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Abstract: Recurrent Neural Networks (RNNs) are applied in safety-critical fields such as autonomous
driving, aircraft collision detection, and smart credit. They are highly susceptible to input perturba-
tions, but little research on RNN-oriented testing techniques has been conducted, leaving a threat to
a large number of sequential application domains. To address these gaps, improve the test adequacy
of RNNs, find more defects, and improve the performance of RNNs models and their robustness to
input perturbations. We aim to propose a test coverage metric for the underlying structure of RNNs,
which is used to guide the generation of test inputs to test RNNs. Although coverage metrics have
been proposed for RNNs, such as the hidden state coverage in RNN-Test, they ignore the fact that
the underlying structure of RNNs is still a fully connected neural network but with an additional
“delayer” that records the network state at the time of data input. We use the contributions, i.e., the
combination of the outputs of neurons and the weights they emit, as the minimum computational
unit of RNNs to explore the finer-grained logical structure inside the recurrent cells. Compared
to existing coverage metrics, our research covers the decision mechanism of RNNs in more detail
and is more likely to generate more adversarial samples and discover more flaws in the model. In
this paper, we redefine the contribution coverage metric applicable to Stacked LSTMs and Stacked
GRUs by considering the joint effect of neurons and weights in the underlying structure of the neural
network. We propose a new coverage metric, RNNCon, which can be used to guide the generation of
adversarial test inputs. And we design and implement a test framework prototype RNNCon-Test.
2 datasets, 4 LSTM models, and 4 GRU models are used to verify the effectiveness of RNNCon-Test.
Compared to the current state-of-the-art study RNN-Test, RNNCon can cover a deeper decision logic
of RNNs. RNNCon-Test is not only effective in identifying defects in Deep Learning (DL) systems but
also in improving the performance of the model if the adversarial inputs generated by RNNCon-Test
are filtered and added to the training set to retrain the model. In the case where the accuracy of the
model is already high, RNNCon-Test is still able to improve the accuracy of the model by up to 0.45%.

Keywords: coverage metrics; recurrent neural networks; software testing; deep learning

1. Introduction

In recent years, the improvement in the computing power of computer hardware and
the development of artificial intelligence techniques have made it possible to create larger
and deeper Deep Neural Networks(DNNs) in a shorter time. Deep learning techniques
have made tremendous breakthroughs in Natural Language Processing [1,2], Computer
Vision [3], and Automatic Speech Recognition [4]. Despite the impressive capabilities
of DL systems, they can exhibit misbehavior due to data bias, overfitting, underfitting,
etc. [5]. These misbehaviors can lead to catastrophic results in safety-critical areas. For
example, misdiagnosis in healthcare distorts health assessment; car crashes due to incorrect
predictions of self-driving cars, and so on. As DL systems are deployed in more and more
areas critical to personal safety, property safety, and even national security, such as facial
recognition, autonomous driving [6], smart credit and aircraft collision detection, the Blue
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Book of “Security Framework for Artificial Intelligence” released by the Security Institute of
the China Academy of Communications in December 2020 clearly states that it is imminent
to improve the robustness [7], correctness [8], security, and interpretability [9–11] of DNNs.

Software testing is an important way to ensure software quality. Different from
traditional software systems, DL systems essentially follow a data-driven programming
paradigm, and their decision logic is derived from training data and evolves over time in
response to frequently provided new data [12]. Automated testing and systematic testing of
large-scale, real-world DL systems with thousands of neurons and millions of parameters
are extremely challenging issues [13].

The general approach to testing DL systems is to collect and manually label as much
real-world test data as possible. Google’s DL system for self-driving cars generates synthetic
training data through simulations. However, such simulations do not take into account the
internal decision logic of the models, making it difficult to find data or tests that can make
the model’s predictions wrong.

For the large input space of real-world DL systems, such as all possible road conditions
faced by self-driving cars, the above methods are not effective enough at finding corner cases.

In order to find the corner cases of DNNs, Pei et al. [13], Ma et al. [14,15], Sun
et al. [16–18], Zhou et al. [19], Xie et al. [20], Tian et al. [21] and Guo et al. [22], etc.,
have conducted a great amount of research.

Both CNNs and RNNs are important components of DNNs, but current research has
focused on CNNs [23] that perform well in image processing tasks, and little research has
been done on RNNs. RNNs benefit from its recurrent cell and perform well in tasks dealing
with sequential data, and are widely used in Language Model [24], Image Processing [25,26],
Sentiment Analysis [27], etc.

RNNs are susceptible to input perturbations and have quality problems. Since the
structure of CNNs is different from that of RNNs, testing techniques oriented to CNNs are
difficult to be applied accurately to RNNs. Current testing techniques for RNNs are limited,
leaving a threat to a large number of sequential application domains. To bridge such a gap
and improve the generalization performance and robustness of RNNs, custom coverage
criteria such as Hidden State Coverage (HS_C) [28], Boundary Coverage (BC), Stepwise
Coverage (SC), and Temporal Coverage (TC) [29] have been proposed to guide the testing
by Guo et al. [28], Du et al. [30], Huang et al. [29]. However, what these researchers have
not considered is that the underlying structure of RNNs is still a fully connected neural
network with an additional virtual unit “delayer” to record the network state at the time of
data input, and we can still use the neurons and weights as the minimum unit of RNNs. If
we use the recurrent cell as the minimum unit for testing, it is easy to miss the finer-grained
logical structure inside the recurrent cell, resulting in the defects of the RNNs model not
being adequately found. A hidden state is the output of a recurrent cell, which is a vector
of hundreds or thousands of units. We note that neurons are ambiguous in RNNs, and in
line with Huang et al. [29], we consider that each element in the hidden state vector can
be considered as a neuron. However, this does not mean that coverage testing techniques
for CNNs can be directly applied to RNNs. Considering the different network structures,
coverage testing techniques for RNNs need to be redefined for the particular structure of
RNNs. Inspired by Zhou et al.’s study [19], we use the computational graph unfolding
technique [31] to unfold the RNNs at a given input to extract contributions. Contribution is
a term that refers to the combination of the output of a neuron with the weights it emits.
The contribution coverage metric proposed in the work of Zhou et al. is for CNNs. In the
convolutional layer, the elements in the filter are treated as neurons [32]. It is not possible
to apply this contribution coverage metric directly to RNNs with recurrent structure, both
in definition and in terms of concrete implementation.

It is well known that connections emitted by different neurons have different weights,
and the contribution of a neuron with a large output but a small weight may be smaller
than that of another neuron with a small output but a large weight [19]. For example,
a vanilla RNN cell refers to the simplest RNN architecture, and we use an input size of
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3 (green) and 2 hidden units (orange) with a batch size of 1, as shown in Figure 1. The
numbers in nodes and the numbers on edges represent the outputs of neurons and weights,
respectively. For ease of presentation, we denote neurons with output 0.4 and 0.2 as node1
and node2, respectively. Because 0.4× 0.5 < 0.2× 1.3, so even if node1 > node2, node2
contributes more to the prediction results than node1.

Figure 1. Vanilla RNN cell. The numbers in nodes and the numbers on edges represent the outputs
of the neurons and the weights, respectively. The text T in the nodes is the sum of the weights of
neurons from the previous layer, and is activated by a tanh function.

Therefore, we believe that it is difficult to reveal the correct decision mechanism of
RNNs by considering only the hidden states of RNNs or by considering only neurons and
ignoring weights, and it is may even more difficult to accurately find effective corner cases
of RNNs.

Stacked RNNs are comprised of multiple hidden RNN layers where each layer con-
tains multiple memory cells . Stacking RNN hidden layers makes the model deeper and
more accurately earns a description as a DL technique. The depth of neural networks
usually leads to the success of the method on a wide range of challenging prediction
problems [33,34]. Different from existing metrics, we want to know the possible reasons for
the success of Stacked RNNs.

In this paper, we propose a scalable contribution coverage RNNCon for the underlying
structures of Stacked RNNs. We redefine contributions in RNNs, formalize the process
of contribution extraction, and also define how to calculate contribution coverage rate
to reflect the diversity of test inputs. When a contribution is larger than the threshold
we specified, it indicates that the contribution is activated. We form a corresponding test
framework prototype RNNCon-Test, which outperforms RNN-Test [28]. Unlike the study
by Zhou et al., we do not generate perturbations superimposed on the test inputs by jointly
maximizing the contributions and the outputs of the contribution-connected neurons. We
simply take an inactivated contributions as a loss and maximize the loss by a gradient
ascent technique to generate the perturbation. The generated perturbations are more mild
and imperceptible compared to those generated in the work of Zhou et al. They can be
superimposed on the input data to generate test inputs, which may not exist in the real
world. So we filter out them close to the real world by measuring the naturalness of them.
For supervised tasks, RNNCon-test automatically takes the labels of the seeds as the labels
of the generated test inputs and feeds these labeled test inputs to the model under test. If
the prediction result of a test input is inconsistent with its label, then we consider that a
defect is found, and such a test input is an adversarial sample, which is consistent with the
study by Harel-Canada et al. [35]. These labeled generated test inputs can also be added
to the training dataset and the model can then be retrained to improve its performance
and robustness. For example, RNNCon-Test can also improve the accuracy by up to 0.45%
when the accuracy of the LSTM model has already reached a high level.
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We validate the effectiveness and scalability of RNNCon-Test with 2 datasets, 4 LSTM
models and 4 GRU models.

In summary, we make the following contributions:

• We first explicitly use finer neurons and weights within Stacked RNNs and propose
a special contribution coverage metric RNNCon for Stacked RNNs by combining
the outputs of neurons and the connection weights they emit. We further define the
calculation method of contribution coverage rate, which reflects the diversity of test
inputs. Additionally, we visualize the coverage changes at each time step of each gate
to analyze the memory of GRUs [36] or LSTMs [37,38].

• We build an optimization function for inactivated contributions, and generate test
inputs by gradient ascent. We adopt Inception Score(IS) [39], Frèchet Inception Dis-
tance(FID) [40] and L1 distance to filter natural and valid test inputs to make them
more similar to those exist in the real world. Most of the generated test inputs can
make the predictions of the corresponding models wrong.

• We design and implement a test framework prototype RNNCon-Test which outper-
forms RNN-test [28]. It is not only effective in detecting defects and improving the
performance of Stacked RNNs but can also be extended to variants of RNNs, i.e.,
LSTMs and GRUs.

2. Background

In this section, we introduce Stacked RNNs and the limitations of existing test coverage
metrics.

2.1. Stacked Recurrent Neural Network

RNNs [41] take sequence data as input, recursively along the direction of sequence
evolution, and all recurrent units are connected in the form of chains. A Stacked RNN
containing two hidden layers between time step t− 1 and t + 1 is shown in Figure 2.

Figure 2. A Stacked RNN with two hidden layers between time step t− 1 and t + 1.

Xt is the input vector at time step t, Ot is the output vector at time step t, and Ht
1 and

Ht
2 are the output vectors of the first hidden layer and the second hidden layer at time step

t, respectively. U1, U2, U3 are the weight matrices between each adjacent layer. W1, W2

are the weight connections of the first hidden layer and the second hidden layer from the
previous time step to the next step, respectively. For a Stacked RNN, the value of a hidden
state depends not only on the current input but also on the output of the hidden state from
the previous time step. If we ignore the output of the hidden state from the previous time
step, the Stacked RNN can be regarded as a simple fully connected network. We represent
more fine-grained internal structure of a Stacked RNN with two hidden RNN layers at
time t, as shown in Figure 3.
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Figure 3. The internal structure of a Stacked RNN with the weights visible at time step t, allow
us to observe the direction of information transfer and the importance of weights in the process of
information transfer process. For weights without specified values, the default value is 1.

The input vector at time step t is denoted as Xt(xt
1, xt

2), the output vector is denoted
as Ot(ot

1, ot
2), and the output vectors of the first and second hidden layers are Ht

1(h
t
1,1, ht

1,2)

and Ht
2(h

t
2,1, ht

2,2), respectively. We can observe that if we only cover the hidden state H of
Stacked RNNswith more than one hidden RNN layer, we will ignore a lot of fine-grained
logical information, such as the combination of neuron outputs and weights and gate units.
The internal processing of Stacked RNNs at each time step is still a black box to us.

For convenience, we formalize a Stacked RNN as follows.
We let l be the number of layers of a Stacked RNN, si be the number of neurons in

the ith layer, e be the total number of time steps, nt
i,j represents the jth neuron in the ith

layer at the time step t, Nt
i = {nt

i,j|1 ≤ j ≤ si}. We use ui,t
k,j to denote the connection weight

between input neuron nt
i−1,k and nt

i,j at the time step t, Ui,t = {ui,t
k,j|1 ≤ k ≤ si−1, 1 ≤ j ≤ si}.

Use ωi,t
j to denote the connection weight between hidden neuron nt−1

i,j and nt
i,j from time

step t− 1 to t, Wi,t = {ωi,t
j |1 ≤ j ≤ si}. We use a tuple G = (Nt

i , Ui,t, Wi,t) to represent a

Stacked RNN. For example, n1
1,2 represents the 2nd neuron in the 1st layer at time step 1. u2,3

1,2

represents the connection weight between neuron n3
1,1 and n3

2,2 at time step 3; ω2,2
3 represents

the connection weight of the 3rd neuron n1
2,3 and n2

2,3 in the 2nd layer between the time step
1 and the time step 2. It is worth noting that the neurons here are the same before and after,
the difference is that the information processed at different time steps is different.

A neuron is the basic computational unit of a Stacked RNN. Let ht
i,j be the output

of the jth hidden recurrent unit in layer i at time step t. Ht
i = {ht

i,j|1 ≤ j ≤ si}, ot
j be the

output of the jth neuron in the output layer, Ot = {ot
j |0 ≤ j ≤ sl}. The calculation of Ht

i
and Ot can be viewed in Formulas (1) and (2), where f and g are both activation functions.
It should be noted that although in each time step of a Stacked RNN, Ui,t and Wi,t are the
same, the values of the combination of neuron outputs and the weights are different due to
the outputs of neurons are different at each time step.

Ht
i = f (Ui,t · Xt + Wi,t · Ht−1

i ) (1)

Ot = g(Ul,t · Ht
l−1) (2)
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2.2. Limitations of Existing Coverage Metrics

In order to evaluate the quality of RNN systems and identify the defects of the RNN
systems, several studies have proposed several RNN test coverage metrics. Guo et al. [28]
proposed the HS_C for RNNs and the Cell State Coverage (CS_C) criterion for LSTMs.
A vanilla RNN becomes an LSTM network if we replace the recurrent units of hidden
layers in vanilla RNN with LSTM units. The hidden state is the “memory” of the RNN,
which is the output of the hidden layer in the previous time step. HS_C is defined as the
number of hidden state outputs that reach the maximum of all candidate states and the
total number of hidden states during the testing process. CS_C is similar to K-multisection
neuron coverage from Ma et al.’s research [14], dividing the value range [−1, 1] of the cell
state in LSTM into multiple modules, if the state component of a certain unit belongs to a
certain module, it means that the state component is covered by this module. These two
coverage metrics only consider the coverage of one single time step, without considering
the impact of the outputs from the previous time step. Such coverage metrics seem to be
discrete and lack sufficient persuasiveness for testing.

Huang et al. [29] proposed BC, SC, and TC. BC sets the threshold interval of the output
result of a neural network at a certain time step. If the output is outside this interval, the
input can be viewed as a test, and a new test can be selected by optimizing a loss function.
SC measures the degree of change in short-term memory, and TC measures the overall
temporal semantics. We know that for an RNN layer, the output of a decision neuron is
jointly determined by the outputs of the previous neurons and the weights they emit, as
well as the retained hidden states. These coverage metrics ignore the effect of weights and
do not better find flaws in the model.

3. Contribution Coverage of Stacked RNNs

We define the contribution in this section, and show how to extract the contribution
from a trained Stacked RNN and how to calculate the contribution coverage rate.

3.1. Definition of contribution in Stacked RNNs

Contribution coverage can be divided into two categories due to the “memory” func-
tion of Stacked RNNs. One is at a single time step, where the contribution is a general
definition, that is, the combination of the output of a neuron and the weight it emits to
connect the neurons in the next layer. The other is on multiple consecutive time steps,
where the value of a hidden state depends not only on the input of the current time step
but also on the output of the hidden state from previous time step. Contribution in this
case is defined as the combination of the output of a neuron from the previous time step
and the weight it emits to connect the same neuron of the next time step.

Definition 1 (Contribution of RNN). At a single time step, we use cui,t
k,j = (nt

i−1,k, ui,t
k,j) to denote

the contribution between neuron nt
i−1,k and nt

i,j, as shown in Figure 4a, use cωi,t
j = (nt−1

i,j , ωi,t
j )

to denote the contribution between hidden neuron nt−1
i,j and nt

i,j from step t− 1 to t, as shown in
Figure 4b.

(a) (b)

Figure 4. Two definitions of contributions in a stacked RNN. (a) A contribution at time step t. (b) A
contribution between time step t and t + 1.
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3.2. Contribution Extraction of Stacked RNNs

In a Stacked RNN, if an input is x at time t, we use Cu1,t
k,j(x) to represent the value

of contribution cu1,t
k,j , Cui,t

k,j(h
i−1,t
j ) to represent the value of contribution cui,t

k,j, Cωi,t
j to

respresent the value of contribution cωi,t
j , where Cu1,t

k,j(x) = u1,t
k,j · x, Cui,t

k,j(h
i−1,t
j ) = ui,t

k,j ·
hi−1,t

j , Cωi,t
j = ωi,t

j · h
i,t−1
j , C(x) = {Cu1,t

k,j(x)∪Cui,t
k,j(h

i−1,t
j )∪Cωi,t

j |2 ≤ i ≤ l, 1 ≤ k ≤
si−1, 1 ≤ j ≤ si}. We normalize Cu1,t

k,j(x), Cui,t
k,j(h

i−1,t
j ) and Cωi,t

j to between 0 and 1 for easy

comparison with the threshold we specified. We use nCui,t
k,j(h

i−1,t
j ) to denote the normalized

Contribution of Cui,t
k,j(h

i−1,t
j ), and use Equation (3) to normalize Cui,t

k,j(h
i−1,t
j ).

nCui,t
k,j(h

i−1,t
j ) =

Cui,t
k,j(h

i−1,t
j )−min(C(x))

max(C(x))−min(C(x))
(3)

Cu1,t
k,j(x), Cωi,t

j are normalized in the same way as Cui,t
k,j(h

i−1,t
j ). Given an input x, if a

contribution normalized is greater than a threshold thred, we can say that the contribution
is activated by input x.

In Algorithm 1, for a given input X, the threshold thred and the model M. If the input
X is an image, then Xt is each column of pixels in the image, and if it is a text, then Xt

is a word. First, we get the output Ht
i and the weight Ui,t, Wi,t of each layer from time

step t to image size or embedding vector length (line 1–4). In a Stacked RNN, the value of
contribution C̃1,t of the input layer is expressed as the dot product of the input Xt and the
weight U1,t of the first layer.

Algorithm 1: ConExt(X,thred,M) /*Stacked RNN Contribution extract algorithm*/
Input: X /*input*/, thred /*threshold*/, M /*model*/
Output: C̃all , C̃(X) /*already activated contribution*/

1 for layer i f rom 1 to l do
2 for time step t f rom 1 to imageSize do
3 Ht

i = getLayerOut(M, X, i, t)
4 Ui,t, Wi,t = getLayerWeight(M, X, i, t)
5 C̃1,t = U1,t · Xt

6 add f latten(C̃1,t) to C̃all

7 C̃i
u = Ht

i−1 ·Ui,t

8 C̃i
w = Ht−1

i ·Wi,t

9 add f latten(C̃i
u) and f latten(C̃i

w) to C̃all

10 nC̃all = normalize(C̃all)
11 for layer i f rom 1 to l do
12 for nC̃i in nC̃all do
13 for ci,j in nC̃i do
14 if ci,j > thred then
15 add ci,j to C̃(X) /*ci,j denote the j-th contribution in i-th layer */

16 return C̃all , C̃(X) /*C̃all denotes all contributions*/

We add the obtained values of contribution C̃1,t to C̃all for temporary storage (line 5–6).
For layers other than the input layer from 2 to l, C̃i

u is equal to the dot product of Ht
i−1

and Ui,t, and C̃i
w is equal to the dot product of Ht−1

i and Wi,t. f latten is a function that
converts the contribution matrix into a one-dimensional vector, which helps us to extract
each contribution individually (line 7–9). After the acquired contributions are normalized,
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we traverse them. If a contribution is greater than thred during the traverse, it means that
this contribution is activated; then, add it to C̃(X) (line10–15).

3.3. Contribution Coverage Rate of Stacked RNNs

Contribution coverage refers to the ratio of activated contributions to all contribu-
tions in the Stacked RNN. C̃(X) is a set of activated contributions, and C̃all is a set of
all contributions.

For input X, the contribution coverage of a Stacked RNN can be described in the
following form.

RConC =
|C̃(X)|
|C̃all |

(4)

Take the Stacked RNN in Figure 3 as an example. For input X and threshold 0.3, the
number of contributions is 16. It can be observed that Cu2,t

1,1, Cu2,t
1,2, Cu2,t

2,2, Cω2,t
1 , Cu3,t

2,1, Cω2,t
1 ,

Cu3,t
2,2 greater than 0.3. So at time step t, there are a total of 6 activated contributions; then,

the contribution coverage rate of the RNN is 37.50%. The combination of the yellow circles
and the solid line them emit in Figure 3 represents the contribution activated.

We compare with neuron coverage; assuming that the threshold is also 0.3, then at
time step t, the total number of neurons is 12.

There are a total of 8 neuron outputs greater than 0.3, including ht
1,1, ht

1,2, ht
2,2, ht

2,1, ot
1,

ot
2 at time step t and ht−1

2,1 , ht−1
1,2 at time t− 1. Then the coverage rate of the neuron is 66.67%.

4. RNNCon-Test Design

RNNCon-Test mainly consists of test input generation guided by RNNCon, finding
the adversarial samples, adding the adversarial samples to the training set, filtering the real
and natural dataset by L1-distance, FID and IS to retrain the model, and then evaluating the
performance of the retrained model, while the generated adversarial samples can be input
to the tested model to update the contribution coverage. The architecture of RNNCon-Test,
as shown in Figure 5. Algorithm 2 shows how test inputs are generated.

Figure 5. Architecture of RNNCon-Test.
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Algorithm 2: GenInputs(seeds) /*coverage guided test input generation in
Stacked RNN*/

Input: seeds /*Each seed contains data and label*/,
thred /*threshold*/, M /*model*/,
targetRate /*target coverage rate for text*/

Output: testInputs
1 while X ∈ seeds do
2 /*Call Algorithm 1*/ C̃all , C̃(X.data) = ConExt(X.data, thred, M)

3 con = random.choice(C̃all − C̃(X.data))/* randomly select an inactivated
contribution*/

4 if X.data is an image then
5 loss = con
6 perturbation = gradients(loss, X.data)
7 X′ = X.data.copy()
8 for i from 1 to num o f iterations do
9 X.data+ = perturbation · i

10 if M(X′).result == X.label and M(X.data)! = X.label then
11 add X.data to testInputs

12 else
13 for word in X do
14 out = EDA(X)
15 inputs+ = out
16 rate = CoverageRate(inputs)
17 if rate ≥ targetRate then
18 add inputs to testInputs

19 return testInputs

Given a set of seed inputs seeds, we call ConExt to get all the extracted contribution
set C̃all , and the activated contribution set C̃(X). The inactivated contribution set can
be easily obtained by calculating the difference between C̃all and C̃(X). We randomly
pick a contribution that we want to activate from the inactivated contributions (line 1–3).
Activating a contribution means that the larger the value of this contribution, the better.
If input X is an image, then each column of the image is an input for each time step. We
regard the inactivated contribution as a loss, maximize the loss by gradient ascent, and
superimpose the obtained perturbation on the original image to obtain new test input
(line 6–9). We judge that in the model M, the generated test input can be considered as an
adversarial sample if the prediction result of the original image is the same as its label and
the prediction result of the generated image is different from the label of the original image.
We add such an adversarial sample to the testInputs (line 10–11).

If input X is a text, then each word in the text represents an input at each time step and
we cannot activate the randomly selected contribution, whereas can process the input X by
using four operations in the Easy Data Augmentation (EDA) [42] techniques to achieve our
specified coverage (line 13–18).

These four operations implement synonym replacement: randomly extract n words
from the sentence excluding stop words, randomly find synonyms of these words, and
then replace the original words with a synonym; Random insertion: randomly select a
word from the sentencethat does not include stop words, and then randomly select a
synonym of this word, then insert it at a random position in the original sentence; Random
swap: in a sentence, randomly swap the positions of two words, repeating this process n
times; Random deletion: every word in the sentence has probability P to be deleted. For



Entropy 2023, 25, 520 10 of 26

the generated text inputs that can reach the coverage rate specified by us, we add it to
testInputs (line 18).

5. Experiments

We use tensorflow-gpu2.3.0 to implement RNNCon-Test. The computer hardware
configuration for all our experiments is Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, 24G
RAM and 6G NVIDIA GTX 1060 GPU.

5.1. Experimental Setup

MNIST [43] is a dataset containing 60,000 samples in the training dataset and
10,000 samples in the test dataset, each of which is a grayscale image of handwritten digits
of size 28 × 28. MINST is used to train a five-layer LSTM model Stacked-MNIST-LSTM,
a four-layer LSTM model MNIST-LSTM, a five-layer GRU model Stacked-MNIST-GRU
and a four-layer GRU model MNIST-GRU. Both LSTM and GRU are variants of RNN.
Gates that control the addition and forgetting of information do not affect our extraction
of contributions. Except for the input layer, the first and second layers of Stacked MNIST-
LSTM are both LSTM layers to extract features, and the latter two layers are fully connected
layers. The same training procedure was run more than 10 times with 10 epochs each on
the MNIST test dataset The average accuracy of Stacked MNIST-LSTM is 99.01%, with
3754 neurons and 58,520 contributions extracted.

Unlike stacked MNIST-LSTM, MNIST-LSTM has only one LSTM layer and its average
accuracy is 98.76%, with 170 neurons and 29,848 contributions.

The GRU model is structurally similar to LSTM, except that the LSTM layer is replaced
by the GRU layer. The average accuracy of Stacked-MNIST-GRU on MNIST test set is
98.90%, with 3754 neurons and 44,184 contributions extracted. The average accuracy of
MNIST-GRU is 98.53%, with 170 neurons and 22,680 contributions extracted.

IMDB [44] is a dataset integrated in Keras that contains 50,000 heavily polarized
reviews from the internet. Of these, 25,000 reviews are used for training and 25,000 are
used for testing. Both the training set and the test set contain 50% positive reviews and 50%
negative reviews.

IMDB is used to train a five-layer LSTM model Stacked-IMDB-LSTM with an em-
bedding layer, 2 LSTM layers, and 2 fully connected layers, and another GRU model
Stacked-IMDB-GRU that replaces the LSTM layers with GRU layers. The average accuracy
of the Stacked-IMDB-LSTM on the test set is 84.68%, and there are 64,161 neurons and
66,592 contributions extracted. The accuracy of the Stacked-IMDB-GRU on the test set is
86.21%, with 64,161 neurons and 50,208 contributions extracted.

To compare who can better show the internal decision mechanism of the model in
terms of neurons and contributions, we analyzed the number of neurons and contributions
for RNNs with the same number of network layers but different recurrent units, e.g., MNIST-
LSTM and MNIST-GRU, in Table 1. We can find that the number of neurons in the GRU
model and LSTM model is the same, but the number of contributions of the GRU model
is significantly less than that of the LSTM model, which confirms that the design of GRU
is indeed simpler than that of LSTM. It also shows that contribution coverage can better
represent the logic inside the model than neuron coverage. Details of the models and
datasets we used are shown in Table 1, where #Cons is the size of C̃all after flattening.

We investigated the following questions.
RQ1: How strong is the coverage capacity of RNNCon?
RQ2: How is the effectiveness of the RNNCon-Test?
RQ3: How is the quality of the adversarial inputs generated by RNNCon-Test? Can

retraining improve the performance of the model?
We first evaluate the coverage capacity of RNNCon and its adaptability on different

models. We also evaluate the ability of RNNCon-Test to activate inactivated contributions
in image and text tasks. Then, we evaluate the quality of the test input generated by
RNNCon-Test and compared it with RNN-Test [28]. Finally, we evaluate how much the
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performance of the model couldcan be improved if the model is retrained with adversarial
inputs added to the training data.

Table 1. Summary of datasets and RNN models.

Dataset No. of Classes Model Name Main Architecture Accuracy (%) #Parameter #Neurons #ConsReported Ours

MNIST 10

Stacked-MNIST-LSTM Two-layer LSTM 98.70 99.01 216,426 3754 58,520
MNIST-LSTM One-layer LSTM 96.88 98.76 84,842 170 29,848

Stacked-MNIST-GRU Two-layer GRU - 98.90 164,202 3754 44,184
MNIST-GRU One-later GRU 96.50 98.53 65,130 170 22,680

IMDB 2

Stacked-IMDB-LSTM Two-layer LSTM - 84.68 1,818,177 64,161 66,592
IMDB-LSTM One-layer LSTM 86.20 87.24 1,686,593 161 33,824

Stacked-IMDB-GRU Two-layer GRU - 86.21 1,765,441 64,161 50,208
IMDB-GRU One-layer GRU - 86.59 1,666,369 161 25,632

5.2. Coverage Results (RQ1)

In this section, we evaluate the coverage capacity of RNNCon on LSTMs and GRUs.
When increasing test inputs, the growth trend of RConC and NC of each model is

shown in Figure 6. Note that the coverage here represents the coverage of the LSTM layer or
GRU layer. For Stacked MNIST-LSTM and Stacked MNIST-GRU, we calculate the coverage
of the LSTM and GRU layers of the first layer.

(a) (b)

Figure 6. The growth trend of coverage of each model when increasing test inputs. RConC and NC
are the values of RNNCon coverage and Neuron coverage respectively. The threshold is 0.25 for
MNIST and 0.5 for IMDB. (a) MNIST. (b) IMDB.

First, in each model trained with MNIST and IMDB datasets, the RConC > NC is
maintained only when the number of tests fed to the IMDB-LSTM is greater than 15,000.
Other models keep RConC < NC as the number of tests increases. Therefore, for the
eight models in Table 1, RNNCon has stronger coverage capability than neuron coverage.,
because RNNCon covers fewer internal logical parts of the model under the same threshold.
If there are more uncovered logic parts, more selectable inactived neurons, and more
searchable space for generating adversarial samples, then it is more likely that more defects
will be found in the corresponding model. We suggest using RNNCon metric to guide the
generation of test inputs rather than using it alone. Consistent with Huang et al.’s point of
view, RNNCon does not have to be closely related to adversarial samples [45,46]. Here, the
number of successfully generated adversarial samples is defined as the number of model
defects found, which is consistent with Harel-Canada et al.’s opinion [35].
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Second, with the increase of the number of tests, both RConC and NC increase more
slowly and finally become stable. More test inputs with different features can activate
more contributions or neurons. When the test inputs reach a certain scale, their feature
distribution has been relatively determined, and the coverage tends to be stable. Even with
enough data, some contributions are hard to be activated. However, once these hard-to-
activate contributions are activated by the test inputs we generate, then such test inputs are
likely to affect the model’s prediction results, and these contributions become the attack
points of the model.

Third, for the MNIST-trained model, the reason why we choose the threshold value of
0.25 is that when the threshold value is equal to 0.25, the maximum difference of RConC
between different labels (0–9) is greater than the threshold value of 0 and 0.5. At this time,
RConC can better distinguish different features and better show the internal mechanism
of the corresponding model. The above method is also used for threshold selection of
IMDB training model. In general, for single-layer LSTM or GRU layers, RNNCon can
cover deeper internal decision mechanisms of RNNs with stronger coverage capacity than
neuron coverage.

The comparison of RConC and NC of each layer of MNIST and IMDB models is
shown in Figures 7 and 8. First, we find that the RConC of the input layers of Stacked
MNIST-LSTM, MNIST-LSTM, Stacked MNIST-GRU, and MNIST-GRU are smaller than the
NC for the same inputs under different thresholds, which is consistent with our findings in
Figure 6. However, for LSTM or GRU layers or other Dense layers, RConC is not necessarily
smaller than NC. The contribution of the same neuron to the next layer is greatly affected
by the weights. RNNCon takes this into account and combines the neuron output with the
weight. In the trained model, for the same neuron, the weight matrix of its connections to
the next layer is a constant matrix. We normalize the output of the neuron and the product
of neuron output and weight matrix to 0 and 1 and compare the RConC and NC under the
same threshold. We analyze that the reason why the RConC of the input layer is less than
NC is that the weight matrix of the input layer connected to the next layer retains important
features. For unimportant features, the weight values are set to be no greater than 1 or
negative weakly retained or discarded. Under the same threshold, for the same neuron, if
neuron coverage [13] is used, the output of the neuron is greater than the threshold, but
if RNNCon is used, the RConC is smaller than the threshold. The features that can be
processed by the non-input layer are relatively more important, so RConC > NC will occur.
Therefore, RNNCon is used to assist the Neuron coverage, rather than replace it.

Secondly, we find that for the models in Figure 7, the RConC of LSTM or GRU and
Dense of the last two layers are always much greater than that of NC. This shows that
the weights of the last two layers have a great impact. Compared with neuron coverage,
RNNCon is more accurate in measuring the transmission of information in the model due
to the combination of weights. Although the inactivated contributions are far less than that
of neurons, it can generate more effective adversarial samples and reduce the cost.

Thirdly, “All” in Figures 7 and 8 indicates the coverage of the entire model, including
all layers except the output layer. We find that except Stacked IMDB-LSTM and IMDB-
LSTM, when the threshold is 0.5, RConC in “All” > NC in “All”. Other models have
RConC in “All” > NC in “All” under all thresholds. For these models with high accuracy,
RNNCon shrinks the search space for generating adversarial samples and measures the
internal mechanism of the model more accurately. For Stacked IMDB-LSTM, IMDB-LSTM,
Stacked IMDB-GRU, and IMDB-GRU, we consider that the difference between the internal
structures of LSTM and GRU units leads to RConC > NC. There are three gates in the LSTM
unit, namely, forget gate, input gate, and output gate. There are two doors in the GRU
unit, the update door, and the reset door. The update gate is similar to the combination
of LSTM forget and input gates. It determines which information to discard and which
new information to add. We analyze that when the update gate discards information, the
weight is small, resulting in a smaller contribution value, making RConC > NC.
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Finally, we also find that RConC decreases with the increase of the number of layers
under all thresholds. We analyze this because important features are constantly being
accurately located.

In general, RNNCon can clearly show how the amount of information in the input data
changes at each layer of the model and to some extent can reflect the difference between
neural networks of the same architecture trained on different data sets. Compared with
neuron coverage, RNNCon has a more accurate presentation of the process of information
processing, for example, in the MNIST-LSTM model in Figure 7, the coverage of neurons
is 99.22%, 53.78%, and 90.00% in the Input layer, LSTM128 layer, and Dense32 layer,
respectively, while the contribution coverage is 83.25%, 96.88%, and 90%, respectively.
Because the LSTM128 layer has the function of “memory” and information accumulation,
the expectation is that both the neuron coverage and the contribution coverage of LSTM128
are larger than the coverage of the input layer, but this does not match our actual results,
indicating that the neuron coverage metric loses a part of the logic inside the RNNs.
Furthermore, it shows that the coverage of RNNCon is stronger than the neuron coverage
in RNNs.

(a) (b)

(c) (d)

Figure 7. The RConC of each layer of MNIST model is compared with NC under different thresholds
of 0, 0.25, and 0.5 for one same test input. 0 in NC_0 indicates that the threshold we specify is 0.
LSTM128 indicates that this layer is an LSTM layer with 128 LSTM units. All indicates the coverage
of the entire model, including all layers except the output layer. The number at the top of the
column is the coverage rate of the corresponding layer. (a) Stacked-MNIST-LSTM. (b) MNIST-LSTM.
(c) Stacked-MNIST-GRU. (d) MNIST-GRU.
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(a) (b)

(c) (d)

Figure 8. The RConC of each layer of IMDB model is compared with NC under different thresholds
of 0, 0.25, and 0.5 for one same test input. The meanings of other parameters are the same as those in
Figure 4. (a) Stacked-IMDB-LSTM. (b) IMDB-LSTM. (c) Stacked-IMDB-GRU. (d) IMDB-GRU.

It should be noted that during the coverage statistics of the model in Figure 7, we
take each one-dimensional feature of the input image as the neuron output of the input
layer and then multiply it with the weight matrix to obtain the contribution coverage of the
input layer. However, for Figure 8, we exclude the Embedding layer in the model. This is
because the contribution extraction and coverage calculation of the Embedding layer are
time-consuming and meaningless. Since the neuron coverage metric is oriented to CNNs,
we use the elements of the hidden state vector as neurons in our implementation.

Answer to RQ1: RNNCon has better coverage capacity than neuron coverage. We
suggest using RNNCon to guide the generation of test inputs rather than using alone
or using neuron coverage. RNNCon can more accurately measure the transmission of
information in the model.

5.3. Effectiveness of RNNCon-Test (RQ2)

In order to conduct a comprehensive evaluation, we provide the same 500 seeds to
Stacked MNIST-LSTM, MNIST-LSTM, Stacked MNIST-GRU, and MNIST-GRU to generate
adversarial samples. Figure 9 shows a sample extracted from the experimental data.
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(a) (b)

Figure 9. The Adversarial sample generated by RNNCon-Test cannot be distinguished from the
original seed by human eyes. (a) Original seed, result:4. (b) Adversarial sample, result:3.

It can be found that human eyes cannot distinguish between the original seed and the
adversarial sample, but the model MNIST-GRU correctly predicts the value of the original
seed to be 4, and the value of adversarial sample to be 3. Table 2 summarizes the results of
generating adversarial samples under the guidance of RNNCon.

Table 2. Generate adversarial samples guided by RNNCon.

Model Name #Layer #Seeds #Adv.Inputs Avg.Perturb
(L2 Norm) Adv.Rate (%)

Stacked-MNIST-LSTM

Random

500

428 0.334 85.60
LSTM1 436 0.321 87.20
LSTM2 424 0.210 84.80
Dense 358 0.061 71.60

Constraint 355 0.002 71.00

MNIST-LSTM

Random

500

422 0.139 84.40
LSTM 443 0.170 88.60
Dense 402 0.113 84.40

Constraint 361 0.029 72.20

Stacked-MNIST-GRU

Random

500

444 0.282 88.80
GRU1 435 0.266 87.00
GRU2 441 0.231 88.20
Dense 418 0.044 83.60

Constraint 351 0.029 70.20

MNIST-GRU

Random

500

422 0.191 84.40
GRU 427 0.208 85.40

Dense 446 0.127 89.20
Constraint 396 0.029 79.20

Where #Layer represents the layer where the inactivated contributions we want to
activate is located, Random means that we randomly select the inactived contribution to
activate at each layer . Constraint indicates that we generate test inputs by simulating
shot pollution. We generate one test input for each seed. #Adv.Inputs represents the
number of adversarial samples produced by 500 seeds. #Avg.Perturb(L2norm) represents
the mean value of the perturbations superimposed on the original seeds when generating
the adversarial inputs. #Adv.Rate indicates the percentage of adversarial samples produced
by 500 seeds.

We can find that in all MNIST models, #Adv.Rate and #Avg.Perturb of adversarial
samples generated by activating inactivated contributions are greater than those generated
only by adding Constraint. However, adding constraints produces a low #Avg.Perturb of
the adversarial sample. This indicates that when generating the adversarial samples, we
need to balance the perturbation and the generation rate of the adversarial samples, i.e., if
we want a high generation rate of the adversarial samples, we have to tolerate the problem
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of generating a large perturbation. In the models Stacked-MNIST-LSTM, MNIST-LSTM,
and MNIST-GRU, the #Adv.Rate generated for selecting inactivated neurons in a single
layer is higher than the #Adv.Rate generated by randomly selecting in all layers, which
indicates that this single layer of the model is more vulnerable to attacks compared to
other layers. This indicates that RNNCon-Test can effectively activate the unactivated
contributions and is effective in generating adversarial samples.

A comparison of the effectiveness of RNNCon-Test with RNN-Test on the model
MNIST-LSTM, given 500 original seeds, is shown in Table 3. It can be found that the
adversarial sample generation rate Adv.Rate of RNNCon-Test is 84.4%, while that of RNN-
Test is 69.6%, with a difference of 14.8%, for the same number of test inputs generated. The
perturbation applied by RNNCon-Test is 0.139, which is much smaller than the 1.740 of
RNN-Test. It is well known that it is better to have more adversarial samples generated
with less perturbation. So, RNNCon-Test is more effective than RNN-Test.

Table 3. Effectiveness of RNNCon-Test compared to RNN-Test [28] on MNIST-LSTM model over
500 original seeds.

Methodology #Seeds #Adv.Inputs Avg.Perturb
(L2 Norm) Adv.Rate (%)

RNN-Test 500 348 1.740 69.6
RNNCon-Test 500 422 0.139 84.4

Table 4 shows a performance comparison between RNNCon-Test and RNN-Test [28].
Our framework RNNCon-Test can reduce the performance of the model more than RNN-
Test. For example, in the model MNIST-GRU, the accuracy of RNNCon-Test was 10.80%,
which was 9.2% lower than that of RNN-Test. The success rate of generating adversarial
samples Adv.Rate is 89.20%, which is 9.89% higher than that of RNN-Test.

Table 4. Performance comparison with RNN-test [28].

Model Performance Original RNN-Test RNNCon

MNIST-GRU Accuracy (%) 98.53 20.00 10.80
Adv.Rate (%) - 79.31 89.20

The high-dimensional reduction technique TSNE [47] transformation of the pertur-
bations generated by activating different number of inactivatedinactive contributions for
one same test input, as shown in Figure 10. Although the distribution of perturbations
produced by activating different amounts of contributions is uniform, activating three
contributions is closer to the original distribution than activating one or two contributions.
It indicates that the adversarial space generated by activating three contributions will be
more limited than that generated by activating fewer contributions, so the diversity of the
generated adversarial sample set will be relatively small. So, when we want to generate
adversarial samples, it is not always the case that it is better to have more contributions
activated at the same time. This also indicates that RNNCon-Test can effectively activate
the inactivated contributions to generate adversarial samples.

For different models, the comparison before and after adding the generated adversar-
ial samples to the same MNIST seed set to calculate the coverage is shown in Figure 11.
Figure 11a,b generate adversarial samples by activating inactivated neurons and contribu-
tions, respectively. We find that the NC is much higher than RConC before the model is
fed with adversarial samples. After feeding the adversarial samples generated under the
guidance of the neuron coverage metric and RNNCon, the value range of NC is smaller
than the original average coverage in the four models of Stacked MNIST-LSTM, MNIST-
LSTM, Stacked MNIST-GRU, and MNIST-GRU, and the value range of RNNCon is much
higher than the original average coverage. Obviously, the adversarial samples generated by
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activating neurons should increase the coverage rate of neurons, but it actually decreases,
which indicates that the neuron coverage metric is not applicable to Stacked RNNs. This
further illustrates the effectiveness of RNNCon for testing RNNs.

Figure 10. TSNE transformations of perturbations obtained by activating different numbers of
contributions of RNNCon-Test in model MNIST-GRU for one same test input.

(a) (b)

Figure 11. Compare the coverage rate of different RNN models before and after adding adversarial
samples to the same MNIST seed dataset. The horizontal dotted lines represent the average coverage
rate of the model corresponding to the same color when no adversarial samples are fed. The boxes
represent the coverage value ranges of the model after being fed with adversarial samples. (a) MNIST-
NC. (b) MNIST-RConC.

We visualize the coverage of reset and update gates in the GRU at each time step after
the MNIST-GRU model is fed the original seed and the adversarial sample, as shown in
Figure 12. “Rx of reset gate” and “Rh of reset gate” represent the coverage of the current
input and the information left by the previous time step for each time step processed by
the update gate.. The update gate determines how much information from the past needs
to be forgotten. We can see that the coverage of time steps 1–4 and 26–28 is zero when
the original seed of the model is fed and the update gate processes the current input x.
Considering that the input for each time step processing is each column of pixels of the
image, the update gate pays more attention to the intermediate time steps because the
digital part of MNIST data is located in the center of the image. As can be seen, the update
gate also focuses more on the intermediate time step. When we feed the adversarial sample,
we find that coverage increases at time steps 1–4 and 26–28. So, we analyze that these
perturbations that we generate are added to the original seed, strengthening the features of
some parts of the image that are not particularly important to the prediction process.
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Figure 12. The coverage of each gate at each time step after feeding the original seed and adversarial
sample to the MNIST-GRU model. The first two rows represent the coverage rate of the original seed.
The last two lines represent the coverage rate obtained by feeding the adversarial sample generated
by the same original seed. “Rx of reset gate” and “Rh of reset gate” are the coverage of reset gate.
“Zx of update gate” and “Zh of update gate” are the coverage of the update gate. “Hx” and “Hh” are
the coverage of hidden states.

Answer to RQ2: The contribution coverage metric RNNCon as a guide generated
adversarial samples is superior to RNN-Test [28] and neuron coverage [13]. Covering
only neurons is not applicable to Stacked RNNs. Compared with RNN-Test, RNNCon-
Test can significantly reduce the performance of the model and has a stronger ability to
generate adversarial inputs, which is 9.89% higher. Even a small amount of contribution
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can be activated to generate adversarial inputs in a high proportion. RNNCon-Test has the
potential to become more effective because of divergent perturbations.

5.4. Quality of Adversarial Input (RQ3)

We assess the quality of the adversarial samples generated by RNNCon-Test by IS [39]
and FID [40] and L1-distance. The L1-distance measures the similarity between the original
seed and the adversarial sample, and the smaller the L1-distance the better in order to
make the perturbation undetectable to the human eye. IS measures the degree of similarity
between two distributions, and to improve the clarity and diversity of the dataset, then the
larger the IS, the better. Because IS does not take into account the effect of real-world data,
the FID can be used to determine whether the distribution of the measured objects is similar
to the true distribution. Therefore, the smaller the FID, the better. In summary, we prefer the
dataset with the smallest L1-distance for retraining. When L1-distance is indistinguishable,
we choose the smallest FID. when both L1-distance and FID are indistinguishable, we
choose the dataset with the largest IS.

Table 5 shows the L1-distance, IS, FID and the accuracy of the model after retraining
with different datasets, where the dataset is the set of data formed by adding the corre-
sponding generated adversarial samples to the training set. Table 5 shows the L1-distance,
IS, FID and the accuracy of the model after retraining with different datasets, where the
dataset is the set of data formed by adding the corresponding generated adversarial sam-
ples to the training set. For the supervised task, we use the labels of the original seeds that
generate the adversarial samples as the labels of the adversarial samples.

Table 5. Choose natural, real-world datasets for retraining.

Model #Layer Coverage Rate (RConC) (%) L1-Distance IS FID Acc.Retrain

Stacked-MNIST-LSTM

Random 86.85 3867 2.299 222.348 99.07
LSTM1 86.79 3837 2.141 221.004 99.10
LSTM2 86.88 3979 1.682 222.055 99.07
Dense 86.11 2821 2.093 224.557 99.12

Constraint 85.76 2315 1.833 224.559 99.08

MNIST-LSTM

Random 87.54 3465 2.176 223.572 99.03
LSTM 87.91 3547 2.025 223.993 99.09
Dense 86.43 1267 2.179 222.467 99.09

Constraint 85.36 2324 1.866 224.981 99.01

Stacked-MNIST-GRU

Random 86.24 3710 2.565 222.750 98.94
GRU1 86.27 3697 2.382 222.901 98.98
GRU2 86.32 3770 1.946 222.566 99.01
Dense 85.69 2632 2.277 222.956 98.94

Constraint 85.35 2256 1.892 224.592 99.02

MNIST-GRU

Random 85.91 3433 2.225 221.678 99.00
GRU 86.20 3508 2.031 221.536 99.02

Dense 85.09 3013 2.222 222.215 99.00
Constraint 84.17 2281 1.871 223.045 99.00

First, from Table 5 we can find that, except the MNIST-GRU model, the model retrained
with the smallest L1-distance training set has the highest accuracy. For example, in the
model Stacked-MNIST-LSTM, when the L1-distance is the smallest, 2821, the accuracy
after retraining is the highest, 99.12. The training set with the smallest FID obtained in
MNIST-LSTM and MNIST-GRU has a higher accuracy of the retrained model. Only the
training set with the largest IS in the MNIST-LSTM model has a higher accuracy after the
model is retrained. These results are consistent with our expectations, so we suggest that
when selecting a dataset for the retraining process, the one with the smallest L1-distance is
preferred, followed by the one with the smallest FID, and only the one with the largest IS is
selected last.
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We use Accuracy, Precision, Recall, F1 Score, and AUC, which are deep learning
model performance evaluation metrics to measure the performance of the model. The
performance improvement after retraining is shown in Table 6. We can find that in the four
models Stacked MNIST-LSTM, MNIST-LSTM, Stacked MNIST-GRU and MNIST-GRU, the
accuracies of the same test set have been improved after retraining. If the accuracies are
high before retraining, it can be improved by 0.45% at most. The precision can be improved
by 0.47% at most. The recall rate can be increased by 0.46% at most. The F1 score can be
increased by 0.44 at most. Area Under Curve (AUC) is not improved much.

Table 6. Improved performance after retraining.

Model
Before After

Acc. (%) Precision
(%)

Recall
(%) F1 AUC Acc. (%) Precision

(%)
Recall

(%) F1 AUC

Stacked-MNIST-LSTM 98.72 98.74 98.70 98.72 99.99 99.17 99.17 99.16 99.16 99.99
MNIST-LSTM 98.93 98.93 98.91 98.92 99.98 99.11 99.10 99.10 99.10 99.99

Stacked-MNIST-GRU 98.79 98.81 98.77 98.78 99.98 99.01 99.01 99.00 99.00 99.99
MNIST-GRU 98.68 98.67 98.67 98.66 99.99 99.04 99.04 99.03 99.03 99.99

The comparison of RConC and accuracy before and after retraining is shown in
Figure 13. We can see that after retraining, the RConC and accuracy have been effectively
improved. We find that the RNNCon is not related to the accuracy after retraining, which
is consistent with Harel-Canada et al’s opinion [35].

Figure 13. Comparison of RConC and accuracy before and after retraining.

The accuracy comparison before and after retraining is shown in Figure 14. Due to
the uncertainty of the models, we retrain each model 10 times, and the dotted line is the
average accuracy. The accuracy of the four models in Figure 14 has been significantly
improved after retraining. However, the selection of the layer in which the inactivated
contribution is located has only a small effect on improving the accuracy of the model.
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(a) (b)

(c) (d)

Figure 14. Accuracy comparison before and after the retraining of the corresponding model with the
addition of the adversarial samples to the training set, a total of 10 runs. “Before” indicates accuracy
without retraining. “Add Constraint” means to generate adversarial samples by adding small black
rectangles to the original seed to simulate camera lens stains. “Select Dense”, “Select LSTM”, “Select
GRU” and “Random select” refer to the selection of the layer where the inactive contributions can
be selected when the adversarial samples are generated, which are respectively Dense layer, LSTM
layer, GRU layer and all layers except the output layer. The dotted line is the average accuracy
of 10 runs, and the color is consistent with the corresponding polyline. (a) Stacked-MNIST-LSTM.
(b) MNIST-LSTM. (c) Stacked-MNIST-GRU. (d) MNIST-GRU.

Answer to RQ3: We filter the adversarial inputs by minimum L1-distance, minimum
FID, and maximum IS, making them natural and close to the real world. After automatically
marking these adversarial samples with the original labels, adding them to the training set
to retrain the model can improve the performance of the model.

6. Threats to Validity

First of all, for the MNIST dataset, we set the threshold value to 0.25 when conducting
experiments. When we increase the threshold value, the coverage becomes lower, and
when we reduce the threshold value, the coverage increases. For the IMDB dataset, we set
the threshold value to 0.5, and the method of threshold selection remains a legacy issue.
Second, when selecting the inactivated contributions in a certain layer, we adopt a random
selection method, which brings a certain threat of uncertainty to our experimental results.
The prediction results of the DL systems have a strong uncertainty. When we retrain, we
load the original weight information. On this basis, we continue to run for 10 rounds to
avoid this uncertainty to some extent.
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7. Discussion

In this section, we discuss the limitations and potential problems of our work.
Correctness is a measure of the probability that a DL system is “correct”. The correct-

ness of a model is the probability that the model’s predicted label for an input is equal to
its true label. Robustness is defined by the IEEE standard glossary of software engineering
terminology as the degree to which a system or component can function correctly under
invalid inputs or stressful environmental conditions. (1) Let S be a DL system. Let E(S) be
the correctness of S, σ(S) be the perturbations of S on any machine learning components
e.g., data, learning program, or framework. The robustness of the DL system is a measure
of the difference between E(S) and E(σ(S)) [8]. We train model s and model σ(s) by
choosing the same MNIST-GRU network architecture, MNIST dataset, and different epoch
values so that the model σ(s) was over-fitted to simply simulate that the system being
disturbed, and then obtained robustness by calculating the difference of the correctness
between the models s and σ(s). We generate 500 test inputs for model s, automatically
label them with the same labels as the original seeds, and add them to the training set,
then retrain the model. We find significant improvement in robustness. (2) We evaluate
RNNCon on small Stacked RNNs. In the real world, the types of RNNs are large, and the
datasets processed include not only text types but also sequence data such as speech. Our
next work will evaluate RNNCon and RNNcon-Test on more and larger stacked RNNS, as
well as the applicability of RNNCon to CNNs.

8. Related Work

Pei et al. [13] defined the neuron coverage metric for the first time, and proposed the
concept of neuron coverage rate (i.e., the ratio of the number of neurons whose output
values are greater than the specified threshold to the total number of neurons) to measure
the test adequacy of DNNs. They generate test inputs by jointly maximizing the neuron
coverage rate and the differential behavior of the model. The generated test inputs can
not only be extended to the training dataset to retrain the model to improve the accuracy
and robustness of the model but also detect possible data pollution attacks in the training
dataset. Although the neuron coverage metric is oriented to CNNs and cannot be accurately
applied directly to RNNs, inspired by it, we tried to find out the real neurons in RNNs by
analyzing the internal structure of RNNs and its variants LSTMs and GRUS.

With the introduction of the neuron coverage metric, many studies have extended it
with finer granularity and proposed many related test coverage metrics. Sun et al. [16] for-
malized several DNN coverage metrics that had been proposed at that time, and provided
them with a unified test input generation algorithm to maximize the coverage rate, to a
certain extent, eased the trend of the coverage criteria towards customization.

Zhou et al. [19] pointed out that using only the output of a neuron to determine the
activation state of a neuron is incomplete since the prediction results of the DNNs were de-
termined by the outputs of the neurons and the weights it emit. Therefore, Zhou et al. [19]
defined the concept of the term “Contribution”, that is, the combination of a neuron output
and the weight it emits and then proposed a contribution coverage metric for CNNs, which
was used to guide the generation of tests and measure the adequacy of testing. Inspired by
Zhou et al.’s study, we believe that the weights emitted by neurons in RNNs are equally
important. However, unlike the network structure of CNNs, the neurons of the layers of
RNNs are connected. The contributions oriented to CNNs are difficult to locate accurately
until the neurons and weights in RNNs are analyzed. Therefore, we redefine the contri-
bution of RNNs. Unlike the studies by Pei et al. and Zhou et al., our study is on RNNs
and the redefined contributions in RNNs are taken as the minimum unit of test coverage.
Similar to Sun et al.’s study of maximizing neuron coverage we also generated test inputs
by maximizing contribution coverage, but we further calculated the ratio of adversarial
samples in the generated test inputs. This is because the generated test inputs may be
invalid and do not reveal the flaws of the model as much as the adversarial samples.
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Guo et al. [22] proposed a differential fuzzing framework. It worked by constantly mu-
tating the input subtly in order to maximize the neuron coverage and prediction difference
between the original and mutated inputs without manually labeling or cross-referencing
test oracles from other DL systems of the same function. Compared with Pei et al.’s
study [13], it can achieve higher coverage and obtain more abnormal behavior. The way of
generating adversarial samples in our study is similar to that of Guo et al. The difference is
that we are oriented to RNNs with memory functions and maximize contribution coverage
rather than neuron coverage.

Harel-Canada et al. [35] and Abrecht et al. [32] argue that the correlation between
high neuron coverage and the quality of DNNs is elusive. Therefore, we measure the
contribution coverage along with the commonly used performance metrics to examine the
variation in the performance of DNNs.

The researches of Du et al. [30], Huang et al. [29], and Guo et al. [28] are rare works
conducted toward RNNs. Du et al. model an RNN model as an abstract state-transition
system to characterize its internal behavior, and coverage tests based on that system.
However, as the number of layers of the neural network increases, the process is time-
consuming and labor-intensive. In contrast, our work is performed by unfolding an RNN
along time steps by a technique called computational graph unfolding, which matches
the actual computing process and thus saves costs. The work of Huang et al. and Guo
et al. is mentioned in “Limitations of existing coverage metrics”. Our study differs from
theirs in that we take the contribution of the underlying recurrent cell as the minimum test
unit instead of the entire recurrent cell, and our study can explore the internal decision
mechanism of RNNs more deeply.

9. Conclusions

DL systems are widely used in various security fields, which puts forward higher
requirements for the robustness of DL systems. The coverage metrics of existing DL systems
are oriented to CNNs, and limited testing efforts are oriented to Stacked RNNs. In this
paper, we propose a contribution coverage metric RNNCon that applies Stacked RNNs.

RNNCon divides the contribution extraction in Stacked RNNs into two categories.
One is that at a single time step, the contribution is expressed as the combination of the
output of a neuron and the weight it emits. The second category is over multiple time steps,
where the contribution is expressed as the combination of the output of a hidden neuron at
the previous time step and the weight it emits to connect the same hidden neuron at the
next time step.

Experiments with different datasets and on different models show that for a single
RNN layer, RNNCon can cover deeper internal decision mechanisms and has stronger
coverage compared to neuronal coverage.

Our further designed and implemented prototype framework RNNCon-Tes can effi-
ciently activate the inactivated contributions to generate adversarial samples with a success
rate of 84.4% in MNIST-LSTM, which is 14.8% higher than the current state-of-the-art
study RNN-Test, and generates a small perturbation of 0.139, compared to the perturba-
tion of RNN-Test is reduced by 1.601. We add the generated adversarial samples to the
training data set, and retrain the model by sequentially screening the data sets with small
L1-distance, small FID, and large IS, which can effectively improve the performance of the
model, and improve the accuracy rate up to 0.45%, precision rate up to 0.47%, recall rate up
to 0.46% and F1 score up to 0.44 when the performance of the model is already at a high
level. In the future, we plan to evaluate the applicability of RNNCon to large Stacked
RNNs or CNNs. We also plan to investigate RNNCon-based adversarial defense methods.
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