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Abstract: Central to an understanding of the physical nature of biosystems is an apprehension of
their ability to control entropy dynamics in their environment. To achieve ongoing stability and
survival, living systems must adaptively respond to incoming information signals concerning matter
and energy perturbations in their biological continuum (biocontinuum). Entropy dynamics for
the living system are then determined by the natural drive for reconciliation of these information
divergences in the context of the constraints formed by the geometry of the biocontinuum information
space. The configuration of this information geometry is determined by the inherent biological
structure, processes and adaptive controls that are necessary for the stable functioning of the organism.
The trajectory of this adaptive reconciliation process can be described by an information-theoretic
formulation of the living system’s procedure for actionable knowledge acquisition that incorporates
the axiomatic inference of the Kullback principle of minimum information discrimination (a derivative
of Jaynes’ principle of maximal entropy). Utilizing relative information for entropic inference provides
for the incorporation of a background of the adaptive constraints in biosystems within the operations
of Fisher biologic replicator dynamics. This mathematical expression for entropic dynamics within
the biocontinuum may then serve as a theoretical framework for the general analysis of biological
phenomena.

Keywords: entropic dynamics; biosystems; Kullback principle of minimum information discrimination;
biocontinuum; information geometry

1. Introduction

In his famous 1943 lecture entitled What is Life?, Nobel-prize-winning physicist Erwin
Schrödinger proposed that a true understanding of the physical nature of living systems
first requires an apprehension of their ability to control entropy dynamics in their environ-
ment [1]. However, when the reductionist approach of classical physics began to be applied
to investigate the complexity of living organisms, it became evident that these traditional
methods were inadequate for completely describing their functioning. Nevertheless, it is
still important to be able to derive the global emergent behaviors inherent in biological
systems from fundamental physical processes.

An alternative analytic approach that is congruent with the physical sciences is critical
for the future advancement of the life sciences. Ariel Caticha, Carlo Cafaro and others
have proposed that all phenomenal dynamics are not really based on laws of science but
rather arise from rules for processing information about nature [2,3]. In this perspective,
the emergent axioms of biological complexity are not based in physical laws but rather
are founded in the procedures for inference in the context of controlling constraints and
guidance of the overall system directives. This frame of reference that is just now being
discovered creates a systems level hierarchy of governance beyond basic physical laws.

Significant contributions by Ilya Prigogine and Harold Morowitz in the field of
nonequilibirum thermodynamics have demonstrated that energy flows through attractor
systems have a unique capacity to create localized states of order as seen in open living
systems [4,5]. Procedures that utilize information, such as those employed by Maxwell’s
demon and Feynman’s ratchet, were also considered by physicists such as Leo Sziliard and
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Léon Brillouin to overcome the entropic tendencies toward disorder and were thought to
be critical for the emergence of organized living systems [6,7].

The physical notions of entropy have historically been thought to be closely aligned
with Shannon’s conception of information [8,9]. However, initially, there was no definitive
relationship between entropy and information beyond their functions as analogous mea-
sures of global system uncertainty. A fundamental connection was finally revealed when
E. T. Jaynes demonstrated a proof of the second law of thermodynamics that involved a
transition of the microscopically based Boltzman formula to the macroscopic state using
Liouville’s theorem [10]. This determination led to the consideration that a similar linkage
of our modern understanding of physical entropy with the well-established Shannon com-
munication process as the biologic currency of information could be the pathway for the
realization of Schrödinger’s insight [9].

Sara I. Walker and Paul Davies have posited that the algorithmic processing of infor-
mation is the most essential function of living systems [11]. It is really the ability of these
biosystems to acquire information signals concerning matter and energy perturbations in
their biological continuum (biocontinuum) and translate that information into adaptive ac-
tions that are critical to their stability and survival. More recently, it has been suggested that
this process of entropic information acquisition and conversion to actionable knowledge
and meaning is the key defining characteristic of living organisms [9]. Carlo Rovelli further
proposes that a physical grounding of this meaning for living systems can be achieved by
combining the notions of relative information with the stability and survival mechanics of
Darwinian adaptation [12].

In this paper, an inference framework was derived describing the natural axiomatic
procedures used by living systems for processing information concerning the physical
state of their biocontinuum. The objective of these innate operations is to translate the
acquired entropic information of the organism’s biocontinuum into actionable knowledge
for adaptive reconciliation toward system stability. This derived framework incorporates
the methods of entropic dynamics into the natural biologic processes of Darwinian repli-
cator dynamics for a cohesive and coherent global approach to understanding biologic
organizational complexity and the localized control of entropy in living systems.

2. Materials and Methods
2.1. Entropic Dynamics

Caticha and Cafaro have suggested that phenomenal dynamics are more fundamen-
tally predicted by principles of inference rather than any derived scientific laws [2,3].
Entropic dynamics is a procedural framework for the derivation of system dynamics from
the standard probabilistic rules for inference and the processing of information based on
Jaynes’ principle of maximal entropy [10]. In this procedure, entropy provides the driving
force for system changes and Jaynes’ entropic methods of inference delineate the character-
istics of those changes when subject to the constraints inherent in the system’s structural
and dynamic functioning. Systems progress from an initial probable state to a new most
probable state depending on changes in information about the state of the system [10]. This
methodology provides a unique perspective in the analysis of phenomenal dynamics. Us-
ing this information-theoretic approach, physicists have been able to rederive many of the
standard models in the physical sciences [13–15]. However, for biosystems the constraints
are very different, being highly mutable and uniquely adaptive toward the intrinsic system
objectives of stability and sustainability. Therefore, a relational form of Jaynesian entropic
inference that utilizes Kullback–Leibler information divergence as relative information is
adopted to account for this biosystem context [16]. The unique framework devised herein
incorporates the methods of entropic dynamics in the processing of Fisher’s Darwinian
adaptive replicator functions for predicting the trajectory of phenomenal states in living
systems. This integration provides for a more cohesive and coherent global approach to
understanding biologic phenomena and dynamics in the determination of organizational
complexity and localized control of entropy in living systems.
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2.2. Kullback Principle of Minimum Information Discrimination

The Jaynesian procedure for inference is known as the principle of maximal en-
tropy [10,17]. This principle posits that most inferences are made based on incomplete
information and that they should be drawn from that probability distribution that has the
maximum entropy permitted by the available information. In other words, when there
is incoming information concerning a system perturbation, then the inferred update to
the probability distribution concerning the new state of the system should be minimal
in its discrepancy from the original distribution with as small a gain in information as
possible. This inferred distribution is considered to represent the most conservative as-
signment of values that only draws conclusions substantiated by the known information
and constraints. The information dynamics for this reconciliation of state are considered
the mechanism that drives a change in a conclusion during the inference process. This
inference process is also considered the basis of the entropic drive for the physical dispersal
of matter and energy to maximum disorder based on the logical statistical mechanisms of
chance variations. In fact, this statistically derived entropic drive is the same as that used in
traditional mathematical descriptions of entropy transitions in physical phenomena. Hence,
all systems naturally evolve to reconcile the introduction of new conditions in a way that
maximizes their entropy and minimizes their gain in order or information.

The Jaynesian methodology also connects any intentional inquiry concerning physical
phenomena with information theory and the process of inductive logic and inferential
reasoning. Intentional inquiry as an active request for information invariably produces
some uncertainty in the results represented as probability distributions. The Jaynes method
allows for inferences to conclusions based on the most likely probability distribution given
the limited information [10,17–19]. The MaxENT procedure of Jaynes has been successfully
used as an alternative method to derive statistical mechanics and has been applied in the
sophisticated analysis of a variety of physical phenomena [13,14].

A method similar to Jaynes’ principle of maximal entropy was provided by Solomon
Kullback for the case of relative information divergences within a system and is known
as the principle of minimum information discrimination [18,19]. This principle considers
the inference procedure from the perspective of the evolving relative entropic information
differences across the continuum of the system. Entropy is then maximized globally by
minimizing the entropic information differences across the system continuum subject to
any localized constraints. Because all known phenomena in material reality are funda-
mentally based on relational interactions, Carlo Rovelli considers that the relative nature
of the Kullback–Leibler information divergence metric makes it the true physical version
of Shannon-type information measurement [12]. Hence, in the case where new relative
information is acquired, a new distribution of the probability should be inferred which min-
imizes the discrimination from the original distribution across the entire system continuum
as much as possible. In this way, the new data produces as small an information gain as is
possible and optimizes the veracity of induction. This principle of minimum information
discrimination then becomes the guiding principle employed by the driving entropic force
for directed change toward a conclusion during the inference process [20]. According to
Kullback, information acquired from any observations can also be considered relative to ex-
pectation values over the probability space. Such expectant relative information measures
(Kullback–Leibler divergence) denote the difference between prior information and any
new information as an analog to a Bayesian update processing.

Because of the important implications of these ideas, J. E. Shore and R. W. Johnson
provided a detailed axiomatic examination of Jaynes’s principle of maximum entropy and
Kullback’s principle of minimum discrimination information [9,21]. They concluded that
the procedures of these principles are logically consistent methods of inference from new
information. The axioms employed were based on fundamental first principles requiring
a consistent probability model of inductive inference and reliable results regardless of
the solution pathway. The analytic approach of Shore and Johnson did not depend on
intuitive arguments or rely on the properties of entropy and Kullback–Leibler divergence
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as measures of information but rather they created basic axioms containing certain desired
properties for the inference methods. Their proofs based on these consistency axioms
demonstrated there is only one probability distribution solution satisfying the introduction
of new information constraints. The axioms of Shore and Johnson included:

• Uniqueness: the result of the inference should be unique.
• Invariance: the choice of a coordinate system should not matter.
• System independence: it should not matter whether one accounts for independent

information about independent systems separately in terms of different densities or
together in terms of a joint density.

• Subset independence: it should not matter whether one treats an independent subset
of system states in terms of a separate conditional density or in terms of the full
system density.

2.3. Biological Continuum (Biocontinuum)

The contextual mathematical and geometric construct used in the current analysis
of action within the living system’s internal and external milieu is its biologic contin-
uum, termed the biocontinuum [9,20]. A continuum is a continuous nonspatial whole
or succession of states. This structure provides for the seamless union of entities into an
amalgamated ensemble such as the framework that joins space and time into a single
geometric structure. The biocontinuum is defined as a coherent information state space
that includes everything having a potential information interchange with the life system
processes. So that biocontinuum space comprises all possible energy and material ex-
changes as well as any informational communiques originating from within or external to
the usual considered boundaries of the organism. As a continuum, there is no distinction
between the living system and its embedded environment within the experiential realm of
the life processes, including the organism’s own state. The inseparability of the open living
system from its environment is a common notion in many modern biological theoretical
constructs [22,23]. As defined by Gregory Newby, an information space is a set of concepts
and the relations between them that are contained in an informational system [24]. There-
fore, the biocontinuum can be considered as a space containing a set of systematically and
logically interconnected pieces of information as a coherent whole and therefore defines
the information state of the organism and its environment. Such a space also describes the
range of all possible values and relationships an entity can have under a given set of rules
and conditions.

The information in the biocontinuum space described here takes the form of Shannon
information represented as the probability spectrum of possible state conditions in which
the points in a manifold of a two-dimensional geometry can represent the mean µ and
variance σ of the probability distribution [25]. This formulation allows for a geometric
representation of the biocontinuum in which the contours of the space provide a natural
trajectory of action dynamics as driven by the living system’s active adaptation to changing
conditions. The dimensions of the geometrical/topological measures of physical phenom-
ena can be specified in terms of the number of points in a coordinate system. It is within
this dimensional construct that states are differentiated and become materially known
to the organism. Therefore, the unique dimensionality of the biocontinuum platform is
determined by the sensory discerning and measurement capacity of the observing system
as a signature composed of informational metrics. Even at the cellular level, chemo-tactile
facilities exist to distinguish sequential time, acceleration and some rudimentary form of
spatial dimensionality [9].

2.4. Information Geometry

Geometric structures are often used to define and analyze the dynamics of physical
systems. Caticha suggests that the geometry of space and time is simply a macroscopic
manifestation of an underlying statistical structure [13,14,26]. Frieden has devised a similar
methodology using Fisher information metrics [15]. The dynamics of phenomena evolving
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in space and time can then be described by the geometry of this statistical structure.
Information geometry, as developed by Amari in the 1980s, is the application of the
methods of conventional Riemann geometry to the analysis of the differential geometric
structure of evolving probability distributions as statistical manifolds [25]. In this method,
each information point in a geometry of an n-dimensional manifold space can be associated
with the defining parameters of some model describing the probability distribution. In
this form, the degree to which one probability distribution point can be distinguished
from another in the geometric information space is through a measure of the distance
between the points. Utilizing the Kullback–Leibler information divergence and principle
of minimum information discrimination localizes the smallest distinguishable distance
and quantifies this distinction in units of uncertainty. Dissipative entropy dynamics then
follow the trajectory of the system, which moves continuously and irreversibly along free
energy gradients in a geodesic space of probable states. Such mathematical constructs can
also be used to understand information exchanges along functional gradients within living
systems. The advantage of utilizing this geometrical approach is its capacity for a larger
perspective and fundamental analysis where the focus is on the most probable trajectory as
driven by entropy and guided by logical inference principles and not based on proposed
laws of physics or any action principle.

2.5. Replicator Dynamics

In the current formulation, the mechanics of the replicator equations form the un-
derlying engine for using entropic dynamics and inference in biosystems in the derived
framework. These equations were introduced by R. A. Fisher in the 1930s to model the
fundamentals of Darwin’s idea of natural selection through the process of survival based
on an organism’s fitness and stability [27,28]. The basic theorem of Fisher can be stated as
“The rate of increase in fitness of any organism at any time is equal to its variance in fitness
at that time.” This theorem captures the central idea of the natural selection process in that
the population types with greater than average fitness should increase in their proportion
in the population. In other words, the relative growth rate of each population constituent
type should be proportional to the difference between the fitness of the type and the mean
fitness in the overall population. Fisher and Haldane further used these mathematical
models to create a synthesis between Mendelian genetics and Darwinian evolution [27,29].
This approach also provides a basis for a grounding for the meaning of information using
this Darwinian fitness calculus [12].

The mechanics of the replicator mathematical expressions also provide the logical
essence for natural selection driven by competitive dynamics. Through these mechanics and
the resulting dynamics, the relative propensity of states of a replicating entity is determined
by the difference in its ability to endure (fitness) as compared to other competing entities
within its proximity. From these replicator dynamics, there is the natural emergence of
an entity that is more adaptive and robust within the conditions of the environment. The
procedures that select and propagate system sustainability over time are logically those
also geared for that specific objective and therefore are the ones that naturally persist.
Since the fundamental mechanism used in any adaptive procedure is the perception-action
process, the replicator expression incorporates these mechanics in its execution of the
natural selection process.

Since its inception, the replicator equation has become one of the most important
dynamic models in biology, ecology, evolutionary studies and even such diverse fields as
economics and sociology. The current modern general form of the replicator equation was
structured by Taylor and Jonkers in the 1970s [30] as:

.
xi = xi[ fi(x)− ϕ(x)]

ϕ(x) =
n

∑
i

xi fi(x)
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where:

xi is the proportion of type i in the population with the type being any principal attribute
category of determined variation and x is the rate of change.
fi(x) is the fitness of each type i in the population with fitness being a survival likelihood
characteristic in the context of the environment.
ϕ(x) is the average population fitness as determined by the weighted average of the fitness
of the overall population.

As an iterative dynamic with time, it is easy to see how the mechanics of this equation
can change the constituent states of the population in a way that results in the optimal
mean state with the greatest chance for survival in the environment. Subsequently, there
is a continuous cyclic renewal and propagation of the overall state of the biocontinuum.
Because of the significance of this archetype to an understanding of the overall framework
for biological dynamics, it is important to understand its derivation from logical first
principles and the current incorporation of the Kullback principle of minimum information
discrimination as demonstrated in the following section.

3. Results

The theoretical framework derived for the analysis of biological systems was struc-
tured in a way to broadly describe the homeorhetic functioning of these systems based on
first principles including information processing for the adaptive reconciliation of entropy
divergences within the biocontinuum in order to maintain stability and survival [9]. These
divergences provide the entropic drive for these system dynamics as determined by the
inference procedure of the Kullback principle of minimum information discrimination and
in the context of the inherent constraints of the biology.

3.1. Derivation of Equations of Entropic Dynamics for the Biosystem

While the basic driving forces of entropic dynamics are the same for biology as they
are for any physical system, the utilization of a particular form of Jaynesian entropic
inference (Kullback’s principle of minimum information discrimination) and the adaptive
constraints of living systems are unique. Those distinctive features are incorporated
into a mathematical framework for the analysis of biosystem dynamics. The framework
mechanics of the derived mathematical expressions are also founded on the logical essence
of the biological natural selection process as modeled by Fisher’s equations of replicator
dynamics [27]. For a general population (P) of organisms with variations of type (i), the
Lotka–Volterra derivative of the replicator equation describes a very general rule for how
these population numbers can change with time and is defined as [31]:

dPi
dt

= fi(P)Pi

However, rather than considering the probability distribution of a population, the
expression can also be employed to describe the dynamics of possible states for the bio-
continuum of a single organism. As an iterative dynamic with time, there is a continuous
cyclic renewal and propagation of the state of that biocontinuum for the singular living
system. In this expression, the relative sustainability of the various possible ith states for
an organism is determined by the difference in the state’s ability to endure (fitness: fi(P))
compared to other possibles and serves as a prescribed system constraint. The full range
of these functions fi determines the fitness landscape for the biocontinuum. Therefore,
there is the natural emergence of an organism that is most adapted to the conditions of the
biocontinuum with the greatest probability of survival.

In systems control theory, the fitness function is also called an adaptation evaluation
function and is used in relation to the error function which determines the difference
between actual and a priori predicted solutions [32]. System adaptation for minimization of
error also minimizes the system’s internal energy as information that is gained is assimilated
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into the system’s structure and function. Using the systems control approach to fitness
evaluation of the single organism allows for integrating dynamic models of the constraints
of very complex living system homeorhetic and adaptive functioning into the dynamics.

The Lotka–Volterra expression is made more practical by a normalization of the
probabilities of all possible states by letting pi be defined as the probability fraction of
the ith state within the entire spectrum of possibles (see below). In this configuration, the
values for p are also considered as probabilities where pi is the probability that a randomly
chosen constituent of the possible states is of the ith type.

pi =

(
Pi

∑n
i Pi

)
These values for pi are between 0 and 1 and add up to 1. In this mathematical

framework and by the quotient rule of calculus for derivatives, the Lotka–Volterra equation
becomes the usual form of the replicator equation:

dpi
dt

=
.
pi = ( fi(P)− 〈 f (P)〉)pi

where:
〈 f (P)〉 is the mean fitness of all the possible system states.
Additionally, if we consider that each fitness depends on the fraction of each pos-

sible state, then the replicator equation simplifies to a more statistically usable form for
information theory as:

dpi
dt

= ( fi(p)− 〈 f (p)〉)pi

This expression then determines the change in the probability fraction of a possible
biocontinuum state at a rate proportional to the fitness of that state minus the mean fitness.
With normalized probability distributions of the possibles, the derived state expression will
include information probability and knowledge uncertainty based on Shannon information
theory. This information state is defined as the amount of average information required to
determine the probability spectrum of possible states. It is also a measure of the uncertainty
an observer has about the system state. This measure is the summation of the surprisals
and is defined as:

S(p) = −
n

∑
i

piln(pi)

Incorporating these information theory metrics into the replicator expression then
allows for the analysis of entropic dynamics in living systems. This framework of un-
certainty in the differentiation of the “signals” of information concerning the state of the
biocontinuum environment is also consistent with known biological knowledge acquisition
processes as the system gains information and adapts to reflect the context of its space.
Therefore, the rate of change in this information gain and uncertainty loss (the entropic
dynamics) for the living system is given by the equations:

.
S = −

n

∑
i

.
piln(pi)

.
pi = ( fi(P)− 〈 f (P)〉)pi

.
S = −

n

∑
i
( fi(P)− 〈 f (P)〉)piln(pi)

From this expression, it appears that the information gain is mainly dependent on
the differential assessment of the relative fitness of the organism to the biocontinuum
condition associated with that information, and that fitness is determined by the integrity
and robustness of the inherent complex homeorhetic processes and functioning of the living
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organism. This is because the structural constraints and entropic dynamics of the living
system are actively adapted toward the objective of stability and a sustained existence
based on this assessment.

In the dynamics of any system, there is a continuous transition from the current global
state to an optimal or goal state. This transition requires a reconciliation of divergent
conditions toward that optimal state across the whole of the system continuum. Physical
phenomena within such systems are fundamentally based on relational interactions and
described by the relative information concerning those interactions. Divergences in the
entropic information between the current and desired states are best measured by the
Kullback–Leibler divergence metric for relative information. The Kullback–Leibler infor-
mation divergence of P from Q (denoted DKL(Q||P) or I(q,p)) is where P is the prior or
current probability distribution of types and Q is the distribution that is the optimal end
state. By incorporating this measure into the functioning of the replicator expression, the
use of prior information within the living system regarding the state of the biocontinuum is
possible using a Bayesian inference approach. The Bayesian updating during the iterative
procedure with time also accounts for the Landauer erasure of information required for
balancing thermodynamic entropy [33]. The information differential between q and p at any
point in the dynamic transition is the remaining information to be learned. The equation
for the Kullback–Leibler information divergence is then given by:

I(q, p) = DKL(q|p) = ∑n
i ln
(

qi
pi

)
qi = ∑n

i (ln (qi)− ln (pi)) qi

For I(q, p) where q is a target goal state with a fixed probability distribution and only p is
time dependent then:

d
dt ∑n

i ln (qi)qi = 0 Since qiisafixedquantity

and
d
dt

I(q, p) = − d
dt ∑n

i ln (pi)qi = −∑n
i

( .
pi
pi

)
qi

where
.

pi is the rate of change of the probability pi and is defined by the replicator equation as:

.
pi = ( fi(P)− 〈 f (P)〉)pi

Substituting this expression into our derivative equation results in:

d
dt

I(q, p) = −
n

∑
i
( fi(P)− 〈 f (P)〉)qi

Since the probability qi sums to one, the equation becomes:

d
dt

I(q, p) = f (P)−∑n
i fi(P)qi ∑n

i fi(P)(pi − qi)

where f (P) demarcated in the biocontinuum is the same for piand qi
If the potential information (I) as the Kullback–Leibler divergence of the biocontinuum

is defined by:

I(q, p) = ∑n
i ln
(

qi
pi

)
qi = ∑n

i (ln (qi)− ln (pi)) qi

And the kinetic information defined as the changing of the Kullback–Leibler diver-
gence during the procedure of information being assimilated by the adaptive processes of
the living system is described by:

d
dt

I(q, p) = −∑n
i ( fi(P)− 〈 f (P)〉)qi= ∑n

i fi(P)(pi − qi)
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Then the ACTION measure for all i elements is:

ACTION =
∫ [

∑n
i fi(P)(pi − qi)−∑n

i ln
(

qi
pi

)
qi

]
as the integral summation over time of the Lagrangian integrand which is the difference
between the kinetic and potentials at each phase of the change transition. These differences
naturally act as a variational principle to determine the trajectory in a dynamical system
that possesses some particular extremum characteristic. The information divergence also
serves as an impetus for change with equivalency to entropic forces as determined by
Jaynes [10]. This expression determines the overall evolution and trajectory of the living
system as it moves to its final state. However, this unique action principle and function
for living systems is not fundamental but arises from the more basic physical dynamics of
entropic inference subject to the constraints of the organism’s structure and processes as
they are geared for stability and survival. While the inherent dynamics, fitness function and
adapting constraints of the replicator equation naturally reduce the system’s information
divergences, the broader axiomatic behavior of this process is grounded in the entropic
drive of Kullback’s principle of minimum discrimination information.

3.2. Information Geometry of the Biological Continuum (Biocontinuum)

In applying the methods of information geometry to the constructed framework for
biosystems, a geometric landscape emerges depicting the natural gradient flow of the
entropy driven dynamics of biological functioning (example construct in Figure 1) [34].
The contours of that landscape are determined by the intrinsic biosystem constraints in-
cluding active adaptation processes toward a state of greatest fitness for stability and
survival. In this process, the divergence between information states within the biocontin-
uum is naturally reconciled by the inference process of Kullback’s principle of minimum
discrimination information.
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Figure 1. This graphic below depicts an example of the natural evolution d
dt I(q, p) of the Kullback-

Leibler information divergence I(q, p) as an action gradient driven by the geometry of the biocon-
tinuum created by the system processes and structure, replicator dynamics, fitness function and
the entropic procedure of the Kullback principle of minimization of information. This information
metric exists as a probability spectrum (i) of uncertainty in the biocontinuum information space
of the biologic system process. As new information is assimilated as knowledge into the adapting
system, the prior state p emerges as a new target state q along the gradients of the biocontinuum
information space.

4. Discussion

The key to comprehending the unique physical nature of living systems resides in
first understanding their local control of entropy dynamics [1]. In fact, the process of
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adaptive reconciliation of entropic information perturbations within their biocontinuum is
most critical to the stability and survival of all living organisms [9]. Entropic dynamics as
espoused by Caticha and Cafaro provides a potential physical framework for deriving the
dynamics of living systems in this congruency process [9,10]. The special conditions for
entropic dynamics within the biocontinuum may then serve as a theoretical framework for
the general analysis of biological phenomena.

In this paper, an inference framework and process based on the principles of entropic
dynamics were derived that describes the natural axiomatic procedure used by living
systems for processing information concerning the physical state of their biocontinuum.
The mathematical derivation of these concepts is highly informed by the approach of
Harper and Baez in their analysis of evolutionary dynamics [35–37]. System entropic
information defined as Kullback–Leibler information divergence drives the active responses
of the living system as subjected to its variable constraints and organizational structure for
inherent homeorhetic activities. The objective of these innate operations is to translate the
acquired entropic information into actionable knowledge for adaptive reconciliation toward
system stability. The utilization of this relative information and the Kullback’s principle of
minimum discrimination information as a variant method of Jaynesian inference provides
for the inclusion of the context of an adapting biosystem. By incorporating the methods of
entropic dynamics in the processing of Fisher’s Darwinian adaptive replicator functions,
this framework can be used for ascertaining the phenomenal dynamics of living systems.
Furthermore, Kullback’s principle of minimum discrimination information becomes the
foundation of a biologic action principle for the reconciliation of information divergence
across the biocontinuum. Interestingly, the Lyapunov vector signature of stability for these
dynamics can also serve as a quantitative metric for biosemiotic meaning of the information
that is grounded in system stability with existential significance [38,39].

A linkage between the living organism’s relative environmental information and its
system stability has been previously described by Friston based on fundamental physi-
cal principles [40]. He suggests that these living systems maintain their non-equilibrium
steady state and restrict their degrees of freedom by actively minimizing the variational
free energy of their internal states. This free energy principle is closely related to Varela’s
notion of autopoiesis but extends the concept by proposing a general functional control
mechanism with the partitioning of external and internal states using a Markov blanket
and a representational model for predictions of states. Friston’s free energy principle as
an action principle is widely recognized as a salient advance in our understanding of
biological systems and is generally consistent with the concepts proposed in this paper.
However, from the perspective of entropic dynamics, the free energy action principle is
not fundamental since the inference process for action that is attributed to originate from
internal representational models really arises from the more basic physical dynamics of a
global entropic inference as subjected to the constraints of the organism’s natural home-
orhetic processes. This differentiating perspective is supported by the work of Skarda and
Freeman in experimental neurodynamics indicating that biological systems deconstruct
information about the biocontinuum as a primary whole rather than constructing represen-
tations [41,42]. The complex structure of the living then results from the internal integration
of the entropic information signals into a perceptual whole.

The work is also informed by the important ideas of Vanchurin et al. regarding the
maximum entropy principle as applied to learning and evolution [43].

In the framework of entropic dynamics for biosystems presented in this paper, diver-
gences from steady state within the integrated whole of the organism’s biocontinuum are
differentiated and reconciled by entropic inference principles through the deconstruction of
information states without the need for representational models [9]. This view is consistent
with the modern epistemological notion that informational knowledge acquisition is about
determining relationships rather than representing the substance, essence or condition of
things [12]. Any construction of representational models for describing the controlling
constraints of homeorhesis and fitness evaluation are simply analytic tools and not inde-
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pendent properties of living systems. Such a practical application of the methodology
in an established biosystem model was presented in a previous publication as a proof of
concept [44]. The subtle difference in this more fundamental, nonrepresentational method-
ology for analyzing the phenomenal dynamics in living systems is that it provides for a
new and more direct understanding of the natural emergence of these systems [9].

Information processing and Bayesian updating have previously been considered
critical aspects of biological evolution [45–49]. Entropic dynamics as a methodology carries
the promise of a foundational approach to understanding physical phenomena. However,
it should be recognized that entropy as a measure of energy quality is calculated in terms
of uncertainty metrics. This assessment implies a central role for an adjudicating observer
or at least some form of the knowledge acquisition process from which this uncertainty
arises. Such a process is naturally inherent in biological system functioning as critical to
an organism’s survival. Likewise, the process of inference is in part rooted in the logical
reasoning procedure of living organisms. Since entropic dynamics has been so successful
in describing many such physical phenomena from a foundational position, it is possible
that a generalized methodology that further incorporates the entropy-driven knowledge
acquisition process of living systems could provide a more comprehensive approach to all
common scientific inquiry.
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