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Mehmet Emin Köroğlu and Mustafa Sarı *

Department of Mathematics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
* Correspondence: musari@yildiz.edu.tr

Abstract: In this paper, we investigate the algebraic structure of the non-local ringRq = Fq[v]/〈v2 + 1〉
and identify the automorphisms of this ring to study the algebraic structure of the skew constacyclic
codes and their duals over this ring. Furthermore, we give a necessary and sufficient condition for the
skew constacyclic codes over Rq to be linear complementary dual (LCD). We present some examples
of Euclidean LCD codes over Rq and tabulate the parameters of Euclidean LCD codes over finite fields
as the Φ-images of these codes over Rq, which are almost maximum distance separable (MDS) and
near MDS. Eventually, by making use of Hermitian linear complementary duals of skew constacyclic
codes over Rq and the map Φ, we give a class of entanglement-assisted quantum error correcting
codes (EAQECCs) with maximal entanglement and tabulate parameters of some EAQECCs with
maximal entanglement over finite fields.

Keywords: non-chain ring; skew constacyclic codes; LCD codes; entanglement-assisted quantum
codes

1. Introduction

In recent decades, codes over finite commutative chain rings have been studied
considerably (see Refs. [1–7]). In the last few years, some specific non-chain rings
have been used as an alphabet for codes (see Refs. [8–12]). Constacyclic codes form an
important class of linear codes and have practical applications to other disciplines including
classical and quantum communication systems as they can be encoded with shift registers
because of their algebraic structures. Since the factorization of the polynomials over non-
commutative structures is not unique, they are potentially more convenient for obtaining
good code parameters than commutative structures. This fact makes the study of skew
polynomial rings more attractive. Over standard polynomial rings the algebraic structure
of λ-constacyclic codes of length n is totally determined by the polynomial divisors of the
binomial xn

− λ. In [13], Boucher, Solé and Ulmer used skew polynomials to determine
the algebraic structure of constacyclic codes under a skew constacyclic shift. Afterwards,
in [14,15], Boucher and Ulmer explored more properties and good examples of such codes.

For the first time, linear complementary dual (LCD) codes over finite fields were
introduced by Massey in [16]. In recent years, many researches have been conducted
to obtain conditions for certain families of linear codes to be LCD. For a cyclic code,
the necessary and sufficient condition to be an LCD code was derived by Yang and Massey
in [17]. Zhu et al. in [18] and Koroglu and Sarı in [19] constructed some classes of maximum
distance separable (MDS) LCD codes from negacyclic codes. Esmaeili and Yari studied on
quasi-cyclic linear complementary dual codes [20]. For a list of papers on LCD codes from
other families of linear codes see Refs. [21–27].

Recently entanglement-assisted quantum error-correcting codes (EAQECCs) have
been studied vigorously by researchers, see Refs. [28–45]. Especially, the construction of
EAQECCs from LCD codes has been the main focus of attention since the number of pairs
of maximally entangled states of an EAQECC derived from an LCD code of length n and
dimension k is n − k, which give us the occasion to construct EAQECCs with maximal
entanglement [33,38,44]. In [44], Qian and Zhang showed that a λ-constacyclic code over
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Fq2 is a Hermitian LCD code if the multiplicative order of λ does not divide q + 1, and by
the help of this fact, they obtained new entanglement-assisted quantum maximum distance
separable codes of length q + 1 from MDS Hermitian LCD codes. In [46], Sarı and Koroglu
expanded the range of parameters by considering the defining sets given in [44] with a
different approach.

The rest of the paper is organized as follows. In Section 2, we recall some basic
notations and results that are needed in the remaining part of the study. In Section 3, we
remind the algebraic structure of the ring Rq and then give a decomposition of it. In the
same section, we determine automorphism group of the ring and define a Gray type map
over it. Further, we recall some results regarding to the algebraic structure of the linear
codes over the ring Rq. In Section 4, we introduce basics of the skew constacyclic codes over
finite fields. In Section 5, we define LCD codes over Rq and give a characterization for skew
constacyclic codes over Rq to be Euclidean LCD and Hermitian LCD. We also tabulate some
parameters of almost maximum distance separable (MDS) and near MDS LCD codes over
F169. In Section 6, we apply the skew constacyclic Hermitian LCD codes over Rq to obtain
EAQECCs and give some parameters of EAQECCs over F5.

2. Preliminaries

In this section, we will fix some notations for the sequel of the paper and recall some
basic notations and results that are needed in the rest of the study. Throughout this work,
we will use the following notation unless otherwise noted.

• q = pk is a prime power and for positive integers a and b, where p = a2 + b2.
• Fq is the finite field of q elements.
• F∗q = Fq − {0}.
• Rq = Fq[v]/〈v2 + 1〉 such that v2

≡ −1(mod q).
• U(Rq) is the unit group of Rq.
• Aut

(
Rq

)
is the automorphism group of Rq.

A linear code of length n and dimension k over Fq is a vector subspace of the vector
space Fn

q . An element of a linear code is termed as a codeword. The minimum Hamming
distance d of a linear code C is the minimum Hamming weight wH(C) of C, where
wH(C) = min

{
wH(c) : 0 , c ∈ C

}
and wH(c) = |{i : ci , 0, i ∈ {0, 1, . . . , n− 1}}|. A linear code

C over Fq of length n, dimension k and minimum distance d is denoted by the triple [n, k, d]q
and this code corrects up to

⌊
d−1

2

⌋
errors. For an [n, k, d]q linear code C, if d = n− k + 1, then

it is called a maximum distance separable (MDS) code. We say that it is an almost maximum
distance separable (MDS) code if d = n − k, and it is a near MDS code if d = n − k − 1.
The (Euclidean) dual C⊥ of a linear code C over Fq of length n is the set

C
⊥ =

y ∈ Fn
q :

n−1∑
i=0

xiyi = 0, ∀x ∈ C

.

The (Hermitian) dual C⊥h of a linear code C over Fq2 of length n is the set

C
⊥h =

{
y ∈ Fn

q2 :
〈
x, y

〉
h = 0, ∀x ∈ C

}
,

where
〈
x, y

〉
h =

n−1∑
i=0

xiy
q
i . Note that the dual of a linear code is also linear. For a linear code

C over Fq2 , a Hermitian parity check matrix H is a matrix whose rows form a basis of C⊥h .

Conjugate transpose of an m× n matrix H =
(
hi j

)
with entries in Fq2 is denoted by H† and

is an n×m matrix such that H† =
(
hq

ji

)
.

Let λ ∈ Fq be a nonzero element. Then a λ-constacyclic code over the finite field Fq
of length n is a linear code C satisfying that (λcn−1, c0, . . . , cn−2) ∈ C for each codeword
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c = (c0, . . . , cn−1) ∈ C. By mapping a codeword c = (c0, . . . , cn−1) to a polynomial c0 + c1x +
· · ·+ cn−1xn−1, one gets that a λ-constacyclic code over Fq of length n corresponds to a
principal ideal C =

〈
1(x)

〉
in the quotient ring Fq[x]/〈xn

− λ〉. Note that a constacyclic code
C =

〈
1(x)

〉
of length n is of n− k dimension, where k = de1(1(x)). For λ = 1 the code C is

called a cyclic code and for λ = −1 the code C is called a negacyclic.

3. Structure of the Ring Rq and Linear Codes over Rq

In this section, we remind algebraic structure of the ringRq and we give a decomposition
of it. We determine automorphism group of the ring and define a Gray type map over it.
Finally, we recall structure of the linear codes over the ring Rq.

An automorphism of the finite fieldFq is a bijection from the field onto itself. The distinct
automorphisms of Fq over Fp are exactly the mappings θ0,θ1, . . . ,θk−1, defined by θ j(β) =

βp j
for β ∈ Fq and 0 6 j 6 k− 1.

The ring Rq = Fq[v]/〈v2 + 1〉 such that v2
≡ −1(modq) is a non-chain principal ideal

ring with two maximal ideals 〈α〉 and 〈α∗〉, where α = a + bv is an element of Rq and
α∗ = a− bv, which is called as the conjugate of the element α. The ideal lattice of Rq is given
in Figure 1.

Rq = Fq[v]/〈v2 + 1〉

〈α = a + bv〉

〈0〉

〈α∗ = a− bv〉

Figure 1. The ideal lattice of the ring Rq = Fq[v]/〈v2 + 1〉.

An element π ∈ Rq is called an idempotent if π2 = π and two idempotents π1, π2 are
said to be orthogonal if π1π2 = 0. An idempotent ofRq is said to be primitive if it is non-zero
and it cannot be written as sum of orthogonal idempotents. A collection {π0,π1, . . . ,πs−1}

of idempotents of Rq is complete if π0 + π1 + . . .+ πs−1 = 1. Any complete collection of
idempotents in Rq is a basis of the Fq-vector space Rq. Hence, any element r ∈ Rq can be
uniquely represented as r = r0π0 + r1π1 + . . .+ rs−1πs−1, where ri ∈ Rq. For more details
readers may consult reference [11].

Let π0 = 1
2aα and π1 = 1

2aα
∗ be two elements in Rq. It is easy to see that the set {π0,π1}

is a complete set of idempotents in Rq. Therefore, any element r ∈ Rq can be uniquely
represented as r = r0π0 + r1π1, where r0, r1 ∈ Fq. From the Figure 1, we can easily see that
an element xπ0 + yπ1 ∈ Rq is a unit if and only if both x and y are nonzero. Then the unit
group of Rq is described as

U

(
Rq

)
=

{
xπ0 + yπ1

∣∣∣x, y ∈ Fq such that x , 0 and y , 0
}
.

Because of the choice of x and y, the number of unit elements of Rq, i.e., the cardinality of

the setU
(
Rq

)
,
∣∣∣∣U(
Rq

)∣∣∣∣ is equal to (q− 1)(q− 1).

Theorem 1. Let θ be an automorphism of Fq and σ be a permutation of the set {0, 1}. Then the map

Θθ,σ : Rq −→ Rq

Θθ,σ(r0π0 + r1π1) 7→ θ(r0)πσ(0) + θ(r1)πσ(1)
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is an automorphism of the ring Rq. Further, the cardinality
∣∣∣∣Aut

(
Rq

)∣∣∣∣ of the automorphism group
of Rq

Aut
(
Rq

)
=

{
Θθ,σ

∣∣∣θ ∈ Aut
(
Fq

)
and σ ∈ S2

}
,

where S2 is the permutation group of the set {0, 1}, is 2k.

Proof of Theorem 1. It is easy to check that Θθ,σ is an automorphism of the ring Rq. Hence,{
Θθ,σ

∣∣∣θ ∈ Aut
(
Fq

)
and σ ∈ S2

}
⊂ Aut

(
Rq

)
.

On the other hand, if Θ ∈ Aut
(
Rq

)
, then the restriction of Θ over Fq is θ. Thus, for any r =

r0π0 + r1π1 ∈ Rq, we have Θ(r) = θ(r0)Θ(π0) +θ(r1)Θ(π1). Now the set
{
Θ(π0), Θ(π1)

}
is

another complete set of primitive pairwise orthogonal idempotents inRq. By the idempotent
decomposition of the ring Rq = π0Rq ⊕ π1Rq, it follows that there exists a permutation
of the set {0, 1} such that Θ(πi) = πσ(i). Therefore, Θ(r) = θ(r0)πσ(0) + θ(r1)πσ(1) and

Aut
(
Rq

)
=

{
Θθ,σ

∣∣∣θ ∈ Aut
(
Fq

)
and σ ∈ S2

}
. Eventually, Θθ,σ ◦Θθ′,σ′ = Θθ◦θ′,σ◦σ′ and hence∣∣∣∣Aut

(
Rq

)∣∣∣∣ = 2k. �

Example 1. Let a = 2, b = 1, p = 5 and q = 25. Then, {π0 = 3 + 4v, π1 = 3 + v} is a complete
set of idempotents of the ring R25. The maximal ideals of R25 are 〈π0〉 =

{
k(3 + 4v) : k ∈ F5

}
and

〈π1〉 =
{
l(3 + v) : l ∈ F5

}
. Morevoer,U(R25) = 16 and

∣∣∣∣Aut
(
Rq

)∣∣∣∣ = 4 since the automorphisms

on F25 are id and θ : x→ x5.

The map ϕ : Rq −→ F2
q such that ϕ(r0π0 + r1π1) = (r0, r1) is a ring epimorphism and

can be extended to Rn
q as

Φ : R
n
q −→ F2n

q

Φ(r0,0π0 + r0,1π1, . . . , rn−1,0π0 + rn−1,1π1) 7−→ (r0,0, . . . , rn−1,0, r0,1, . . . , rn−1,1) = (Φ0|Φ1).

This Gray type map is an isomorphism of vector spaces over Fq. The Gray weight of
any element r ∈ Rn

q is defined as wG(r) = wH(Φ(r)). It is apparent that the linear Gray
type map Φ is a weight preserving map from Rn

q to F2n
q . A linear code C of length n

is an Rq-submodule of Rn
q . The Euclidean dual of a linear code C over Rq of length n

is defined by C⊥ =

{
s ∈ Rn

q

∣∣∣ n−1∑
i=0

risi = 0,∀r ∈ C
}

. Let r̄ = (r̄0, r̄1, . . . , r̄n−1) for a vector

r = (r0, r1, . . . , rn−1) ∈ R
n
q2 where r̄i = rq

i,0π0 + rq
i,1π1. The Hermitian dual of a linear code C

overRq2 of length n is defined byC⊥h =

{
s ∈ Rn

q2 :
n−1∑
i=0

ris̄i = 0, ∀r ∈ C
}

. Note that Euclidean

(resp. Hermitian) dual of a linear code over Rq (resp. Rq2) is also linear code over Rq
(resp. Rq2 ).

Proposition 1. Let C be a linear code of length n over Rq. Then, Φ(C⊥) = (Φ(C))⊥. Further, C
is a self-dual code iff Φ(C) is a self-dual code of length 2n.

Proof of Proposition 1. It is enough to show that the map Φ preserves the orthogonality,
that is,

〈
Φ(c0), Φ(c1)

〉
= 0 when 〈c0, c1〉 = 0. By the linearity of Φ, let r = r0π0 + r1π1, s =

s0π0 + s1π1 ∈ Rq such that 〈r, s〉 = 0. Then, we get

〈r, s〉 = r0s0π0 + r1s1π1

=
r0s0 + r1s1

2
+

(r0s0 − r1s1)b
2a

v = 0
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and so r0s0 + r1s1 = 0. In this case, it follows that
〈
Φ(r), Φ(s)

〉
= r0s0 + r1s1 = 0, which

completes the proof. �

Since Rq = π0Rq ⊕ π1Rq it follows that Rn
q = π0R

n
q ⊕ π1R

n
q . Let C be a linear code of

length n over Rq and r =(r0, r1, . . . , rn−1) ∈ C. Then ri = ri,0π0 + ri,1π1, where ri,0, ri,1 ∈ Fq
and r =(r0,0, r1,0, . . . , rn−1,0)π0 + (r0,1, r1,1, . . . , rn−1,1)π1. Let Ci = Φi(C) for i = 0, 1. It is
obvious that C0 and C1 are linear codes of length n over Fq and C = π0C0 ⊕ π1C1. This
implies that for any linear code C over Rq of length n there exist linear codes C0 and C1 over
Fq of length n such that C = π0C0 ⊕ π1C1. The following determines the duals of linear
codes over Rq.

Proposition 2. LetC =π0C0⊕π1C1 be a linear code of length n overRq. ThenC⊥ =π0C
⊥

0 ⊕π1C
⊥

1 .
Further, C is a self-dual code iff both C0 and C1 are self dual.

4. Skew Constacyclic Codes over the Ring Rq

In this section, first we will introduce basics of the skew constacyclic codes over finite
fields, which are important for determining the algebraic structure of the skew constacyclic
codes over non-chain ring Rq.

For a given automorphism θ of Fq, the set Fq[x;θ] = {a0 + a1x + . . . + a1xn
|ai ∈

Fq and n ∈ N} of formal polynomials forms a ring with identity under the usual addition
of polynomials and the polynomial multiplication with the restriction xb = θ(b)x. The
multiplication is extended to all the elements of Fq[x;θ] via distributivity and associativity.
This ring is called the skew polynomial ring over Fq.

Definition 1. For a given element λ ∈ F∗q and an automorphism θ of Fq, a θ-skew λ-constacyclic code
over the finite field Fq of length n is a linear codeC satisfying that (λθ(cn−1),θ(c0), . . . ,θ(cn−2)) ∈ C
for each codeword c = (c0, . . . , cn−1) ∈ C.

By the definition of a θ-skew λ-constacyclic code C over Fq, each codeword
c = (c0, . . . , cn−1) ∈ C can be considered as a skew polynomial c(x) = c0 + c1x + · · ·+
cn−1xn−1 in the skew quotient ring Fq[x,θ]/〈xn

− λ〉.
For the purpose of characterization of skew constacyclic codes over Rq, we recollect

some well known results about skew-constacyclic codes over finite fields [8,13–15,47–49].

The skew reciprocal polynomial of a polynomial 1(x) =
n−k∑
i=0
1ixi
∈ Fq[x,θ] of degree

n− k denoted by 1∗(x) is defined as

1∗(x) =
n−k∑
i=0

xn−k−i1i =
n−k∑
i=0

θi(1n−k−i)xi.

If 10 , 0, the left monic skew reciprocal polynomial of 1(x) is 1\(x) := 1
θn−k(10)

1∗(x) (see
Definition 3 [47]).

From the reference [14], we have the following result.

Proposition 3 ([14]). Let C be a θ-skew λ-constacyclic code of length n over Fq. Then there exists
a monic polynomial 1(x) of minimal degree in C such that 1(x) is a right divisor of xn

− λ and
C = 〈1(x)〉.

Let 1(x) = xm + 1m−1xm−1 + · · ·+ 10 be a generator of a θ-skew λ-constacyclic code
of length n over Fq. It follows from xn

− λ = h(x)1(x) for some h(x) ∈ Fq[x,θ] that the
constant term 10 of 1(x) can not be zero in Fq. From [47], we have the following result on
the duals of θ-skew λ-constacyclic codes over Fq.
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Proposition 4 (Theorem 1 [47]). LetC be aθ-skewλ-constacyclic code of length n overFq generated

by a monic polynomial 1(x) of degree n− k with 1(x) = xn−k +
∑n−k−1

i=0 1ixi. Let λ∗ = θn(10)

10θn−k(λ)
.

Then C⊥ is a θ-skew λ∗-constacyclic code of length n over Fq such that C⊥ =
〈
h∗(x)

〉
where h(x)

is a monic polynomial of degree k such that xn
− θ−k(λ) = 1(x)h(x). Moreover h∗(x) is a right

divisor of xn
− λ∗.

Definition 2. Let C be a linear code of length 2n over Fq, and λ0,λ1 be units in Fq and
(θ, σ) ∈ Aut

(
Fq

)
× S2. The code C is called (λ0,λ1)-double twisted with respect to (θ, σ) if for all

c = (c0, c1) ∈ C, where c0 = (c0,0, c1,0, . . . , cn−1,0) and c1 = (c0,1, c1,1, . . . , cn−1,1), the word(
λ0θ(c)n−1,σ−1(0),θ(c)1,σ−1(0), . . . ,θ(c)n−2,σ−1(0),
λ1θ(c)n−1,σ−1(1),θ(c)1,σ−1(1), . . . ,θ(c)n−2,σ−1(1)

)
∈ C.

Now, we give the definition of skew constacyclic codes over Rq below.

Definition 3. Let λ ∈ U
(
Rq

)
and Θθ,σ ∈ Aut

(
Rq

)
. A linear code C of length n over Rq is

said to be a Θθ,σ-skew λ-constacyclic code of length n over Rq if (c0, c1, . . . , cn−1) ∈ C, then
(λΘθ,σ(cn−1), Θθ,σ(c0), . . . , Θθ,σ(cn−2)) ∈ C.

We investigate the Φ-Gray images of Θθ,σ-skew λ-constacyclic codes over Rq.

Proposition 5. Let λ = λ0π0 + λ1π1 ∈ U
(
Rq

)
and Θθ,σ ∈ Aut

(
Rq

)
. Suppose that C =π0C0 ⊕

π1C1 be a Θθ,σ-skew λ-constacyclic code of length n over Rq. Then

Φ(C) =
{
Φ(c) : ∀c ∈ C

}
is a (λ0,λ1)-double twisted code of length 2n over Fq with respect to (θ, σ).

Proof of Proposition 5. Let c = (c0, c1) ∈ Φ(C) where ci = (c0,i, c1,i, . . . , cn−1,i) ∈ Fn
q . Then,

π0c0 + π1c1 ∈ C. Since C is a Θθ,σ-skew λ-constacyclic code over Rq, we getλ 1∑
i=0

πσ(i)θ(c0,i),
1∑

i=0

πσ(i)θ(c1,i), . . . ,
1∑

i=0

πσ(i)θ(cn−1,i)


=

 1∑
i=0

λiπiθ
(
c0,σ−1(i)

)
,

1∑
i=0

πiθ
(
c1,σ−1(i)

)
, . . . ,

1∑
i=0

πiθ
(
cn−1,σ−1(i)

)
=

(
λ0θ

(
c0,σ−1(0)

)
,θ

(
c1,σ−1(0)

)
, . . . ,θ

(
cn−1,σ−1(0)

))
π0 +(

λ1θ
(
c0,σ−1(1)

)
,θ

(
c1,σ−1(1)

)
, . . . ,θ

(
cn−1,σ−1(1)

))
π1 ∈ Rq.

Therefore, we have(
λ0θ(c)n−1,σ−1(0),θ(c)1,σ−1(0), . . . ,θ(c)n−2,σ−1(0),
λ1θ(c)n−1,σ−1(1),θ(c)1,σ−1(1), . . . ,θ(c)n−2,σ−1(1)

)
∈ Φ(C),

which completes the proof. �

As an immediate result of Proposition 5, letting σ = id and Θθ,id = Θθ we deduce
the following theorem:

Theorem 2. Let λ = λ0π0 + λ1π1 ∈ U
(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. Suppose that C =π0C0 ⊕π1C1

be a linear code of length n over Rq. Then, C is a Θθ-skew λ-constacyclic code over Rq of length n if
and only if Ci is a θ-skew λi-constacyclic code over Fq of length n.
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Proof of Theorem 2. It follows from the proof of Proposition 5 by taking σ = id. �

Hereafter, we only consider the automorphism Θθ = Θθ,id defined by

Θθ : Rq −→ Rq

Θθ(r0π0 + r1π1) 7→ θ(r0)π0 + θ(r1)π1,

where θ ∈ Aut
(
Fq

)
.

Now, we give a generator of a Θθ-skew λ-constacyclic code over Rq, where
λ = λ0π0 + λ1π1 ∈ U

(
Rq

)
.

Proposition 6. Let λ = λ0π0 + λ1π1 ∈ U
(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. Suppose that C =π0C0 ⊕

π1C1 be a Θθ-skew λ-constacyclic code of length n over Rq. Then there exist polynomials 10(x)
and 11(x) ∈ Fq[x,θ] such that C =

〈
π010(x),π111(x)

〉
with Ci=

〈
1i
〉
⊆ Fq[x,θ]/〈xn

− λi〉.

Proof of Proposition 6. Let E =
〈
π010(x),π111(x)

〉
and let c(x) = π0c0(x)+π1c1(x) ∈ C

such that ci(x) ∈ Ci. Since Ci=
〈
1i
〉

is a left submodule of the skew ring Fq[x,θ]/〈xn
− λi〉,

there exist l0 and l1 ∈ Fq[x,θ] such that c(x) = l0(x)π0c0(x)+l1(x)π1c1(x) ∈ E and hence
C ⊂ E.

On the other hand, let e ∈ E, then there exist k0 and k1 ∈ Fq[x,θ]/〈xn
− λi〉 such

that e(x) = k0(x)10(x)π0+ k1(x)11(x)π1. Then there exist b0 and b1 ∈ Fq[x,θ] such that
πibi(x) = πiki(x), thus

e(x) = b0(x)10(x)π0+b1(x)11(x)π1 ∈ C.

This shows that E ⊂ C. �

We give the exact characterization of Θθ-skew λ-constacyclic codes over Rq as a
consequence of Proposition 6.

Theorem 3. Let λ = λ0π0 + λ1π1 ∈ U
(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. Suppose that C =π0C0 ⊕π1C1

be a Θθ-skew λ-constacyclic code of length n over Rq. Then C is principally generated with
C =

〈
1(x)

〉
, where 1(x) = π010(x)+π111(x) and 1(x) is a right divisor of xn

− λ in Rq[x, Θθ].

Proof of Theorem 3. It is apparent that
〈
1(x)

〉
⊂ C. Since πi1(x)=πi1i(x) for i = 0, 1, we

have C ⊂
〈
1(x)

〉
. This implies that C =

〈
1(x)

〉
. Since 1i(x) is a right divisor of xn

− λi, there
exists hi(x) ∈ Fq[x,θ] such that xn

− λi = hi(x)1i(x). Seeing that πi(xn
− λ) = πi(xn

− λi),
hence

(π0h0(x) + π1h1(x))(π010(x) + π111(x)) = π0h0(x)10(x) + π1h1(x)11(x)

= π0(xn
− λ0) + π1(xn

− λ1)

= π0(xn
− λ) + π1(xn

− λ)

= (π0 + π1)(xn
− λ)

= xn
− λ.

This shows that π0h0(x) + π1h1(x) is a right divisor of xn
− λ. �

Proposition 2, Proposition 3, Theorem 2 and Theorem 3 together imply the following
result:

Theorem 4. Let λ = λ0π0 + λ1π1 ∈ U
(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. If C = π0C0 ⊕ π1C1 is a Θθ-

skew λ-constacyclic code of length n over Rq with Ci =
〈
1i(x)

〉
, 1i(x) = xn−ki +

n−ki−1∑
j=0
1i jx j, then
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C⊥ =
〈
h∗(x)

〉
is a Θθ-skew λ∗-constacyclic code of length n over Rq, where λ∗ =

1∑
i=0

θn(1i0)

1i0θ
n−ki (λi)

πi

and h∗(x) =
1∑

i=0
πih∗i (x).

Proof of Theorem 4. Recall that C⊥ = π0C
⊥

0 + π1C
⊥

1 by Proposition 2 and Ci =
〈
h∗i

〉
is

a Θθ-skew λ-constacyclic code over Fq by Proposition 4. Then, by Theorem 2, C⊥ is a
Θθ-skew λ∗-constacyclic code over Rq. Finally, Theorem 3 gives the generator polynomial
h∗(x) of C⊥. �

5. Linear Complementary Dual Skew Constacyclic Codes over Rq

In this section, we define LCD codes over Rq and give a characterization for skew
constacyclic codes over Rq to be Euclidean LCD and Hermitian LCD. Before giving the
definition of LCD codes over Rq, we briefly state some basic definitions and results on LCD
codes over Fq.

A linear code C over Fq is said to be an Euclidean LCD code if the intersection of C
and C⊥ is zero, that is, Hull(C) = C∩C⊥ = {0} [16]. A Hermitian LCD code is a linear code
C over Fq2 with Hullh(C) = C∩C⊥h = {0}. From [50], we have the following theorem for
skew constacyclic codes over finite fields to be Euclidean LCD and Hermitian LCD.

Theorem 5 (Theorem 2 [50]). Let θ ∈ Aut
(
Fq

)
and λ ∈ { ±1}. Let C be a θ-skew λ-constacyclic

code of length n over Fq with C =
〈
1(x)

〉
. Let h(x) ∈ Fq[x;θ] with θn(h(x))1(x) = xn

− λ. Then,

1. C is an Euclidean LCD code⇔ 1crd
(
1, h\

)
= 1. (Here, 1crd(1, h\) represents the greatest

common right divisor of 1 and h\.)
2. Let q be an even power of a prime number. Then,C is a Hermitian LCD code⇔ 1crd

(
1, h̃\

)
= 1.

(For a(x) =
∑

aixi, ã(x) =
∑

aq
i xi.)

The definitions of Euclidean LCD and Hermitian LCD codes over Rq are similar to the
ones over finite fields.

Definition 4. A linear code C over Rq (resp. Rq2) is called an Euclidean (resp. Hermitian) LCD
code if C∩C⊥ = {0} (resp. C∩C⊥h = {0}).

The following explores when a linear code over Rq is an Euclidean LCD or a Hermi-
tian LCD.

Proposition 7. LetC = π0C0 ⊕π1C1 be a linear code overRq (resp. Rq2 ). Then, C is an Euclidean
(resp. Hermitian) LCD code over Rq (resp. Rq2 ) if and only if Ci’s are Euclidean (resp. Hermitian)
LCD codes over Fq (resp. Fq2 ).

Proof of Proposition 7. Since C⊥ = π0C
⊥

0 ⊕π1C
⊥

1 by Proposition 2, we get

C∩C
⊥ = (π0C0 ⊕π1C1)∩

(
π0C

⊥

0 ⊕π1C
⊥

1

)
=

(
C0 ∩C

⊥

0

)
π0 ⊕

(
C1 ∩C

⊥

1

)
π1,

which implies that C∩C⊥ = {0} ⇔ Ci ∩C
⊥

i = {0}. The Hermitian case is similar. �

Theorem 6. Let λ = λ0π0 + λ1π1 ∈
{
∓1,∓ b

a v
}
⊂ U

(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. A Θθ-skew

λ-constacyclic code C = π0C0 ⊕ π1C1 of length n over Rq (resp. over Rq2), where Ci =
〈
1i(x)

〉
and θn(hi(x))1i(x) = xn

− λi, is an Euclidean (resp. Hermitian) LCD code over Rq if and only if
1crd

(
1i(x), h\i (x)

)
= 1 (resp. 1crd

(
1i(x), h̃\i (x)

)
= 1).
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Proof of Theorem 6. See that λi ∈ {∓1} if λ = λ0π0 + λ1π1 ∈
{
∓1,∓ b

a v
}
⊂ U

(
Rq

)
. The re-

main of the proof follows from Proposition 7 and Theorem 5. The Hermitian case is
similar. �

We also have the following result from Proposition 7.

Theorem 7. Let C = π0C0 ⊕π1C1 be a linear code over Rq (resp. Rq2). Then, C is an Euclidean
(resp. Hermitian) LCD code overRq (resp. Rq2 ) if and only if Φ(C) is an Euclidean (resp. Hermitian)
LCD codes over Fq (resp. Fq2 ).

Example 2. Let a = 3, b = 2, p = 13 and q = 169. Then, π0 = 7 + 9v and π1 = 7 + 4v.
Let F169 =

{
x + yw | x, y ∈ F13

}
, where w2

− w + 2 = 0. Let θ : x → x13
∈ Aut(F169)

be Frobenius automorphism. Observe that
(
x3 + w150x2 + 12x + w66

)(
x + w18

)
= x4

− 1 and(
x3 + w33x2 + 5x + w159

)(
x + w9

)
= x4 + 1 in F169[x,θ]. Let C0 =

〈
10(x) = x + w18

〉
and

C1 =
〈
11(x) = x + w9

〉
be an Euclidean LCD θ-skew cyclic code and an Euclidean LCD θ-skew

negacyclic (λ = −1) code of length 4 over F169, respectively. Then C = π0C0 ⊕ π1C1 is an
Euclidean LCD Θθ-skew 5v-constacyclic code of length 4 over R169 with generator polynomial
1(x) = x + w139 + w152v and Φ(C) is an Euclidean LCD code with parameters [8, 6, 2]169, which
is almost MDS. Moreover, we list some Euclidean LCD Θθ-skew constacyclic codes over R169 of
length 4 and present the parameters of almost MDS and near MDS Euclidean LCD codes over F169
of length 8 obtained via the map Φ in Table 1.

Table 1. Generator polynomials of some Euclidean LCD Θθ-skew λ-constacyclic codes over R169 of
length 4 and Euclidean LCD codes over F169 of length 8 as their Φ-images. The parameters with “*”
and “**” are almost MDS and near MDS, respectively.

C0 =
〈
10(x)

〉
C1 =

〈
11(x)

〉 C =〈
π010(x) + π111(x)

〉 λ Φ(C)

x + w18 x + w9 x + w139 + w152v 5v [8, 6, 2]∗169

x2 + w8x + w6 x2 + w21x + w12 x2 +
(
w80 + w121v

)
x +

w67 + w92v
5v [8, 4, 3]∗∗169

x + w12 x + w3 x + w133 + w146v 5v [8, 6, 2]∗169

x2 + w9x + w12 x2 + wx + w18 x2 +
(
w128 + w150v

)
x +

5 + w30v
8v [8, 4, 3]∗∗169

x2 + w69x + w12 x2 + w145x + w18 x2 +
(
12 + w146v

)
x +

5 + 5 + w30v
8v [8, 4, 3]∗∗169

x + w9 x + w24 x + 11 + w72v 8v [8, 6, 2]∗169

x + w30 x2 + x + w30 (7 + 4v)x2 + x + w30 1 [8, 5, 2]∗∗169

x2 + w12x + w30 x2 + w24x + w30 x2 +
(
w165 + w158v

)
x +

w30
1 [8, 4, 3]∗∗169

x + w36 x + 8 x + w150 + w54v 1 [8, 6, 2]∗169

x + w15 x + w21 x + w129 + w33v −1 [8, 6, 2]∗169

x2 + w57x + w156 x2 + w141x + w12 x2 +
(
9 + w15v

)
x +

9 + w133v
−1 [8, 4, 3]∗∗169

x2 + 7x + w24 x + w33 (7 + 9v)x2 +
(4 + 2v)x + 7 + w83v

−1 [8, 5, 2]∗∗169
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6. Entanglement-Assisted Quantum Codes with Maximal Entanglement from Skew
Constacyclic LCD Codes over Rq

In this section, we apply the skew constacyclic LCD codes overRq to obtain parameters
for the entanglement assisted quantum codes with maximal entanglement [28].

An [[n, k, d; c]]q EAQECC is a quantum code that encodes k information qubits into n

qubits and corrects up to
⌊

d−1
2

⌋
errors via c pairs of maximally entanglement states . For an

[[n, k, d; c]]q EAQECC, the number c of maximally entanglement states based on the linear
codes is less than or equal to n − k, and if c = n − k, then this is called an EAQECC with
maximal entanglement [51]. We have the following construction for EAQECCs obtained
from linear codes over Fq2 .

Theorem 8 ([45]). If there exists an [n, k, d]q2 linear code with parity check matrix H, then there

exists an EAQECC having parameters [[n, 2k− n + c, d; c]]q, where c = rank
(
HH†

)
.

We also have the following from [Proposition 3.2] [34].

Proposition 8 ([34]). IfC is a [n, k, d]q2 linear code with parity check matrix H, then rank
(
HH†

)
=

n− k− dim(Hullh(C)).

Theorem 8 and Proposition 8 together imply that since dim(Hullh(C)) = 0 and so
c = rank

(
HH†

)
= n − k for an [n, k, d]q2 Hermitian LCD code, one gets an [[n, k, d; n− k]]q

EAQECC. Since the Φ-images of the Hermitian LCD codes over Rq2 are also Hermitian
LCD codes over Fq2 , we derive a family of EAQECCs from Θθ-skew λ-constacyclic codes
over Rq2 as following.

Theorem 9. Let λ = λ0π0 + λ1π1 ∈
{
∓1,∓ b

a v
}
⊂ U

(
Rq

)
and Θθ ∈ Aut

(
Rq

)
. Let C =

π0C0 ⊕ π1C1 be a Θθ-skew λ-constacyclic code of length n over Rq2 , where Ci =
〈
1i(x)

〉
and

θn(hi(x))1i(x) = xn
− λi. If 1crd

(
1i(x), h̃\i (x)

)
= 1, then there exists a maximal entanglement

EAQECC having parameters [[2n, k0 + k1, d; 2n− k0 − k1]]q, where deg(1i(x)) = n − ki, d =
min{d0, d1} and di is the minimum distance of Ci.

Example 3. Let a = 2, b = 1, p = 5 and q = 25. Then, π0 = 3 + 4v and π1 = 3 +
v. Let F25 =

{
x + yw | x, y ∈ F5

}
, where w2

− w + 2 = 0. Let θ : x → x5
∈ Aut(F25)

be Frobenius automorphism. See that
(
x3 + w17x2 + x + 4

)(
x3 + wx2 + x + 1

)
= x6

− 1 and(
x4 + w9x3 + w23x2 + w9x + w4

)(
x2 + w21x + w20

)
= x6 + 1 in F25[x,θ]. Note that C0 =〈

10(x) = x3 + wx2 + x + 1
〉

and C1 =
〈
11(x) = x2 + w21x + w20

〉
be a Hermitian LCD θ-skew

cyclic code and a Hermitian LCD θ-skew negacyclic (λ = −1) code of length 6 over F25, respectively.
Then C = π0C0 ⊕ π1C1 is a Hermitian LCD Θθ-skew 3v-constacyclic code of length 6 over R25

with generator polynomial 1(x) = (3 + 4v)x3 +
(
w16 + w5v

)
x2 +

(
w + w23v

)
x +

(
w13 + w16v

)
and Φ(C) is a Hermitian LCD code with parameters [12, 7, 3]25. Applying Theorem 9, we get an
[[12, 7, 3; 5]]5 EAQECC with maximal entanglement. Furthermore, we list some Hermitian LCD
Θθ-skew constacyclic codes over R25 of length 6 and present the parameters of EAQECCs with
maximal entanglement over F5 of length 12 obtained via the map Φ and Theorem 9 in Table 2.
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Table 2. Generator polynomials of some Hermitian LCD Θθ-skew λ-constacyclic codes over R25 of
length 6 and some EAQECCs with maximal entanglement over F5 of length 12 obtained by Theorem 9.

C0 =
〈
10(x)

〉
C1 =

〈
11(x)

〉 C =〈
π010(x) + π111(x)

〉 λ EAQECC

x3 + wx2 + x + 1 x2 + w21x + w20

(3 + 4v)x3 +(
w16 + w5v

)
x2 +(

w + w23v
)
x +

w13 + w16v

3v [[12, 7, 3; 5]]5

x2 + w3x + w8 x2 + w17x + w20 x2 +(
1 + w8v

)
x + w2 3v [[12, 8, 3; 4]]5

x4 + w11x3 +
w11x2 + w23x +

w4

x4 + w21x3 +
w19x2 + w21x +

w20

x4 +(
3 + w14v

)
x3 +(

w9 + 3v
)
x2 +(

w8 + v
)
x + 3 +

w15v

3v [[12, 4, 5; 8]]5

x + w4 x + w16 x + w22v 1 [[12, 10, 2; 2]]5

x3 + w5x2 +
w2x + w16

x3 + w16x2 +
wx + w16

x3 +(
w15 + w14v

)
x2 +(

w17 + 2v
)
x +

w16

1 [[12, 6, 4; 6]]5

x2 + w7x + w16 x2 + w3x + w16
x2 +(

w20 + w23v
)
x +

w16
1 [[12, 8, 3; 4]]5

x2 + w21x + w4 x2 + w17x + w4
x2 +(

w10 + w13v
)
x +

w4
−1 [[12, 8, 3; 4]]5

x2 + w21x + w4
x4 + w21x3 +

w19x2 + w21x +
w20

(3 + v)x4 +(
w15+w21v

)
x3 +(

w3 + w20v
)
x2 +

w21x + 3 + w15v

−1 [[12, 6, 4; 6]]5

7. Conclusions

In this paper, by determining the automorphism group of the ring Rq we define and
study the skew constacyclic codes over Rq. We characterize the algebraic structure of
skew constacyclic codes and their duals over Rq. We investigate the Φ-images of skew
constacyclic codes over Rq. Moreover, we consider LCD codes over Rq and give a necessary
and sufficient condition for skew constacyclic codes Rq to be Euclidean and Hermitian LCD.
We also give some examples of Euclidean LCD codes over R169 of length 4 and tabulate the
parameters of almost MDS and near MDS Euclidean LCD codes over F169 of length 8 as the
Φ-images of these codes over R169. Finally, as an application of these Hermitian LCD skew
constacyclic codes over Rq, we obtain a class of EAQECCs with maximal entanglement and
tabulate parameters of some EAQECCs with maximal entanglement over F5 of length 12.
In the process of preparing this study, the following two questions were among those that
we could not answer yet, but which offer potential avenues for future research.

(Q1) We just determine the algebraic structure of the Θθ,id-skew λ-constacyclic codes
over Rq. What about the algebraic structure of the more general case Θθ,σ-skew
λ-constacyclic codes over Rq?

(Q2) What about the self-duality of Θθ,σ-skew λ-constacyclic codes over Rq? In this case,
does there exists any restriction on λ?
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