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Abstract: The paper is dedicated to modeling electricity spot prices and pricing forward contracts
on energy markets. The underlying dynamics of electricity spot prices is governed by a stochastic
mean reverting diffusion with jumps having mixed-exponential distribution. Application of financial
mathematics and stochastic methods enabled the derivation of the analytical formula for the forward
contract’s price in a crisp case. Since the model parameters’ incertitude is considered, their fuzzy
counterparts are introduced. Utilization of fuzzy arithmetic enabled deriving an analytical expression
for the futures price and proposing a modified method for decision-making under uncertainty. Finally,
numerical examples are analyzed to illustrate our pricing approach and the proposed financial
decision-making method.

Keywords: energy markets; fuzzy sets; stochastic processes; jump-diffusion; derivatives pricing;
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1. Introduction

For almost three decades, the European electricity market has undergone gradual
transition. In the early 1990s, the energy sector was monopolized with vertically integrated
enterprises engaged in production, transportation, supply and holding of the grid infras-
tructure. Electricity prices were therefore dictated by these companies, in the absence of
competition. In 1996, however, the European Union set out to liberalize and integrate the
internal energy market with a key step to unbundle the power sector, in order to reduce
the whole transportation costs, increase the security of supply and to enable access to the
market for new entities. The second directive from 2003 imposed, i.a., the possibility to
choose the energy supplier by all European customers by 2007. The turn of the millennium
was also a period of the emergence of energy exchanges in Europe.

Electricity spot day-ahead prices exhibit distinguishing traits such as seasonality (the
consequence of substantial variation of demand throughout the year and week), huge
volatility and sudden spikes (due to transmission failures, generation outages, weather
changes, etc., in combination with inelasticity of production and consumption of energy and
infeasibility of storage), mean-reversion (fluctuation around the marginal cost of generation,
the price is forced back to its long-run mean after a jump as soon as additional producers
enter the market). Existence of spikes do not affect forward prices, inasmuch as they are
short-lived.

The 1973 Black–Scholes approach, groundbreaking for financial mathematics, enabled
derivation of an analytical formula for pricing European options, using geometric Brow-
nian motion as the underlying asset price process. However, the shortcomings of the
Black–Scholes model and proposed alternative solutions to the option pricing problem
have been known for many years. Since the literature concerning this issue is very rich, we
mention only several articles. Among others, Levy processes, including mixed-exponential
jump-diffusion (MEM) in [1] and the models in [2,3], were proposed to describe the under-
lying assets’ log prices. The papers [4,5] were devoted to modeling the underlying assets
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with application of Levy jump-diffusions under uncertainty, involving semimartingale
characteristics (see, e.g., [6]) for the options valuation. Other models based on the processes
with independent and stationary increments were presented in [7], taking the form of the
Markov-modulated Levy processes, as well as in the paper [8], where the Markovian regime
switching exponential Levy process was applied together with interest rates modeled by the
Markovian regime switching Hull–White process. In turn, ref. [9] used a process with pure
jumps. The Vasicek stochastic interest rate and a general Levy process of an underlying
asset were considered in [10], including the jump-diffusion and the infinite activities Levy
process as special cases. It is worth mentioning that diffusions and jump-diffusions were
also used for other financial instruments with complex payoff structures (see, e.g., ref. [11]
for the case of catastrophe bond pricing).

Market prices of financial instruments fluctuate, which often makes it impossible to
determine the model parameters values precisely. Therefore, the knowledge of experts
replaces statistical techniques. This replacement is conducted by employing imprecise infor-
mation models, most often in the form of fuzzy numbers. This article falls within the trend
of valuation methods that combine stochastic modeling with the application of fuzzy set
theory. However, unlike most of them, which are devoted to options pricing, it deals with
the valuation of forward contracts on the energy exchange. Essential extensions—compared
to our previous paper [12]—are introducing a more general form of jump distribution,
which enables the possibility of negative jumps, and a modified decision-making method.
Similarly, as for other stochastic models of primary financial instruments, a small model
change causes a significant challenge to valuing the derivative instrument, even in the crisp
form. That was also the case for the model proposed in this paper. The process of derivation
of forward contracts prices was not just a simple transfer of the approach from the [12].
It involved advanced stochastic analysis methods due to the change of the probability
measure to an equivalent one, using the Esscher transform. In particular, the change in the
spot price model complicated the conditions that should be satisfied to make the mentioned
equivalent change of measure feasible. It also significantly impacted the form of the fuzzy
analytical formula for forward contracts pricing. In turn, the proposed modification of the
financial decision-making method is of practical importance. The section with numerical
examples includes the comparison of the three investment decision-making methods: the
primary one proposed in [13,14], the reduced one tested in [12] and the modified, current
method, highlighting the limitations of the former. Apart from removing the inconclusive
set of investment recommendations (combining accumulate, hold and reduce), potentially
possible to occur in the method from [13,14], and the empty set of recommendations (fea-
sible in the method presented in [12]), the present method makes use of the weighted
possibilistic mean, which is a single numeric representation of elements of a fuzzy number.
This notion, used adequately, influences the outcomes of the procedure, i.a., makes them
more unambiguous for some combination of the model and market variables.

Another advantage of the new method refers to the weighted possibilistic mean itself—
the weighting function allows to put emphasis on a subset of the support of a fuzzy number
on which the function achieves bigger values. If this function is increasing, bigger weights
are assigned to elements closer to the modal value.

Recently, other types of fuzzy sets have also been adapted for decision making.
Ref. [15] has proposed an efficient algorithm for interval-valued fuzzy soft sets, which
involves less computation than the existing ones. A new interval-valued intuitionistic fuzzy
soft sets-based approach to decision making and three parameter reduction algorithms
have been presented in [16]. The proposed method, based on choice value and score value
of membership/nonmembership degrees, helps decision-makers choose a unique option.

We present a mean-reverting jump-diffusion process of dynamics of electricity day-
ahead spot prices. The explained above typical patterns observed in electricity prices
time series are reproduced within the model. Apart from that, it permits adjustment
to the commonly noticed inverse leverage effect (see, e.g., [17]). Namely, the marginal
production cost is a convex and increasing function of production volume. As a result, an
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increase in load causes a higher proportional increase in equilibrium price which in turn
entails asymmetry in volatility. This excess variability “stretches out” the right tail of the
spot price log-returns distribution causing the positive skewness and heavier right tail
(contrary, e.g., to equity markets where the left tail is fatter) compared to the log-normal
distribution (assumed in the Black–Scholes approach). Existence of positive spikes and
negative jumps of prices (part of which is seasonal, occurring, e.g., on holidays when the
load decreases, and thus deterministic) contributes to leptokurticism. The parameters
describing the mixed-exponential distribution of jumps and the appropriate form of the
seasonality function allow to adjust both the skewness and kurtosis of the distribution of
the spot price log-returns.

Introduction of the fuzzy approach to pricing of derivatives aims at investigating the
influence of incertitude of values of model parameters on a price of a derivative. This un-
certainty arises from volatility of variables observed in the market and from imprecision of
estimation of unobserved model parameters. The presented fuzzy approach allows to ob-
tain prices of derivatives as fuzzy numbers. However, the form of the resulting derivative’s
fuzzy price depends on the type of fuzzy numbers chosen for parameters and on the choice
of the pricing method in the crisp case.

The contribution of the paper is fourfold. (i) We introduce a stochastic mean reverting
diffusion with jumps having the mixed-exponential distribution to model spot prices on
energy markets. This jump distribution enables positive and negative jumps. It also can
approximate many probability distributions used in financial modeling. (ii) The analytical
formula for the forward price, derived in the paper, can be applied for the valuation
of forward contracts in the crisp case. We obtain this forward price formula using the
Esscher transformed equivalent probability measure and advanced stochastic techniques.
(iii) We also derive the analytical fuzzy forward contract’s price in an analytical form.
(iv) Finally, we propose a modified financial decision-making method, employing the fuzzy
pricing formulas mentioned above. Numerical examples illustrate the theoretical results.
In particular, we present an example of application of the decision-making method and
conduct the sensitivity analysis of the fuzzy forward contract’s price with respect to the
fuzzified volatility.

It is also worth underlining the relationship between Esscher transformed martingale
measures and the minimal entropy martingale measure. It was proved in [18] that in
the case of geometric Levy processes, the simple return Esscher transformed martingale
measure is the minimal entropy martingale measure. Thus, the Esscher transform used in
our paper is related to the widely understood notion of entropy.

The paper is organized as follows. Section 2 presents the state-of-the-art, describing
some existing electricity crisp prices models and the approaches used to pricing options in
a fuzzy environment. The proposed electricity spot prices model is introduced in Section 3.
The crisp analytical formula for the forward price is derived in Section 4. Sections 5 and 6
are devoted to the derivation of the fuzzy pricing formula and description of the financial
decision-making method, respectively. Section 7 is dedicated to numerical examples. The
final section contains the conclusions.

2. Overview of Valuation Methods
2.1. Electricity Crisp Prices Models
2.1.1. Jump-Diffusion Models

A prototype one-factor model, which became a milestone in electricity derivatives
pricing, is introduced in [19] where the authors take into account seasonality and mean-
reversion, however jumps shaping the excess kurtosis and skewness are excluded from
consideration. This inadvertence has been eliminated in [20,21] where normally and double
exponentially distributed jumps, respectively, are added to the mean-reverting diffusion.
There is a possibility of deriving the analytical formula for a forward price within these
aforementioned models.
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More complex form of the jump process is proposed in [22] where the jump size has
a truncated exponential distribution (prevents the occurrence of large price jumps), sign
of a jump is dependent on the spread between the value of a seasonality function and
actual price (guarantees that two subsequent prices cannot be above a threshold), stochastic
intensity of the Poisson process is a product of a function of periodic intensity shape and
a function which starts to increase when electricity price exceeds some predefined level
indicating the beginning of excess frequency of jumps.

2.1.2. Regime Switching Models

Some electricity markets have tendency to remain in a state of extreme prices for
some longer period (in case of day-ahead prices modeling for a period longer than one
day)—when, e.g., the system repair prolongs. Then, regime switching models may be more
adequate than mean-reverting jump-diffusions inasmuch as they do not force the price to
revert immediately to the moderate levels. Instead, one deals with separate regimes for
different market conditions, usually downward jump (or negative prices) regime, upward
jump regime and base regime with their individual dynamics linked by a transition matrix
with probabilities of shifts from one regime to another (see, e.g., [23–25]) for sample models.

2.1.3. ARMA Models

The deseasonalized part of the electricity day-ahead price process is often modeled
by the autoregressive moving average processes. Nevertheless, due to jumps in prices
and volatility clustering, residuals of the process do not fulfill the assumption of being
normal, identically distributed and independent. This is why generalized autoregressive
conditionally heteroscedastic (GARCH) models are usually assumed to model variance of
electricity time series.

2.1.4. Other Approaches

An uncoupling of the jump addend from the mean-reverting diffusion allows to
dissociate the mean-reversion coexisting with the diffusion-generated noise from the jump
process. Nevertheless, in this case there must exist a separate mechanism making the
price process revert to some seasonal level after the abrupt jump. Ref. [26] propose to
decompose the jump process to the sum of two processes modeling the positive and
negative jumps sampled from a normal distribution. Stochastic jump intensities modeled
by mean-reverting jump processes are introduced. As a result, in case of a jump in a spot
price, the value of the respective intensity also rapidly grows, making the probability of a
reverting jump in the spot price much higher.

A very general class of dynamics of deseasonalized electricity prices may be described
by a mean-reverting model with a Levy process as the driving noise. Ref. [27] impose
the normal inverse Gaussian distribution (NIG) for the Levy increments and claim a very
good fit to spot prices series (the NIG distribution catch heavy tails and a center of the
distribution fairly well). They compose a set of equivalent martingale measures by the
Esscher transform and find the market price of risk, which minimizes the distance between
theoretical and observed forward prices. Due to knowing the characteristic function of the
deseasonalized price, it is possible to price options on the spot by using the fast Fourier
transform technique.

The idea of the factor model, cf. [28], is a split of an electricity spot price into base
and spike signals with dynamics dedicated to any type of prices fluctuations. It allows to
include into the model different mean-reversion’s speeds. Namely, the deseasonalized price
process is modeled as a weighted sum of independent non-Gaussian Ornstein–Uhlenbeck
processes (additive cadlag processes with increasing paths). The extensive analysis of the
model has been performed in [29,30].
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2.2. Fuzzy Approaches to Pricing Derivatives

The issue of option pricing under uncertainty has recently become an important
problem addressed by many authors.

In the beginning, it is worth recalling the work [31], which gave rise to the pricing
of European options by combining stochastic and fuzzy methods, where the underlying
financial instrument was described by a geometric Brownian motion, as in the case of the
traditional Black–Scholes model. Within the same continuous model of the underlying
instrument, refs. [32–35] remained, using fuzzy estimation, adaptive fuzzy numbers, or
focusing the attention on reload and Asian options. Ref. [36], also applying the geometric
Brownian motion, proposed a different approach, based on the rational expected option
price depending on a fuzzy goal. Ref. [37] used triangular approximations to improve the
fuzzy Black–Scholes option pricing formula.

Refs. [5,13,14,38,39] proposed a generalization of the techniques from [31], introducing the
possibility of jumps of the underlying asset prices with application of a Levy jump-diffusion.
A similar model was considered in [40], whereas [41] used an infinite pure jump Levy process
to model the primary financial instrument. Levy process approaches were also used in [42] for
n-fold compound option pricing and in [43] to the valuation of the total return swap.

New complex methods of fuzzy mathematics were applied in the paper [44], employ-
ing nonlinear fuzzy-parameter PDE to option pricing and hedging. Ref. [45] introduced
the fractional Brownian motion to the problem of option valuation in a fuzzy environ-
ment. Finally, an approach based on fuzzy geometric Brownian motion, fuzzy lognormal
distribution and fuzzy Ito integral was proposed in [46].

Among other solutions to the option pricing problem, applying discrete time stochastic
processes or type-2 fuzzy logic, one can mention the papers [47–50].

3. The Proposed Model Underlying Dynamics of Electricity Spot Prices

This section contains the proposed model of electricity spot prices. The mixed-
exponential distribution of jumps was used in [1] to model equities’ prices. However,
its application to the mean-reverting jump-diffusion process of the dynamics of electricity
prices is novel. A distinctive feature of the mixed-exponential distribution is the ability
to approximate the distributions from a large class, including the long-tailed Pareto and
Weibull, arbitrarily closely (see [51]).

We assume that a time horizon T = [0, T∗] is finite, i.e., T∗ > 0. Let(
Ω,F , (Ft)t∈T ,P

)
be a probability space with filtration satisfying the usual assumptions,

on which all the considered processes and random variables are defined. The stochastic
process St of spot price has the following form:

St = exp(g(t) + Xt), (1)

dXt = −µXtdt + σdWt + dJt, (2)

deterministic function g(t) describes a seasonality estimated from historical data, µ, σ > 0,
(Wt)t∈T denotes a (F ,P) Wiener process, and (Jt)t∈T a (F ,P) compound Poisson process

given by Jt =
Nt
∑

i=1
Zi, t ∈ T , where Nt is a Poisson process with an intensity λ > 0, {Zi}i∈N

are i.i.d. jump magnitudes of the mixed-exponential distribution, i.e., with density of
the form

f (z) = qd

m

∑
i=1

qiξieξiz1{z<0} + pu

n

∑
j=1

pjηje
−ηjz1{z>0}, (3)

qd, pu ≥ 0, qd + pu = 1, qi, pj ∈ (−∞, ∞),
m
∑

i=1
qi =

n
∑

j=1
pj = 1, ξi > 0, ηj > 1. In the

formula above, qd and pu are the probabilities of negative and positive jumps, respectively.
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In the following part of the paper we will use the notion [N] = {1, 2, . . . , N} for each
positive integer N. A necessary condition for f (z) to be a the probability density function is

q1, p1 > 0,
m

∑
i=1

qiξi ≥ 0,
n

∑
j=1

pjηj ≥ 0,

whereas
k
∑

i=1
qiξi ≥ 0,

l
∑

j=1
pjηj ≥ 0, k ∈ [m], l ∈ [n] is one of sufficient conditions. If qi ≥ 0,

pj ≥ 0 for each i ∈ [m], j ∈ [n], then the distribution mentioned above is hyperexponential.
For further detail, we refer the reader to [1].

Ito’s lemma implies that the following stochastic differential equation

dSt = µ(ρ(t)− ln St)Stdt + σStdWt + St(eZNt − 1)dNt, (4)

where ρ(t) = 1
µ

(
dg(t)

dt + 1
2 σ2
)
+ g(t), Z0 = 0 describes St.

Finally, we assume that F = FT∗ , filtration (Ft)t∈T is generated by processes W and J,
and is augmented to encompass P-null sets from F .

4. Pricing Forward Contracts with Crisp Parameters

We denote by (It)t∈T an independent increments process and by (γ, C,l(du, dz)) under
P its semimartingale characteristics. In this paper, we assume that the risk-neutral measure
Q, equivalent to P, is obtained by the Esscher transform, i.e.,

dQ
dP

∣∣∣∣∣
Ft

= Ẑθ(t)Z̄θ(t), (5)

for a 2-dimensional vector θ(t) = (θ̂(t), θ̄(t)) of R-valued continuous functions on T ,

Ẑθ(t) = exp
(∫ t

0
θ̂(s)dWs −

1
2

∫ t

0
θ̂2(s)ds

)
,

Z̄θ(t) = exp
(∫ t

0
θ̄(s)dIs − φ

(
0, t, θ̄(·)

))
,

sup
t∈T
|θ̄(t)| ≤ c and

∫
T

∫ ∞

1
{ecz − 1}l(dz, du) < ∞,

c ∈ R+, and

φ
(
0, t, θ̄(·)

)
=
∫ t

0
θ̄(u)dγ(u) +

1
2

∫ t

0
θ̄2(u)dC(u)+∫ t

0

∫
R

{
eθ̄(u)z − 1− θ̄(u)z1|z|<1

}
l(dz, du).

The following proposition holds.

Proposition 1. Process WQ
t given by the equality

WQ
t = Wt −

∫ t

0
θ̂(s)ds, t ∈ T ,
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is a Q-Brownian motion and the independent increments process I under Q has drift

γ(t) +
∫ t

0

∫
|z|<1

z
{

eθ̄(u)z − 1
}

l(dz, du) +
∫ t

0
θ̄2(u)dC(u)

and predictable compensator measure eθ̄(t)zl(dz, dt).

It was proved in [52] in a more general case.

Definition 1 (Forward price). A forward price FQ(t, T) at time t is given by a conditional
expected value of a spot price in the future time T:

FQ(t, T) = EQ[ST |Ft], (6)

where Q is the risk-neutral measure.

The risk-neutral measure is described by the Esscher transform (5) for W and I = J,
where we assume that θ̂ ≡ θ̂0 ∈ R, θ̄ ≡ θ̄0 ∈ R. θ̂0 and θ̄0 are called the market price of
diffusion risk and the market price of jump risk, respectively. We additionally assume that
max(−mini∈[m] ξi,−minj∈[n] ηj) < θ̄0 < minj∈[n] ηj − 1.

Theorem 1. In a crisp case, the forward price has the following analytical form:

FQ(t, T) = EQ[ST |Ft] = eg(T)
(

St

eg(t)

)mt,T

·

exp

[
σ(1−mt,T)

(
σ(1 + mt,T) + 4θ̂0

)
4µ

]
·

exp

λQ

µ

qQd
m

∑
i=1

qQi ln
ξQi + mt,T

ξQi + 1
+ pQu

n

∑
j=1

pQj ln
ηQ

j −mt,T

ηQ
j − 1

, t ∈ T , (7)

where

ξQi = ξi + θ̄0, qQi =
qiξi

ξQi
m
∑

i=1

qiξi

ξQi

, i ∈ [m], ηQ
j = ηj − θ̄0, pQj =

pjηj

ηQ
j

n
∑

j=1

pjηj

ηQj

, j ∈ [n],

qQd = qd
λ

λQ

m

∑
i=1

qiξi

ξQi
, pQu = pu

λ

λQ

n

∑
j=1

pjηj

ηQ
j

, mt,T = e−µ(T−t),

λQ = λ

qd

m

∑
i=1

qiξi

ξQi
+ pu

n

∑
j=1

pjηj

ηQ
j

.

Proof. Let us consider the process Yt = ln(St) and revise the Equation (4). We apply Ito’s
lemma for Yt and the Esscher transform to change the physical probability measure P to
the equivalent risk-neutral measure Q. By Proposition 1

dYt = µ(ρQ(t)−Yt)dt + σdWQ
t + ZQ

NQ
t

dNQ
t (8)

for ρQ(t) = 1
µ

dg(t)
dt + g(t) + σθ̂0

µ and a Q-Poisson process NQ with intensity

λQ = λ
∫
R

eθ̄0z f (z)dz = λ

qd

m

∑
i=1

qiξi

ξQi
+ pu

n

∑
j=1

pjηj

ηQ
j

,
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independent from a Q-Brownian motion WQ. Moreover, in the formula above,
{

ZQ
i

}
i∈N

are independent identically distributed random variables with the mixed-exponential
distribution and probability density function

fQ(z) = qQd
m

∑
i=1

qQi ξQi eξQi z1{z<0} + pQu
n

∑
j=1

pQj ηQ
j e−ηQj z

1{z>0} (9)

and

ξQi = ξi + θ̄0, qQi =
qiξi

ξQi
m
∑

i=1

qiξi

ξQi

, i ∈ [m], ηQ
j = ηj − θ̄0, pQj =

pjηj

ηQ
j

n
∑

j=1

pjηj

ηQj

, j ∈ [n],

qQd = qd
λ

λQ

m

∑
i=1

qiξi

ξQi
, pQu = pu

λ

λQ

n

∑
j=1

pjηj

ηQ
j

.

We multiply both sides of (8) by mt,T and integrate from t to T. Consequently, the equation
converts to

T∫
t

ms,TdYs =

T∫
t

ms,Tdg(s) +
T∫

t

µms,T g(s)ds−
T∫

t

µms,TYsds+

T∫
t

σθ̂0ms,Tds +
T∫

t

σms,TdWQ
s +

T∫
t

ms,TZQ
NQ

s
dNQ

s . (10)

Because

−
T∫

t

µms,TYsds = mt,TYt −YT +

T∫
t

ms,TdYs (11)

and

T∫
t

µms,T g(s)ds = g(T)−mt,T g(t)−
T∫

t

ms,Tdg(s), (12)

we may write

YT = g(T) + (Yt − g(t))mt,T +

T∫
t

σθ̂0 ms,Tds +
T∫

t

σms,TdWQ
s +

T∫
t

ms,TZQ
NQ

s
dNQ

s . (13)

By the Dynkin lemma and an approach similar as in [53], we obtain

EQ

exp

 T∫
t

σms,TdWQ
s +

T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

 =

EQ

exp

 T∫
t

σms,TdWQ
s

∣∣∣∣∣Ft

EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

. (14)
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By (13) and (14), taking into account ST = eYT and introducing notation G(t) = eg(t),

FQ(t, T) = EQ[ST |Ft] = G(T)
(

St

G(t)

)mt,T

exp

 T∫
t

σθ̂0 ms,Tds

·
EQ

exp

 T∫
t

σms,TdWQ
s

∣∣∣∣∣Ft

EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

 =

G(T)
(

St

G(t)

)mt,T

exp

 T∫
t

σms,T

(
1
2

σms,T + θ̂0

)
ds

·
EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

 =

G(T)
(

St

G(t)

)mt,T

exp
(

σ(1−mt,T)

4µ

(
σ(1 + mt,T) + 4θ̂0

))
·

EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

, (15)

inasmuch as

EQ

exp

 T∫
t

σms,TdWQ
s

∣∣∣∣∣Ft

 = exp

1
2

T∫
t

σ2e−2µ(T−s)ds

. (16)

Similarly as in [20] (part A of Appendix), we have the equality

EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

 = exp

 T∫
t

(
EQ
[

e
ms,T ZQ

NQ
s

]
− 1

)
λQds

. (17)

Straightforward computations give

EQ
[

e
ms,T ZQ

NQ
s

]
= qQd

m

∑
i=1

qQi ξQi eµ(T−s)

ξQi eµ(T−s) + 1
+ pQu

n

∑
j=1

pQj ηQ
j eµ(T−s)

ηQ
j eµ(T−s) − 1

. (18)

Therefore,

EQ

exp

 T∫
t

ms,TZQ
NQ

s
dNQ

s

∣∣∣∣∣Ft

 =

exp

qQd
m

∑
i=1

qQi

T∫
t

ξQi eµ(T−s)

ξQi eµ(T−s) + 1
λQds + pQu

n

∑
j=1

pQj

T∫
t

ηQ
j eµ(T−s)

ηQ
j eµ(T−s) − 1

λQds−

λQ(T − t)

]
=

exp

λQ

µ

qQd
m

∑
i=1

qQi ln
ξQi + mt,T

ξQi + 1
+ pQu

n

∑
j=1

pQj ln
ηQ

j −mt,T

ηQ
j − 1

, (19)

which completes the proof.
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Definition 2 (Forward contract). Let us denote by the symbols T1 < . . . < TN ∈ T and
K electricity delivery days and a delivery price, respectively. A forward contract is a derivative
financial instrument which enables to receive electricity on days T1, T2, . . . , TN for K, i.e., which
pays the difference

1
N

N

∑
i=1

STi − K. (20)

We denote by the symbol FQ
t the value of the forward contract mentioned above. Theorem 1

enables obtaining the analytical form of FQ
t , using the following formula:

FQ
t = EQ

[
1
N

N

∑
i=1

STi − K

∣∣∣∣∣Ft

]
=

1
N

N

∑
i=1

FQ(t, Ti)− K (21)

and adapting the formula (7) for each element of the sum.

Definition 3 (Forward price of a forward contract). A forward price Kt of a forward contract at

time t is a value of a delivery price K introduced in Definition 2, for which FQ
t = 1

N

N
∑

i=1
FQ(t, Ti)−Kt = 0.

5. The Adjusted Fuzzy Decision-Making Method

This section is devoted to the fuzzy approach to pricing forward contracts. For a brief
summary of fuzzy numbers theory and interval arithmetic we refer the readers to [13,31].
We restrict our attention only to necessary notations.

We denote by R, B(R) and F(R) the set of real numbers, the σ-field of Borel subsets of
R and the set of fuzzy numbers, respectively.

For ã ∈ F(R), µã : R 7→ [0, 1] denotes its membership function. For arbitrary α ∈ [0, 1],
ãα = [ãL

α , ãU
α ], where −∞ < ãL

α ≤ ãU
α < ∞, are its α-level sets.

Assume that L, R : [0, 1] 7→ [0, 1] are continuous and strictly decreasing functions
such that L(0) = R(0) = 1, L(1) = R(1) = 0 and a1, a2, a3 ∈ R satisfy the inequality:
a1 < a2 < a3. An element ã of F(R) is called an L-R (left-right) fuzzy number, if

µã(x) =


L
(

a2−x
a2−a1

)
for a1 ≤ x ≤ a2;

R
(

x−a2
a3−a2

)
for a2 ≤ x ≤ a3;

0 otherwise.

If L(y) = R(y) = 1− y, ã is called a triangular fuzzy number and is denoted by ã = (a1, a2, a3).
A function X̃ : Ω 7→ F(R), where (Ω,F ) is a measurable space, is called a fuzzy

random variable (see, e.g., [54]) if for each α ∈ [0, 1]{
(ω, x) : X̃(ω)(x) ≥ α

}
∈ F × B(R).

We also use the notation ⊕, 	, ⊗ and � for the arithmetic operations between fuzzy
numbers, defined by the extension principle (see, e.g., [55–57]) and corresponding arith-
metic operations +,−,×,/ between real numbers, respectively.

Furthermore, the symbols ⊕int, 	int, ⊗int and �int denote the arithmetic operations
between closed intervals.

It was discussed in [13,31] that there exists a correspondence between α-level sets
of results of fuzzy arithmetic operations on fuzzy arguments and interval arithmetic
operations on α-level sets of these arguments.
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Weighted crisp possibilistic mean value of a fuzzy number was introduced in [58]. Let
ã ∈ F(R). An increasing, nonnegative function f : [0, 1] 7→ R is called a weighting function
if it satisfies the following normalization condition∫ 1

0
f (α)dα = 1. (22)

The lower and upper weighted possibilistic mean values of ã are given by

M∗(ã) =
∫ 1

0
ãL

α f (α)dα, M∗(ã) =
∫ 1

0
ãU

α f (α)dα,

respectively, whereas the weighted possibilistic mean of ã is the arithmetic mean

M̄(ã) =
M∗(ã) + M∗(ã)

2
.

In the further part of the paper we assume that f (α) = 2α.
The uncertainty of the model parameters in this paper is described by L-R fuzzy

numbers. They can be obtained, i.a., from experts (see, e.g., [13,59,60]). The symbol ˜ above
fuzzy parameters is used to indicate their fuzziness.

A similar technique was applied for the first time to option pricing in the Black–Scholes
model in [31].

The parameters µ, σ, λ, ξ = {ξi}i∈[m], η =
{

ηj
}

j∈[n] of the crisp model are replaced by

their counterparts µ̃, σ̃, λ̃, ξ̃ =
{

ξ̃i
}

i∈[m], η̃ =
{

η̃j
}

j∈[n] in the form of L-R fuzzy numbers.

We also treat values of process S̃t, t ∈ T , as fuzzy random variables. We additionally
assume the positivity of µ̃, σ̃, λ̃, ξ̃i ⊕ θ̄0, i ∈ [m], η̃j 	 θ̄0 	 1, j ∈ [n] and S̃t, t ∈ T , i.e., the
positivity of their membership functions for positive arguments.

Finally, we make the assumption that the fuzzy numbers
m⊕

i=1
qi⊗ ξ̃i�

(
ξ̃i ⊕ θ̄0

)
,

n⊕
j=1

pj⊗

η̃j �
(
η̃j 	 θ̄0

)
are positive. This assumption is always satisfied, when the distribution of

jumps in the crisp model is hyperexponential.
To shorten notation we introduce the set of symbols Σ = {L, U} and the operator

′ : Σ 7→ Σ given by: L′ = U, U′ = L.

Theorem 2. The fuzzy forward price is given by the following analytical formula:

F̃Q(t, T) = exp
[
m̃t,T ⊗ ln S̃t ⊕ g(T)	 g(t)⊗ m̃t,T ⊕ Γ̃t,T � M̃

]
, t ∈ T , (23)



Entropy 2023, 25, 527 12 of 21

where

m̃t,T = e−(T−t)⊗µ̃, M̃ = 4⊗ µ̃, ξ̃Qi = ξ̃i ⊕ θ̄0, i ∈ [m], η̃Q
j = η̃j 	 θ̄0 j ∈ [n],

λ̃Q = λ̃⊗

qd ⊗
m⊕

i=1

qi ⊗ ξ̃i � ξ̃Qi ⊕ pu ⊗
n⊕

j=1

pj ⊗ η̃j � η̃Q
j

,

q̃Qd =
(

qd ⊗ λ̃� λ̃Q
)
⊗

m⊕
i=1

qi ⊗ ξ̃i � ξ̃Qi ,

p̃Qu =
(

pu ⊗ λ̃� λ̃Q
)
⊗

n⊕
j=1

pj ⊗ η̃j � η̃Q
j ,

q̃Qi =
(

qi ⊗ ξ̃i � ξ̃Qi

)
�
(

m⊕
i=1

qi ⊗ ξ̃i � ξ̃Qi

)
, i ∈ [m],

p̃Qj =
(

pj ⊗ η̃j � η̃Q
j

)
�

 n⊕
j=1

pj ⊗ η̃j � η̃Q
j

, j ∈ [n],

Γ̃t,T = Γ̃1,t,T ⊕ Γ̃2,t,T , Γ̃1,t,T = γ̃1,1,t,T ⊗ γ̃1,2,t,T ,

γ̃1,1,t,T = σ̃⊗ (1	 m̃t,T), γ̃1,2,t,T = σ̃⊗ (1⊕ m̃t,T)⊕ 4⊗ θ̂0,

Γ̃2,t,T = 4⊗ λ̃Q ⊗ γ̃2,t,T , γ̃2,t,T = q̃Qd ⊗ Λ̃′t,T ⊕ p̃Qu ⊗ Λ̃′′t,T ,

Λ̃′t,T =
m⊕

i=1

Λ̃′i,t,T , Λ̃′′t,T =
n⊕

j=1

Λ̃′′j,t,T ,

Λ̃′i,t,T = q̃Qi ⊗ Λ̃1
i,t,T , Λ̃1

i,t,T = ln
((

ξ̃Qi ⊕ m̃t,T

)
�
(

ξ̃Qi ⊕ 1
))

, i ∈ [m],

Λ̃′′j,t,T = p̃Qj ⊗ Λ̃2
j,t,T , Λ̃2

j,t,T = ln
((

η̃Q
j 	 m̃t,T

)
�
(

η̃Q
j 	 1

))
, j ∈ [n].

(24)

Furthermore, for each α ∈ [0, 1] and Ξ ∈ Σ(
F̃Q(t, T)

)Ξ

α
= exp

[
(m̃t,T)

Ξ
α ln(S̃t)

Ξ
α + g(T)−

(
g(t)⊗int (m̃t,T)α

)Ξ′
+((

Γ̃t,T
)

α
�int M̃α

)Ξ
]
, t ∈ T ,

(25)

where

(m̃t,T)
Ξ
α = e−(T−t)µ̃Ξ′

α , M̃Ξ
α = 4µ̃Ξ

α ,

(
ξ̃Qi

)Ξ

α
=
(
ξ̃i
)Ξ

α
+ θ̄0,

(
q̃Qi
)Ξ

α
=

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
m
∑

i=1
qi
(
ξ̃i
)Ξ′

α
/
(

ξ̃Qi

)Ξ

α

, i ∈ [m],

(
η̃Q

j

)Ξ

α
=
(
η̃j
)Ξ

α
− θ̄0,

(
p̃Qj
)Ξ

α
=

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α
n
∑

j=1
pj
(
η̃j
)Ξ′

α
/
(

η̃Q
j

)Ξ

α

, j ∈ [n],

(
λ̃Q
)Ξ

α
= λ̃Ξ

α

(
qd

m

∑
i=1

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
+ pu

n

∑
j=1

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α

)
,

(
q̃Qd
)Ξ

α
= qd

(
λ̃
)Ξ

α
/
(

λ̃Q
)Ξ′

α

m

∑
i=1

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
,

(
p̃Qu
)Ξ

α
= pu

(
λ̃
)Ξ

α
/
(

λ̃Q
)Ξ′

α

n

∑
j=1

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α
.

(26)
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(
Γ̃t,T

)Ξ
α
=
(
Γ̃1,t,T

)Ξ
α
+
(
Γ̃2,t,T

)Ξ
α

,
(
Γ̃1,t,T

)Ξ
α
=
(
(γ̃1,1,t,T)α ⊗int (γ̃1,2,t,T)α

)Ξ,

(γ̃1,1,t,T)
Ξ
α = σ̃Ξ

α

(
1− (m̃t,T)

Ξ′
α

)
, (γ̃1,2,t,T)

Ξ
α = (σ̃)Ξ

α

(
1 + (m̃t,T)

Ξ
α

)
+ 4θ̂0,(

Γ̃2,t,T
)Ξ

α
= 4

((
λ̃Q
)

α
⊗int (γ̃2,t,T)α

)Ξ
,

(γ̃2,t,T)
Ξ
α =

(
q̃Qd
)Ξ

α

(
Λ̃′t,T

)Ξ
α
+
(

p̃Qu
)Ξ

α

(
Λ̃′′t,T

)Ξ
α(

Λ̃′t,T
)Ξ

α
=

m

∑
i=1

(
Λ̃′i,t,T

)Ξ
α

,
(
Λ̃′′t,T

)Ξ
α
=

n

∑
j=1

(
Λ̃′′j,t,T

)Ξ

α
,

(27)

(
Λ̃′i,t,T

)Ξ
α
=
((

q̃Qi
)

α
⊗int

(
Λ̃1

i,t,T

)
α

)Ξ
, i ∈ [m],

(
Λ̃1

i,t,T

)Ξ

α
= ln

(
ξ̃Qi

)Ξ

α
+ (m̃t,T)

Ξ
α(

ξ̃Qi

)Ξ′

α
+ 1

, i ∈ [m],

(
Λ̃′′j,t,T

)Ξ

α
=
((

p̃Qj
)

α
⊗int

(
Λ̃2

j,t,T

)
α

)Ξ
, j ∈ [n],

(
Λ̃2

j,t,T

)Ξ

α
= ln

(
η̃Q

j

)Ξ

α
− (m̃t,T)

Ξ′
α(

η̃Q
j

)Ξ′

α
− 1

, j ∈ [n].

(28)

Proof. We rewrite Formula (7) as follows:

FQ(t, T) = exp

[
mt,T ln St + g(T)−mt,T g(t) +

Γt,T

4µ

]
,

where

Γt,T = Γ1,t,T + Γ2,t,T , Γ1,t,T = σ(1−mt,T)
(
σ(1 + mt,T) + 4θ̂0

)
,

Γ2,t,T = 4λQ

qQd
m

∑
i=1

qQi ln
ξQi + mt,T

ξQi + 1
+ pQu

n

∑
j=1

pQj ln
ηQ

j −mt,T

ηQ
j − 1

,

ξQi = ξi + θ̄0, qQi =

qiξi

ξQi
m
∑

i=1

qiξi

ξQi

, i ∈ [m], ηQ
j = ηj − θ̄0, pQj =

pjηj

ηQj
n
∑

j=1

pjηj

ηQj

, j ∈ [n],

mt,T = e−µ(T−t), λQ = λ

qd

m

∑
i=1

qiξi

ξQi
+ pu

n

∑
j=1

pjηj

ηQ
j

,

qQd = qd
λ

λQ

m

∑
i=1

qiξi

ξQi
, pQu = pu

λ

λQ

n

∑
j=1

pjηj

ηQ
j

.

Thus, (23) and (24) are fulfilled.
Functions exp(x) and ln(x) satisfy the assumptions of Proposition 2.3 from [31]. Since

they are increasing, for each fuzzy number ã(
eã)

α
=
[
eãL

α , eãU
α

]
(29)

and for each positive fuzzy number b̃(
ln b̃
)

α
=
[
ln b̃L

α , ln b̃U
α

]
. (30)
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From the assumptions it follows that 1	 m̃t,T , ξ̃Qi ⊕ m̃t,T , ξ̃Qi ⊕ 1, i ∈ [m], η̃Q
j 	 m̃t,T , η̃Q

j 	 1,
j ∈ [n], are positive fuzzy numbers. Straightforward computations employing (29) yield

(m̃t,T)
Ξ
α = e−(T−t)µ̃Ξ′

α , M̃Ξ
α = 4µ̃Ξ

α ,

(
ξ̃Qi

)Ξ

α
=
(
ξ̃i
)Ξ

α
+ θ̄0,

(
q̃Qi
)Ξ

α
=

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
m
∑

i=1
qi
(
ξ̃i
)Ξ′

α
/
(

ξ̃Qi

)Ξ

α

, i ∈ [m],

(
η̃Q

j

)Ξ

α
=
(
η̃j
)Ξ

α
− θ̄0,

(
p̃Qj
)Ξ

α
=

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α
n
∑

j=1
pj
(
η̃j
)Ξ′

α
/
(

η̃Q
j

)Ξ

α

, j ∈ [n],

(
λ̃Q
)Ξ

α
= λ̃Ξ

α

(
qd

m

∑
i=1

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
+ pu

n

∑
j=1

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α

)
,

(
q̃Qd
)Ξ

α
= qd

(
λ̃
)Ξ

α
/
(

λ̃Q
)Ξ′

α

m

∑
i=1

qi
(
ξ̃i
)Ξ

α
/
(

ξ̃Qi

)Ξ′

α
,

(
p̃Qu
)Ξ

α
= pu

(
λ̃
)Ξ

α
/
(

λ̃Q
)Ξ′

α

n

∑
j=1

pj
(
η̃j
)Ξ

α
/
(

η̃Q
j

)Ξ′

α
.

and (
F̃Q(t, T)

)Ξ

α
= exp

[
m̃t,T ⊗ ln S̃t ⊕ g(T)	 g(t)⊗ m̃t,T ⊕ Γ̃t,T � (4⊗ µ̃)

]Ξ
α
=

exp
[(

m̃t,T ⊗ ln S̃t
)Ξ

α
+ g(T)− (g(t)⊗ m̃t,T)

Ξ′
α +

(
Γ̃t,T � M̃

)Ξ
α

]
=

exp
[
(m̃t,T)

Ξ
α ln

(
S̃t
)Ξ

α
+ g(T)−

(
g(t)⊗int (m̃t,T)α

)Ξ′
+
((

Γ̃t,T
)

α
�int M̃α

)Ξ
]
.

Finally, equality (30) implies (28), which finishes the proof.

The following corollary is a straightforward consequence of Theorem 2.

Corollary 1. Let K̃t be the fuzzy forward price of a forward contract calculated at time t. Then,
under the above assumptions,

K̃t =
1
N
⊗

N⊕
i=1

F̃Q(t, Ti).

Furthermore, for each α ∈ [0, 1] and Ξ ∈ Σ

(
K̃t
)Ξ

α
=

1
N

N

∑
i=1

(
F̃Q(t, Ti)

)Ξ

α
.

6. Modified Method of Decision Making in a Fuzzy Environment

In this section, we propose an improved version of a method of investment decision-
making, used in our previous papers, i.e., in [13,14], originated from [61], where it was
introduced in another context.

Let t ∈ [0, T]. Denote by K̂t the market price of the considered forward price of
a forward contract calculated at time t. Denote by V = {B, A, H, R, S} the extended set of
possible investment decisions: B (to buy; when the contract is significantly undervalued),
A (to accumulate; when the contract is undervalued), H (to hold; when the contract is fairly
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valued), R (to reduce; when the contract is overvalued), and S (to sell; when the contract is
significantly overvalued). The advice choice function Λ : R2 7→ 2V takes the form:

B∈Λ
(
Kt, K̂t

)
⇔ K̂t < Kt; A∈Λ

(
Kt, K̂t

)
⇔ K̂t ≤ Kt;

H∈Λ
(
Kt, K̂t

)
⇔ K̂t = Kt; R∈Λ

(
Kt, K̂t

)
⇔ K̂t ≥ Kt;

S∈Λ
(
Kt, K̂t

)
⇔ K̂t > Kt.

The extended advice choice function Λ̃ : [0, 1]R ×R 7→ [0, 1]V is obtained with application
of the Zadeh extension principle. Let l̃ be the membership function of Λ̃

(
K̃t, K̂t

)
. Then,

l̃(B) = min
(

δK̃t

(
K̂t
)
,
(

1− βK̃t

(
K̂t
)))

; l̃(A) = δK̃t

(
K̂t
)
;

l̃(H) = min
(

δK̃t

(
K̂t
)
, βK̃t

(
K̂t
))

; l̃(R) = βK̃t

(
K̂t
)
;

l̃(S) = min
(

βK̃t

(
K̂t
)
,
(

1− δK̃t

(
K̂t
)))

and for arbitrary x̂ ∈ R:

βK̃t
(x̂) = sup

{
µK̃t

(x) : x ≤ x̂
}
=

{
µK̃t

(x̂) for
(
K̃t
)L

0 ≤ x̂ ≤
(
K̃t
)L

1 ;
1 otherwise

δK̃t
(x̂) = sup

{
µK̃t

(x) : x ≥ x̂
}
=

{
µK̃t

(x̂) for
(
K̃t
)U

1 ≤ x̂ ≤
(
K̃t
)U

0 ;
1 otherwise.

One can apply the bisection search (see, e.g., [31]) to receive values of the membership
function µK̃t

. The α-level set Λ̃
(
K̃t, K̂t

)
α

is the extended set of recommendations for a
financial analyst.

Recommendations A and R are, respectively, understood as suggestions to prepare
for the purchase or sale of the financial instrument. However, in practice, more definite
investment decisions are often required. Therefore, we will restrict the set of possible
recommendations to the subset Ve ⊂ V, where Ve = {B, H, S}. To this end, we compute
the weighted possibilistic mean K̄t = M̄(Kt). The final set Dα of recommendations for a
financial analyst has the form

Dα =
(
Λ̃
(
K̃t, K̂t

)
α
∩Ve

)
∪ D′α,

where

D′α =



{H} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {A, R}, K̄t = K̂t;

{S} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {A, R}, K̄t < K̂t;

{B} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {A, R}, K̄t > K̂t;

{H} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {A}, K̄t ≤ K̂t;

{B} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {A}, K̄t > K̂t;

{H} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {R}, K̄t ≥ K̂t;

{S} if Λ̃
(
K̃t, K̂t

)
α
∩ {A, R} = {R}, K̄t < K̂t;

∅ otherwise.

7. Numerical Examples
7.1. Automatized Investment Decision-Making

In this section we will compare on the real-life example the modified investment
decision-making method described in Section 6 to the primary one introduced in [13,14],
reduced afterwards in [12] to the case of choice out of merely three most significant invest-
ment decisions {B, H, S}.

Let us assume the following set of the triangular fuzzy numbers (see Table 1, the set
of parameters is an extension of those analyzed in [12] in Section 7.1). Usually, ends and
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modal values of fuzzy numbers are estimated from historical data by traders or supporting
them front office in an energy company or a financial institution.

Table 1. Exemplary fuzzy parameters estimated from historical data.

S̃ (95, 100, 105)
µ̃ (110, 115, 120)
σ̃ (1.9, 2.2, 2.5)
λ̃ (20, 22.5, 25)
ξ̃1 (10, 10.5, 11)
ξ̃2 (14, 14.5, 15)
η̃1 (8, 8.5, 9)
η̃2 (48, 48.5, 49)

Another market and model parameters which do not undergo fuzzification: q1 = 0.35,
q2 = 0.65, p1 = 0.4, p2 = 0.6, qd = 0.45, pu = 0.55, t = 0, g(0) = 4.6, T ∈ [0.25, 0.5],
the mean value of the seasonality g(T) over that period is equal to 4.73. Moreover, let us
assume that θ̂0 = 8, θ̄0 = 5.

The resulting modal value of the fuzzy forward price is equal to 137.96, whereas
the weighted possibilistic mean K̄0 = 140.36. α is fixed as 0.9. Table 2 illustrates a set of
sample market forward prices and a comparison of resulting decisions coming from three
proposed investment decision-making methods: a column with the header Λ̃

(
K̃0, K̂0

)
0.9

shows investment decisions recommended and deeply analyzed in the method proposed
in [13,14] (Method 1), the header Λ̃

(
K̃0, K̂0

)
0.9 ∩ Ve indicates decisions arising from the

method described in [12] (Method 2). Finally, the column marked as D0.9 denotes the
outcomes from the current’s paper method (Method 3).

Table 2. Automatized decision making for different market prices of the considered forward contract
with the modal value of the fuzzy forward price equal to 137.96 and the weighted possibilistic mean
equal to 140.36.

K̂0 l̃(B) l̃(A) l̃(H) l̃(R) l̃(S) Λ̃
(
K̃0, K̂0

)
0.9 Λ̃

(
K̃0, K̂0

)
0.9 ∩Ve D0.9

128.5 0.91 1 0.09 0.09 0 {B, A} {B} {B}
135 0.22 1 0.78 0.78 0 {A} ∅ {B}

136.5 0.1 1 0.9 0.9 0 {H, A, R} {H} {B, H}
139 0 0.94 0.94 1 0.06 {H, A, R} {H} {B, H}
140 0 0.88 0.88 1 0.12 {R} ∅ {H}
141 0 0.82 0.82 1 0.18 {R} ∅ {S}
166 0 0.09 0.09 1 0.91 {S, R} {S} {S}

The above example encompasses all the possible configurations of investment deci-
sions in Method 1. As can be observed, in this method B is always accompanied by A, S by
R and H by A and R (the example is representative because these properties do not depend
on the selected α and the magnitudes of K̂0 and K0). Method 2 is reduced compared to
Method 1 in order to provide unambiguous indications. However, as can be seen from
Table 2, there are some configurations of market data and model parameters when the set
of investment decisions is empty for high values of α. The present method, Method 3, fills
in this gap, still limiting the final set of recommendations Dα to a subset of {B, H, S} basing
on the relation between K̄0 and K̂0. What is more, the inconclusive set of recommendations
{H, A, R} possible in Method 1 is precluded in Method 3. As can be seen in Table 2, when
the market price K̂0 increases from 140 to 141, crossing the weighted possibilistic mean K̄0,
D′α changes from {H} to {S} (similar situation would be when K̄0 was smaller then the
modal value of the fuzzy forward price—then the recommendation would change from
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{H} to {B} when K̂0 was decreasing and crossing K̄0). This is another improvement in
comparison to the Method 1, inasmuch as {R}, {R} are replaced by unequivocal {H} and
{S} for K̂0 = 140, K̂0 = 141, respectively.

The advantage of the weighted possibilistic mean is that it is useful for practical
applications—it is a single numeric representation of values present in a fuzzy number.
Moreover, the weighting function allows to put emphasis on some subset of the support of
a number. Setting f (α) = 2α is a natural choice, because the closer an element of a fuzzy
number is to the modal value, the bigger the weight. Such a representative of a whole fuzzy
number can be easily compared to another numeric indicator, e.g., a market price, which
has been used in the formula for the calculation of D′α.

7.2. Price’S α-Level Sets, Membership Function, Sensitivity Analysis

We continue with the same set of the parameters’ values as in Section 7.1. The
relationship between the α-level sets of the fuzzy price of the forward contract and the
value of α is shown in Figure 1.

1.0 0.9 0.8 0.7 0.6 0.5 0.4

130

135

140

145

150

155

Alpha

Price

Figure 1. α-Level sets’ ends (circles: right ends, triangles: left ends) of the forward contract’s price
depending on the membership degree α.

Figure 2 illustrates the membership function µK̃0
of the forward contract’s price. What

is remarkable is the triangular shape of the membership function resembling shapes of
membership functions of the triangular fuzzy numbers in Table 1. This is a practical proof
of stability of the fuzzy pricing method inasmuch as values of the parameters are arbitrarily
picked out. From both these plots one can also conclude that the range of values of the
right ends of the fuzzy forward price is wider than the range of values of the left ends (the
right side of the “triangle” is longer). The possibilistic mean, by its construction, enables
to identify and quantify such asymmetry. For our exemplary data the longer right side
results in the bigger weighted possibilistic mean (equal to 140.36) than the modal value
of the fuzzy price (equal to 137.96). If one selects weighting functions which are convex
and therefore take bigger values than the linear f (α) = 2α as α becomes closer to 1, the
weighted possibilistic mean predominantly mirrors the shape of the membership function
near its peak. For the sample data, the difference between legs of the “triangle” diminish
when values of the membership function approach 1. This is the reason why for f (α) = 3α2
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we have K̄0 = 140, which is slightly closer to the modal value of the price than picking
f (α) = 2α.

132 134 136 138 140 142 144 146

0.6

0.7

0.8

0.9

1.0

Price

Membership degree

Figure 2. Membership function of the fuzzy forward contract’s price.

Sensitivity analysis of 0.9-level sets of the fuzzy forward contract’s price with respect to
the fuzzified volatility of the underlying σ̃, cf. Figure 3, confirms the expected dependence
of left and right ends of the forward prices’ intervals on modal values of the parameter
(modeled itself as a symmetric triangular number) as an increasing function.

1.8 2.1 2.4 2.7

132

134

136

138

140

142

144

146

Modal values of sigma fuzzy parameter

Price

Figure 3. Sensitivity analysis of 0.9-level sets of the fuzzy forward contract’s price to changing
triangular number of the parameter σ (circles: right ends of the prices’ intervals, triangles: left ends
of the prices’ intervals).
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8. Conclusions

This paper is devoted to a new stochastic model for the electricity spot prices, which
mirrors the specificity of the electrical energy market. We have introduced and discussed
the mean-reverting jump-diffusion process of the deseasonalized logarithms of electricity
prices with the mixed-exponential probability distribution of jumps, allowing both positive
and negative jumps. Using the Esscher transformation for change of probability measure,
we have obtained the analytical formulas for the forward contracts’ prices in crisp and
fuzzy environments. We have also presented and studied an adjusted method of financial
decision-making based on the derived fuzzy pricing formula. The conducted numerical
examples have illustrated the theoretical results.

Our future scientific plans involve modeling and valuing the regarded financial deriva-
tives under uncertainty by applying an extended multi-factor model of dynamics of desea-
sonalized logarithms of electricity prices with stochastic volatility.

Author Contributions: Conceptualization, P.N. and M.P.; methodology, P.N. and M.P.; validation,
P.N. and M.P.; formal analysis, P.N. and M.P.; investigation, P.N. and M.P.; writing—original draft
preparation, P.N. and M.P.; writing—review and editing, P.N. and M.P.; supervision, P.N. and M.P.;
project administration, P.N. and M.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cai, N.; Kou, S.G. Option Pricing Under a Mixed-Exponential Jump Diffusion Model. Manag. Sci. 2011, 57, 2067–2081. [CrossRef]
2. Barndorff-Nielsen, O.E. Processes of normal inverse Gaussian type. Financ. Stoch. 1998, 2, 41–68. [CrossRef]
3. Madan, D.B.; Seneta, E. The Variance Gamma (V.G.) Model for Share Market Returns. J. Bus. 1990, 63, 511–524. [CrossRef]
4. Nowak, P. Option Pricing with Levy Process in a Fuzzy Framework; Atanassov, K., Homenda, W., Hryniewicz, O., Kacprzyk, J.,

Krawczak, M., Nahorski, Z., Szmidt, E., Zadrozny, S., Eds.; Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized
Nets and Related Topics; Polish Academy of Sciences: Warsaw, Poland, 2011.

5. Nowak, P.; Romaniuk, M. Application of Levy processes and Esscher transformed martingale measures for option pricing in
fuzzy framework. J. Comput. Appl. Math. 2014, 263, 129–151. [CrossRef]

6. Nowak, P. On Jacod-Grigelionis characteristics for Hilbert space valued semimartingales. Stoch. Anal. Appl. 2002, 20, 963–998.
[CrossRef]

7. Deelstra, G.; Simon, M. Multivariate European option pricing in a Markov-modulated Lévy framework. J. Comput. Appl. Math.
2017, 317, 171–187. [CrossRef]

8. Bao, J.; Zhao, Y. Option pricing in Markov-modulated exponential Lévy models with stochastic interest rates. J. Comput. Appl.
Math. 2019, 357, 146–160. [CrossRef]

9. Feng, C.; Tan, J.; Jiang, Z.; Chen, S. A generalized European option pricing model with risk management. Phys. A Stat. Mech. Its
Appl. 2020, 545, 123797. [CrossRef]

10. Tan, X.; Li, S.; Wang, S. Pricing European-Style Options in General Lévy Process with Stochastic Interest Rate. Mathematics 2020,
8, 731. [CrossRef]

11. Nowak, P.; Romaniuk, M. Valuing catastrophe bonds involving correlation and CIR interest rate model. Comput. Appl. Math.
2018, 37, 365–394. [CrossRef]

12. Pawłowski, M.; Nowak, P. Stochastic approach to model spot price and value forward contracts on energy markets under
uncertainty. J. Ambient. Intell. Humaniz. Comput. 2021, 1–15. [CrossRef]

13. Nowak, P.; Pawłowski, M. Option Pricing With Application of Levy Processes and the Minimal Variance Equivalent Martingale
Measure Under Uncertainty. IEEE Trans. Fuzzy Syst. 2017, 25, 402–416. [CrossRef]

14. Nowak, P.; Pawłowski, M. Pricing European options under uncertainty with application of Levy processes and the minimal Lq

equivalent martingale measure. J. Comput. Appl. Math. 2019, 345, 416–433. [CrossRef]
15. Ma, X.; Fei, Q.; Qin, H.; Li, H.; Chen, W.T. A new efficient decision making algorithm based on interval-valued fuzzy soft set.

Appl. Intell. 2021, 51, 3226–3240. [CrossRef]

http://doi.org/10.1287/mnsc.1110.1393
http://dx.doi.org/10.1007/s007800050032
http://dx.doi.org/10.1086/296519
http://dx.doi.org/10.1016/j.cam.2013.11.031
http://dx.doi.org/10.1081/SAP-120014551
http://dx.doi.org/10.1016/j.cam.2016.11.040
http://dx.doi.org/10.1016/j.cam.2019.01.044
http://dx.doi.org/10.1016/j.physa.2019.123797
http://dx.doi.org/10.3390/math8050731
http://dx.doi.org/10.1007/s40314-016-0348-2
http://dx.doi.org/10.1007/s12652-021-03435-y
http://dx.doi.org/10.1109/TFUZZ.2016.2637372
http://dx.doi.org/10.1016/j.cam.2018.06.046
http://dx.doi.org/10.1007/s10489-020-01915-w


Entropy 2023, 25, 527 20 of 21

16. Ma, X.; Qin, H.; Abawajy, J.H. Interval-Valued Intuitionistic Fuzzy Soft Sets Based Decision-Making and Parameter Reduction.
IEEE Trans. Fuzzy Syst. 2022, 30, 357–369. [CrossRef]

17. Nomikos, N.; Soldatos, O.A. Analysis of model implied volatility for jump diffusion models: Empirical evidence from the
Nordpool market. Energy Econ. 2010, 32, 302–312. [CrossRef]

18. Miyahara, Y. A Note on Esscher Transformed Martingale Measures for Geometric Levy Processes; Discussion Papers in Economics;
Nagoya City University: Nagoya, Japan, 2004; Volume 379, pp. 1–14.

19. Lucia, J.; Schwartz, E. Electricity prices and power derivatives: Evidence from the Nordic Power Exchange. Rev. Deriv. Res. 2002,
5, 5–50. [CrossRef]

20. Cartea, A.; Figueroa, M. Pricing in Electricity Markets: A mean reverting jump diffusion model with seasonality. Appl. Math.
Financ. 2005, 12, 313–335. [CrossRef]

21. Bodea, A.; Mare, B. Valuation of Swing Options in Electricity Commodity Markets; University of Heidelberg: Heidelberg, Germany,
2012.

22. Geman, H.; Roncoroni, A. Understanding the Fine Structure of Electricity Prices. J. Bus. 2006, 79, 1225–1261. [CrossRef]
23. Janczura, J.; Weron, R. An empirical comparison of alternate regime-switching models for electricity spot prices. Energy Econ.

2010, 32, 1059–1073. [CrossRef]
24. de Jong, C.; Huisman, R. Option Formulas for Mean-Reverting Power Prices with Spikes; Energy Global Research Paper; Department

of Finance: Sacramento, CA, USA, 2002.
25. Lindstrom, E.; Regland, F. Modelling extreme dependence between European electricity markets. Energy Econ. 2012, 34, 899–904.

[CrossRef]
26. Seifert, J.; Uhrig-Homburg, M. Modelling jumps in electricity prices: Theory and empirical evidence. Rev. Deriv. Res. 2007,

10, 59–85. [CrossRef]
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