 1.15 93.33 ± 4.62 94.67 ± 1.15 96.67 ± 1.15 95.33 ± 0.97 96.00 ± 2.31 95.33 ± 1.00 96.00 ± 1.33
Sonar 91.67 ± 2.06 85.71 ± 7.14 88.10 ± 5.45 88.10 ± 7.43 85.71 ± 3.56 85.71 ± 7.14 89.28 ± 3.57 84.52 ± 5.46 86.90 ± 14.4
Vehicle 78.08 ± 4.31 71.49 ± 3.77 74.32 ± 0.68 71.69 ± 3.38 74.66 ± 4.17 71.58 ± 7.88 72.60 ± 4.17 71.46 ± 1.43 76.25 ± 3.09
Vowel 84.51 ± 3.45 76.06 ± 5.63 78.87 ± 6.14 76.06 ± 2.44 82.16 ± 2.93 80.28 ± 2.82 76.69 ± 4.30 77.46 ± 6.14 75.12 ± 1.63
Wdbc 99.03 ± 1.45 97.10 ± 2.51 98.06 ± 1.67 97.59 ± 0.84 97.10 ± 1.45 96.14 ± 2.21 96.62 ± 3.02 97.10 ± 1.45 96.45 ± 0.84
Wine 100 ± 0 98.25 ± 1.52 97.37 ± 2.63 99.12 ± 1.52 99.12 ± 1.52 99.12 ± 1.36 97.37 ± 2.51 99.12 ± 1.52 99.11 ± 1.52
CMC 54.38 ± 1.18 53.15 ± 1.29 52.81 ± 4.17 52.38 ± 1.12 50.92 ± 2.60 51.10 ± 0.68 49.74 ± 1.27 49.45 ± 1.73 50.74 ± 4.94
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Table 10. The accuracy comparison between the DWPSO-SVM algorithm and other types of algorithms.

Data Set DWPSO-SVM GA-SVM DA GOA SCA SSA WOA BAT

Australia 87.74 68.6 68.6 66.67 71.02 71.01 67.45 67.45
Diabetes 79.66 71.49 64.47 71.93 78.95 60.09 79.82 70.18
Germen 57 80 78.67 72 79.67 73.67 79 78.33
Heart 85.71 74.21 66.67 56.79 78.31 75.31 67.8 75.31
Iris 98.67 95.55 95.55 97.78 95.56 93.33 95.56 100
Sonar 86.9 80 83.33 86.33 83.33 78.33 86.33 78.33
Vehicle 78.08 80.95 79.76 43.25 79.76 82.54 79.37 84.13
Vowel 84.51 98.72 100 98.72 99.36 100 99.36 98.72
Wine 100 62.74 72.55 76.47 84.31 86.27 62.75 94.12

Table 11. The running time of DWPSO-SVM on different data sets.

Data Set DWPSO-SVM Running Time (s)

Austtalia 266 ± 12
CMC 1122 ± 33
Diabetes 324 ± 23
Dnatest 505 ± 45
Germen 1445 ± 126
Heart 100 ± 5
Iris 4 ± 1
Sonar 36 ± 3
Vehicle 593 ± 44
Wdbc 465 ± 14
Wine 56 ± 8
Farm Ads 8426 ± 445
Oclar 3354 ± 321
Arcene 2478 ± 435
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Figure 2. ROC curve of the Australia data set, (a) the ROC curve before improvement, (b) the ROC
curve after improvement.



Entropy 2023, 25, 531 19 of 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC curve of Breast cancer (AUC = 0.72193 )

(a) Breast cancer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC curve of Breast cancer (AUC = 0.78827 )

(b) Breast cancer

Figure 3. ROC curve of Breast cancer data set, (a) the ROC curve before improvement, (b) the ROC
curve after improvement.

The iterative process of the comparable algorithms is similar to that of DWPSO-SVM.
Figures 4 and 5 show the generation process of the DWPSO-SVM, in which the generation
comes to stabilization when it reaches about 100 on almost all data sets. Table 8 shows the
number of generations when other comparable algorithms reach convergence. As with
the DWPSO-SVM, the comparable algorithms converge in about 100 generations. Table 11
shows the running time of DWPSO-SVM on different data sets. The DWPSO-SVM has
some real-time performance on the data sets with a small number of features.
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Figure 4. Running process of the DWPSO-SVM on 11 UCI data sets.

In general, the performance of our DWPSO-SVM classifier based on the PSO algorithm
is better than that of the original elementary PSO algorithm in terms of the accuracy,
TPR, TNR, and other evaluation criteria. Compared with other types of PSO and other
swarm intelligence algorithms, the DWPSO-SVM has better classification accuracy on most
data sets.
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Figure 5. Running process of the DWPSO-SVM on 3 high-dimensional data sets.

5. Conclusions

In this paper, a new feature selection method is proposed, which can be used for
the feature selection of the multi-class data sets. The PSO-SVM algorithm is used to test
the proposed feature selection method on some UCI data sets. The experimental results
demonstrate that the proposed method is effective on the data sets with a large number
of features. Compared with the MVO-SVM method [2], the proposed method performs
better on some data sets, such as the Hear and Ionosphere data sets, with an accuracy
rate 2.73% and 2.56% higher than MVO-SVM, respectively. Similarly, compared with the
GA-SVM method [3], in the terms of the two indicators TNR and TPR, the proposed method
also performs better on most data sets. For example, DWPSO is 17% higher on TPR and
1.33% higher on TNR than GA-SVM on the data sets Diabetes and Ionosphere. The classifi-
cation accuracy is significantly improved, and the training time is significantly reduced.

Using the proposed feature selection method, an improved PSO algorithm is proposed
to optimize the SVM parameters and RBF kernel parameters. By improving the variation
of the inertia factor in the PSO algorithm, the population diversity in the later stage of the
PSO algorithm can be increased to avoid premature convergence. In addition, the inertia
factor can be adjusted and changed according to the actual situation. The experimental
results show that compared with the hybrid algorithm of elementary particle swarm and
SVM, the DWPSO-SVM is improved on all data sets in terms of accuracy, TPR, and TNR.
Compared with other PSO algorithms and the meta-heuristic algorithms, our proposed
algorithm is also optimal on most data sets, which proved that our improved algorithm
has a significant effect on improving the accuracy of SVM.

The instability is the limitation of PSO, while the grid algorithm has good stability
but poor efficiency. How to combine the advantages of these two algorithms needs to be
explored in the next step. In fact, there are some redundant and invalid samples when
applying the proposed feature selection algorithm. How to efficiently screen the redundant
samples in the data set is also a problem that we want to focus on in the future. The training
time can be decreased, since the accuracy of the DWPSO-SVM has satisfied almost all of the
situations. For example, some scholars have proposed using the meta-learning method to
reduce the training time. However, the meta-learning methods always make the accuracy
of the classifier decrease. Therefore, we will attempt to reduce the training time of the
classifier on the premise of maintaining accuracy and stability.
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