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Abstract: In this paper, we focus on evolution from an equilibrium state in a power law form by
means of q-exponentials to an arbitrary one. Introducing new q-Gibbsian equalities as the necessary
condition of self-organization in nonextensive open systems, we theoretically show how to derive the
connections between q-renormalized entropies (∆S̃q) and q-relative entropies (KLq) in both Bregman
and Csiszar forms after we clearly explain the connection between renormalized entropy by Kliman-
tovich and relative entropy by Kullback-Leibler without using any predefined effective Hamiltonian.
This function, in our treatment, spontaneously comes directly from the calculations. We also explain
the difference between using ordinary and normalized q-expectations in mean energy calculations of
the states. To verify the results numerically, we use a toy model of complexity, namely the logistic
map defined as Xt+1 = 1− aX2

t , where a ∈ [0, 2] is the map parameter. We measure the level of
self-organization using two distinct forms of the q-renormalized entropy through period doublings
and chaotic band mergings of the map as the number of periods/chaotic-bands increase/decrease.
We associate the behaviour of the q-renormalized entropies with the emergence/disappearance of
complex structures in the phase space as the control parameter of the map changes. Similar to
Shiner-Davison-Landsberg (SDL) complexity, we categorize the tendencies of the q-renormalized
entropies for the evaluation of the map for the whole control parameter space. Moreover, we show
that any evolution between two states possesses a unique q = q∗ value (not a range for q values)
for which the q-Gibbsian equalities hold and the values are the same for the Bregmann and Csiszar
forms. Interestingly, if the evolution is from a = 0 to a = ac ' 1.4011, this unique q∗ value is found to
be q∗ ' 0.2445, which is the same value of qsensitivity given in the literature.

Keywords: S-theorem; q-renormalized entropy; complexity measures; logistic map

1. Introduction

The main problem for researchers who are interested in entropy-based measures is
discerning which measure would be the most suitable one for the complex system under
consideration. The definition of ‘suitable’ implies the measure which represents a behaviour
that is compatible with the dynamics of the system among definitions of the measures in the
literature. For example, it has been expected that the measure is able to make a distinction
among possible phases of the system as the parameter set of the system slightly changes.
Despite the numerous definitions [1–8], the measures can be categorized into three types
(Figure 1), namely type-I, type-II and type-III that are similar to SDL complexity, formally
[5]. The first type considers measure as a monotonically increasing function of disorder. In
the second type, measure is a convex function of disorder. Hence, it is a minimum for both
completely order and completely disorder, and a maximum at a point between them. In
the last type, measure is a monotonically decreasing function of disorder. The crucial point
in this classification is that classic notion of entropy by Shannon [9] is associated with the
degree of disorder. It should be noted that the control parameter of the system can also
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be used as the degree of disorder if the Shannon entropy S is a monotonically increasing
function of some system parameter, say a, as the system evolves in its parameter space
from a to a + ∆a [10].
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Figure 1. An example of types of entropy based measures as a function of control parameter (adapted
from [5]).

Even if it seems that changing the parameter in space is not directly related to time, it
always takes time from one state to another for a real system since an evolution depends
on the change of conditions, i.e., of parameters, with time [11]. For the evolution of
dissipative dynamical systems which pave their way to successive stable branches, and
then to successive chaotic band mergings as the parameter set of the system slightly
changes, the classic notion of the entropy by Shannon, the relative entropy by Kullback-
Leibler and the renormalized entropy by Klimontovich are good examples for entropy-
based measures of type-I, type-II and type-III, respectively [10]. The Shannon entropy
monotonically increases from the first branch to the most chaotic state (type-I). The relative
entropy increases monotonically from the first branch up to the edge of chaos, and then
decreases monotonically up to the first chaotic band merge (type-II). The renormalized
entropy decreases monotonically from the first branch up to the edge of chaos (type-III),
and then increases monotonically up to the first chaotic band merge (type-I). In other words,
when the sequence of branches emerges, the relative order increases, i.e., the measure of
complexity, the renormalized entropy decreases [12].

The behaviour of the renormalized entropy indicates the relative degree of order
in the system as first suggested by Haken [13] in the context of self-organization. The
S-theorem that is a basis for the method of renormalized entropy was proved for the
transition from laminar to turbulent flow [14]. Such a kind transformation confirmed that
turbulent structures are more ordered, that implies highly organized, than laminar [15].
Moreover, Rayleigh–Benard convection [16,17], Taylor instability experiment [18], bacterial
[19] and Dictyostelium discoideum [20] colonies are some typical examples in which the
most ordered spatial patterns emerge in the phase spaces via changing conditions of the
systems, that indicates a high level of self-organization.

The Shannon entropy expression, setting kB = 1, reads

S = −∑
i

pi ln pi (1)

where pi are the probability of an event i of a sample set. Maximizing the Shannon entropy
of the system subject to suitable constraints (namely, mean energy and probability normal-
ization constraints), using Lagrange multipliers method, one can obtain the equilibrium
distribution as

peq
i =

e−βεi

Z
(2)

where β is the inverse temperature and Z = ∑i e−βεi is the partition function. For the
evolution to the equilibrium state from an arbitrary one (p → peq), the Shannon entropy
can be used to find the difference between the entropies ∆S(p→peq) = S(peq)− S(p) ≥ 0
that is known as the second law of thermodynamics. However, from both Boltzmann’s
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H-theorem and Gibbs theorem, it is well known that this inequality is only valid for an
isolated evolution between the states. Hence, it is violated for the evolution of open systems
that exchange of energy/matter with its surroundings is allowed. In other words, these
theorems state that ∆S(p→peq) equals relative entropy with a limitation that the mean energy
〈E〉 remains constant (i.e, 〈E〉p

eq
= 〈E〉p) [21]. Therefore, in a process of such an evolution

(from p to peq) as long as mean energy is the same, from these theorems, it follows that

∆S = Seq − S = ∑
i

pi ln
pi

peq
i

= K(p||peq) ≥ 0 (3)

where peq and p are probability distributions corresponding to the equilibrium state and
arbitrary one, respectively. Equation (3) implies that the equilibrium state has the greatest
disorder (or chaoticity) as compared to the arbitrary state. The usual expression of the
relative entropy K(p||r) = ∑i pi ln pi

ri
gives the entropy produced by the change from the

state p to the state r. Whenever r = peq, it can be written in terms of free energy differences
of the states

K(p||peq) ∝ (F− Feq) (4)

where F = 〈E〉p − 1
β S and Feq = 〈E〉p

eq
− 1

β Seq.
Due to the strong limitations on the second law, Klimontovich introduced his S-

theorem, where ‘S’ stands for ‘self-organization’, that makes it possible to analyze open
systems in terms of the Gibbs theorem [21]. According to the S-theorem, it is possible
to compare distinct states, which are the equilibrium and a non-equilibrium stationary
state, under dissipation of the energy that implies the evolution of an open system. To
compensate the dissipation, a new mean energy equality 〈E〉 p̃

eq
= 〈E〉p similar to the Gibbs’

equality via a renormalization procedure peq → p̃eq is defined. After such a renormalization,
the renormalized entropy ∆S̃ is defined as (noticing that evolution is from p̃eq to p)

∆S̃ = S− S̃eq = −∑
i

pi ln
pi

p̃eq
i

= −K(p|| p̃eq) ≤ 0 (5)

where p̃eq and p are the renormalized equilibrium and non-equilibrium stationary states, re-
spectively (all proofs regarding Equations (3)–(5) will be given in the next part of the paper).

In Section 2, we show that the definition of mean energy equality (and also
Equation (5)) in the concept of the renormalized entropy by Klimontovich is valid for an evo-
lution to/from the canonical equilibrium distribution of exponential form in
Equation (2). We also discuss the connections among the Shannon, the Kullback-Leibler
relative and the renormalized entropies within a thermodynamic perspective.

In Section 3, we theoretically show how to apply this procedure on a nonextensive
open system, whose generalized canonical probability distribution is of q-exponential form

ex
q = [1 + (1− q)x]1/(1−q) . (6)

This distribution is the one that comes from the maximization of the Tsallis entropy
given by [22]

Sq =
1−∑i pi

q

1− q
, (7)

and it recovers the Shannon entropy S = −∑i pi ln pi in the limit q→ 1 as a special case. It
is well known that the maximization of the Tsallis entropy subject to the ordinary constraints
(∑i piεi = 〈E〉 and ∑i pi = 1) yields a canonical distribution in a q-exponential form,

pord
i =

e2−q
−β∗εi

Z(β∗)
, (8)
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where 1/Z(β∗) is a normalization constant [23]. On the other hand, normalized q-expectation
is employed instead of the ordinary constraints, (∑i[p

q
i εi/ ∑i pq

i ] = 〈E〉q and ∑i[p
q
i /∑i pq

i ] = 1),
the canonical probability distributions reads

p(nor)
i =

eq
−β̂(εi−〈E〉q)

Z(β̂)
(9)

where β̂ = β/Cq and Cq = ∑i (pnor
i )q [22]. Respectively, when the generalized version of

canonical distributions in Equations (8) and (9) put into two kinds of q-generalized relative
entropies, which are well known Bregman KB

q (p||pord) and Csiszar types KC
q (p||pnor), it

can be shown that the generalized relative entropies are associated with the q-generalized
version of free energy differences of the states [24]:

KB
q (p||pord) ∝ (Fq − Ford

q ) (10a)

KC
q (p||pnor) ∝ (Fq − Fnor

q ) (10b)

that are similar to the Equation (4). It can be also noted that there is one more version of
the formalism using unnormalized q-expectations in the constraints. However, it is shown
in [25] that all these versions are equivalent to each other.

In the following subsections, we explain the necessary condition (on the q-mean energy
equality) for self organization of open systems using the Bregman and Csiszar forms of
generalized relative entropies, respectively. Klimontovich himself as well as some recent
efforts on the generalization of the renormalized entropy [26,27] have invoked a predefined
‘effective Hamiltonian’ function to obtain the mean energy equality. We will theoretically
show here what kind of equalities would be necessary conditions for self organization of
nonextensive systems without using any predefined effective Hamiltonian function. The
results will come up as a direct consequence of our approach. Moreover, we derive relations
between q-renormalized entropy and the generalized relative entropies from the viewpoint
of information theoretic approaches in Section 2.

In Section 4, we use a paradigmatic toy model, the logistic map, in order to numerically
show the level of self-organization (or the degree of complexity from self-organisation) for
a system that paves its way to successive stable branches, and then to successive chaotic
band mergings as the parameter of the system slightly changes. We show the behaviour of
the q-relative entropies in both Bregmann and Csiszar forms as the suitable measure for
self-organisation, and define their types of complexity (type-I, -II or -III). Finally, we show
a unique q∗ values obtained through evolution of the states with the system parameter
and relate its value at the edge of chaos with the qsensitivity value obtained for the logistic
map [28,29].

2. Thermodynamic Perspective of the Renormalized Entropy and Connections

Let us consider an evolution from an equilibrium state p0 to an arbitrary one p as
the control parameter of the complex system slightly changes from a0 to a0 + ∆a. Entropy
produced by the change of state (i.e., corresponding information gain) in such an evolution
can be given by the Kullback-Leibler relative entropy [30]

K(p||p0) = ∑
i

pi ln
pi
p0i
≥ 0 . (11)

Adding and subtracting ∑i p0i ln p0i to and from right-hand side of Equation (11), this
can be rewritten as

K(p||p0) = −∆S(p0→p) −∑
i
(pi − p0i) ln p0i (12)
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where ∆S(p0→p) = ∑i p0i ln p0i −∑i pi ln pi.
Substituting p0i = peq

i , the canonical equilibrium distribution of exponential form in
Equation (2), into the logarithmic function ln p0i in Equation (12), it can be immediately
shown that

K(p||peq) = −∆S(peq→p) + β∆〈E〉(peq→p) (13)

where ∆〈E〉(peq→p) = 〈E〉p − 〈E〉p
eq

is the difference between the mean energies through
the evolution from the state peq to the state p. Comparing Equations (12) and (13), it
follows that

∆〈E〉(peq→p) = − 1
β ∑

i
(pi − peq

i ) ln peq
i . (14)

One can notice that Equations (12)–(14) lead three important connections regarding
the proofs of Equations (3)–(5):

(i) Equation (3), the second law of thermodynamics ∆S(p→peq) ≥ 0, can be derived
from Equation (13) noticing that ∆S(p→peq) = −∆S(peq→p) and K(p||peq) ≥ 0.
This derivation requires the limitation that the Gibbs equality holds, i.e., ∑i(pi −
peq

i ) ln peq
i ∝ ∆〈E〉 = 0, which implies the evolution is isolated, i.e., the mean

energy is the same through the evolution.
(ii) Equation (4) can easily obtain from Equation (13) using the definition of the free

energy given as F = 〈E〉r − 1
β S for any state (r). It means that Kullback-Leibler

relative entropy is associated with the free energy difference of the states in such
an evolution.

(iii) Equation (5), the result of the S-theorem by Klimontovich, can be shown from
Equation (13) by a transformation peq → p̃eq ensuring the renormalization of the
state so that it compensates the mean energy difference between the states corre-
sponding to the renormalized equilibrium and non-equilibrium stationary states,
i.e ∆〈E〉( p̃eq→p) = 0. The compensation requires the Gibbs equality defined as

∑
i

pi ln peq
i = ∑

i
p̃eq

i ln peq
i . (15)

Such a renormalization enables us to use the Gibbs theorem for an open system with
energy flux. To compare the states in terms of the renormalized ∆S̃ and Kullback-Leibler
relative entropies K, the connection can be written as

∆S̃ = −K(p|| p̃eq) ≤ 0 (16)

by means of Equations (12) and (15).
It should be noted that our assumption reveals with Equations (12)–(14) why a quantity

called the effective Hamiltonian, He f f = − ln p0i, for the reference equilibrium state was
preferred by Klimontovich. In our assumption, choosing the reference state as p0 = peq

yields ∆〈E〉(peq→p) in Equation (13), spontaneously. The details and applications on both
synthetical and real data of the renormalized entropy by Klimontovich can be found in
references [10,12,21,31] and [32–35], respectively.

3. Derivation of the q-Renormalized Entropy and Connections

Similar to the connection in Equation (4) between Kullback-Leibler relative entropy
and free energy differences, there are two types of q-generalized relative entropies whose
connections to q-free energy differences exists [36]. Respectively, they are called Bregmann
form given by

KB
q (p||p0) =

1
q− 1 ∑

i
pi

(
pi

q−1 − p0i
q−1
)
−

∑
i
(pi − p0i)p0i

q−1
(17)
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and Csiszar form defined as

KC
q (p||p0) =

1
q− 1 ∑

i
pi

[(
pi
p0i

)q−1
− 1

]
. (18)

Noticing the dependence of the generalized relative entropies on the constraints
from Equation (10), we derive the q-renormalized entropies for the evolution from a
stationary state in the functional forms of the inverse power law (i.e., q-exponentials in
Equations (8) and (9)) within a thermodynamic perspective similar to the Section 2. The
crucial point of such an approach is that a predefined effective hamiltonian function is not
necessary. Moreover, we show the necessary conditions of self organization in nonextensive
open system using a q-Gibbsian equality in the following subsections.

3.1. Derivation and Connection I: q-Renormalized Entropy and Bregman Form of Relative Entropy

Firstly, we reorganize the Bregman form of the generalized relative entropy in
Equation (17) as

KB
q (p||p0) =∑

i
p0i ln2−q p0i + ∑

i
pi ln2−q pi −

q ∑
i
(pi − p0i) ln2−q p0i

(19)

where the identical relation of (2− q)-deformed logarithm, ln2−q x = (xq−1 − 1)/(q− 1),
has been used. It should be noted that the same relation leads to the q-logarithmic form of
the Tsallis entropy in Equation (7), that is given by

Sq = −∑
i

pi ln2−q pi . (20)

Putting this form in Equation (19), we have a similar expression to Equation (12),
which reads

KB
q (p||p0) = −∆Sq

(p0→p) − q ∑
i
(pi − p0i) ln2−q p0i (21)

where ∆Sq
(p0→p) = Sq(p)− Sq(p0) is the change in the Tsallis entropies through an evolu-

tion from the state p0 to p.
Substituting p0i = pord

i , the stationary distribution of the (2− q)-exponential form
in Equation (8), into the (2− q)-logarithmic function ln2−q p0i in Equation (21), we can
immediately write

KB
q (p||pord) = −∆Sq

(pord→p) + β
′
∑

i
(pi − pord

i )εi (22)

where β
′
= qβ∗

Zq−1 . From the transformation pord
i → p̃ord

i on the reference state, one can
easily obtain

KB
q (p|| p̃ord) = −∆Sq

( p̃ord→p) + β
′
∆〈E〉(pord→p) (23)

where ∆〈E〉(pord→p) = 〈E〉p − 〈E〉p
ord

q is the mean energy difference and p̃ord
i = (pord

i )q/

∑i(pord
i )q is the distribution chosen so that it enables us to vanish the second terms in the

right hand side of Equations (22) and (23) at a unique value of q = q∗, namely,

KB
q∗(p|| p̃ord) = −∆Sq∗

( p̃ord→p) (24)

It should be noted here that the transformation enables us to equate the mean energies,

i.e., 〈E〉q∗
pord

= 〈E〉p, at a unique value of q taking the normalized q-average instead of
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the ordinary average in the calculation of the mean energy of the reference state. In other
words, it re-normalizes the mean energy of the reference state.

Comparing Equations (21)–(24), it can be easily shown that the compensation requires
a q-Gibbsian equality given by

∑
i

pi ln2−q∗ pord
i = ∑

i
p̃ord

i ln2−q∗ pord
i (25)

where the unique q∗ can be found numerically.
One can easily show that Bregman form of the generalized relative entropy in

Equation (22) is associated with the q-generalized version of free energy differences as
can be given in Equation (10a) where Fq = < E >p − Sq/β

′
and Ford

q = < E >pord − Sq/β
′
.

Moreover, as can be seen in Equation (24), there is a one-to-one correspondence between
the generalized relative entropy and the q-renormalized entropy due to the compensation
of the mean energy differences.

It is also worth noting that q-renormalized entropy is not a generalization of the usual
renormalized entropy by Klimontovich. Although the generalized relative entropy in
Equation (17) recovers the relative entropy by Kullback-Leibler in the limit q → 1, the
Gibbsian equality in Equation (25) is ensured at q∗ = 1 only if the transition from pord

to p belongs a cyclic process or the states possess the same degree of complexity. At
q = q∗ 6= 1, the value of q holds the Gibbsian equality as the necessary condition of
self organization for the transition between distinct states and leads the connection in
Equation (24). Therefore, the parameter q∗, which is the unique value of q, measures the
relative degree of order/disorder between the states. We confirm it using the toy model in
Section 4.

3.2. Derivation and Connection II: q-Renormalized Entropy and Csiszar Type of Relative Entropy

Substituting p0i = pnor
i , the stationary distribution of the q-exponential form in Equation (9),

into Equation (18) and using the identical relation Z1−q = Cq where Cq = ∑i (pnor
i )q, the Csiszar

form of the generalized relative entropy can be written as

KC
q (p||pnor) =− ∆Sq

(pnor→p)

+ β̂Dq ∑
i

pq

Dq

(
εi − 〈E〉p

nor

q

) (26)

where Dq = ∑i pq
i . Using the q-deformed logarithm form, lnq x, instead of the second term

in the right hand side of Equation (26), it follows that

KC
q (p||pnor) =− ∆Sq

(pnor→p)

− CqDq ∑
i

(
pq

Dq
−

(pnor
i )q

Cq

)
lnq (pnor

i )
(27)

By the transformation pi → p̃i on the other state, Equation (26) yields

KC
q∗( p̃||pnor) = −∆Sq∗

(pnor→ p̃) (28)

where p̃i = p1/q
i / ∑i p1/q

i is the distribution chosen so that it enables us to vanish the
second terms in the right hand side of Equations (26) and (27) at a unique value of q = q∗,
satisfying 〈E〉q∗

pnor
= 〈E〉p.

Comparing Equations (26) and (27), it can be easily shown that the compensation of
mean energy difference requires a Gibbsian equality given by

∑
i

pi lnq∗ pnor
i = ∑

i

(pnor
i )q∗

Cq
lnq∗ pnor

i (29)
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where the unique q∗ can be found numerically.
At this point, it should be emphasized that the Gibbsian equalities in Equations (25) and (29)

both lead the same mean energy equality, that is 〈E〉q∗
p0 = 〈E〉p, if one applies a trans-

formation on the reference state for the Bregman form of the generalized relative entropy
taking p0 = pord and on the other state for the Csiszar form of the generalized relative
entropy taking p0 = pnor.

4. Application: Logistic Map

To identify behaviour of the q-renormalized entropies for an evolution in the control
parameter space and to illustrate the consistency of Bregman and Csiszar forms of the
relative entropies within the context of the self-organization, we apply these procedures
on the logistic map. In addition to its ‘very simple expression’ as a toy model, the logistic
map has ‘highly complicated’ dynamics in the phase space [37]. Moreover, it is very conve-
nient to search whether there exist a connection between self-organization and bifurcation
processes as the system parameter slightly changes.

The expression of the logistic map reads

f (Xt) = Xt+1 = 1− aX2
t (30)

where Xt ∈ [−1, 1] is a sufficiently long phase space trajectory, t is iteration step (t = 1, 2, . . . , N)
and a ∈ [0, 2] is the control parameter of the map.

For the evolution of the map from a0 to a0 + ∆a, one can easily generate the trajectories
{Xt(a0)} and {Xt(a0 + ∆a)}. Respectively, the corresponding probability distributions
estimated from the trajectories are p0 = p0(X, a0) for the reference state and p1 = p1(X, a0 +
∆a) for the other state where ∑ p0 = ∑ p1 = 1.

For the estimation of the distributions, we use the dependence of spectral intensi-
ties on the frequency w. In other words, we use the Fourier transformation p(w, a) =
F(w, a) · F∗(w, a) of the trajectory {Xt(a)} instead of residence time distribution. Technically,
we generate trajectories of the map in Equation (30) with the length of 65,536 points after
4096 points are discarded as transients. The spectrum is then averaged over 16 periodograms
with a length of 4096 points. The details of the estimation procedure can be found in a recent
paper [10].

It is well known that the bifurcation diagram of the logistic map represents a very
rich dynamics where transitions with period-doubling route to chaos arise as the control
parameter changes in the range of a ∈ [0, 2] as can be seen in Figure 2. The map has a
critical point at a = ac = 1.401155 . . . which can be approached from the most ordered state
where the value of the control parameter is a = 0. From a = 0 (where period-1 occurs) to
a = ac (where 2∞ periods accumulate), the map shows a period-doubling procedure of 2n

periods. One can also approach the critical point from the most chaotic state (where the
value of the control parameter is a = 2), via a band splitting procedure where 2∞ bands
split at the critical point. In other words, the map is in a periodic region from a = 0 up
to a = ac with a period doubling procedure as it is in a chaotic region from a = 2 up to
a = ac with a band splitting procedure. It is also possible to see narrow periodic windows
in the chaotic region that possess similar structures to those of the map in the whole range
of the control parameter, i.e., a ∈ [0, 2]. Moreover, the Lyapunov exponent of the map can
be calculated using

λ = lim
N→∞

1
N

N−1

∑
t=0

log| f ′(Xt)| , (31)

by substituting the first derivative of the map function in the Equation (31) and is used to
make a distinction between periodic regions (λ < 0) and chaotic ones (λ > 0) [38].

To compare the reference state of the map with all other states within q-renormalized
entropies, we choose the reference state p0 at a = a0 = 0 and all other states in the region
of a ∈ [0, 2], i.e., p0 = p(w, a0 = 0) and p1 = p(w, a0 + ∆a) with a parameter increase step
∆a = 0.01. To calculate the entropies, we firstly numerically define the unique q∗ values that
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hold the Gibsian equalities in Equations (25) and (29). We then obtain the q-renormalized
entropies ∆S( p̃0→p)

q∗ and ∆S(p0→ p̃)
q∗ that are associated with q-relative entropies KB

q∗(p|| p̃0)

and KC
q∗( p̃||p0), respectively.

In Figure 3, from top to bottom, we plot the bifurcation diagram, the Lyapunov
exponent, the q-renormalized entropy in Bregman and Csiszar forms and evolution of the
q∗ values in the control parameter space. We denote some points just above the bifurcation
diagram as can be seen as a0, a1, a2, . . . , ã2, ã1, ã0 to divide the map in distinct regions as
analogous to the periodic and chaotic band regions in Figure 2. There are 2n−1 number
of periods and chaotic bands between the regions a ∈ [an−1, an] and a ∈ [ãn−1, ãn] where
n = 1, 2, 3, . . . , ∞, respectively. As the control parameter evolves from a0 = 0 to ã0 = 2,
the periodic trajectories bifurcate at the critical point an, where the first bifurcation point
is a1, up to the chaos threshold ac, where infinite number of periods exists. As a reverse
process, an infinite number of chaotic bands which exist at the chaos threshold ac start to
merge through the critical points ãn up to the ã1 where the last chaotic band merging exists.
The Lyapunov exponent vanishes at all critical points from a1 to ã1 as it has a negative
value in the range of a ∈ [a0, ac) and has a positive value in the range of a ∈ (ac, ã0]. It
can also be seen that the q-renormalized entropy in both Bregman and Csiszar forms point
out the same relative degree of order/disorder in the range of period–1 which implies
a low level of self-organization/complexity. When the sequence of branches emerges at
a1, the relative order, i.e., the level of self-organization/complexity, increases and the q-
renormalized entropies decrease through successive bifurcations up to the chaos threshold
point ac. Such behaviour of q-renormalized entropy in the control parameter space of
a ∈ [a1, ac] is compatible with that of the entropy-based measures of type-III in Figure 1.
In the range of chaotic band merging area of a ∈ (ac, ã1] as a reverse process, increase in
q-renormalized entropies corresponds to the entropy-based measures of type-I in Figure 1.
It means that the relative order, i.e., the level of self-organization/complexity, decreases
through the band merging area. It should be noted that the q-renormalized relative entropy
in Csiszar form evaluates that the level of order in the range of period–1 of a ∈ [a0, a1] has
the same degree of complexity with the level of disorder in the range of chaotic band–1
of a ∈ (ã1, ã0]. However, the degree of order/disorder in the range of chaotic band–1 of
a ∈ (ã1, ã0] decreases/increases except for a very thin periodic window, which is similar
to the behaviour of the Lyapunov exponent in the same range of the control parameter.
Moreover, q-renormalized entropy in Bregman form is more accurate for localization of the
chaos threshold such that it corresponds to a local minimum between a ∈ (a1, ã1] where
ac = 1.4011 . . . .

The equalities between the q-generalized relative entropies and the q-renormalized
entropies in Equations (24) and (28) guarantee that the evolution of the q-generalized
relative entropies as complexity measures in the range of period doublings and chaotic
band mergings of a ∈ [a1, ã1] at a unique q = q∗ value conforms with the behaviour of the
entropy-based measure of type-II in Figure 1. Such behaviour of the complexity function
is similar to the behaviour of complexity in coffee automaton (or to experiment of coffee
with milk). It was discussed by defining a “complextropy” measure that first increases and
then decreases in closed thermodynamic systems, in contrast to usual Shannon entropy
(which increases monotonically) [39]. Similar to the model, in the range of a1 < ac < ã1,
the q∗-generalized relative entropy represents the most organized spatial pattern at the
chaos threshold where a = ac due to the relations roughly Kq∗ = −∆S̃q∗ where ∆S̃q∗ is
the general definition of the q-renormalized entropy. q-relative entropy is an evaluation
of the change in entropy relative to a reference state chosen. For the transition between
the reference equilibrium state and the other arbitrary state, one can numerically localize
the unique q∗ value as the one for which the Gibbsian equalities hold. We show in the
bottom of Figure 3 that the q∗ values are the same for both Bregman and Csiszar forms of
the q-renormalized entropies for an evolution in the control parameter space of the logistic
map, satisfying the Gibbsian equalities as the necessary condition of self organization. In
other words, renormalization enables us to equate mean energies of the states at a unique q∗
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value in a manner that the evolution of the reference state is isolated after renormalization.
For the evolution of the q∗ values in the range of the control parameter a ∈ [0, 2], the
q∗ values decrease from q∗ = 1 to q∗ = 0 where the maximum value indicates the most
ordered state (period-1) and the minimum value points out the most disordered (strongly
chaotic) state. The process offers a method by means of q-renormalized entropies on how
to measure the level of self organization in spatially-extended fractals. On the other hand,
the Shannon entropy leads to an increase since it is proportional to the logarithm of the
accessible volume in phase space, however a decrease in entropy is necessary to link a
connection to the self-organization.

In Figure 4, we zoom to the chaos threshold in order to localize unique q∗ value at
the critical point. It is intriguing that this unique q∗ value happens to coincide with the
qsensitivity value [28,29] (i.e., q∗ ' 0.2445). At this point, it is worth noting that this kind of
varying q parameter tendency with the control parameter of the map is very reminiscent
to the behaviour of the running q parameter with the energy scale detected in recent
cosmological studies [40,41].

0 0.5 1 1.5 2
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~~

Figure 2. A representation of the pitchfork bifurcations in periodic regime (black) and the band
merging structures in chaotic regime (blue, green and red) of the logistic map. The black dashed lines
represent the bifurcation points (an) and the band merging points (ãn).
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Figure 3. For the evolution of the logistic map in the control parameter space, from top to bottom:
Bifurcation diagram, Lyapunov exponent, Bregman form of q-renormalized entropy, Csiszar form of
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5. Conclusions

It is well known that the second law of thermodynamic (∆S ≥ 0) is only valid for
an isolated evolution of an arbitrary state to an equilibrium state. This inequality can be
derived by substituting Gibbs equality in the definition of Kullback-Leibler relative entropy,
which implies that the equilibrium state shows the greatest disorder (or chaoticity) as
compared to any arbitrary state as long as the mean energy is the same. The mean energy
equality through the evolution is a consequence of Gibbs equality, that points out a strong
limitation of the law. Hence, it is violated for the evolution of open systems in which the
exchange of energy/matter with its surroundings is allowed. The problem was solved by
Klimantovich via the S-theorem where ’S’ stands for criterion of self-organization. The
theorem is based on renormalization of the equilibrium distribution in a manner that Gibbs
equality holds. Mean energy in terms of a predefined effective Hamiltonian function for an
open system is constant through the evolution after renormalization. The renormalization
on the distribution leads a renormalized entropy as a new complexity measure to compare
distinct states, i.e., a renormalized equilibrium state and an arbitrary one. For an isolated
evolution from the renormalized equilibrium state to an arbitrary one, a decrease in the
renormalized entropy indicates an increase in the relative degree of order in the system
that indicates the creation of complicated structures in the phase space as first suggested
by Haken in the context of self-organization [13]. Although the renormalized entropy is a
suitable measure to explain highly organised structures that emerge in phase space, we
have shown that its expression (∆S̃ = −KL ≤ 0) is valid for the systems which evaluate
from canonical equilibrium state. Moreover, choosing a reference state in exponential form
spontaneously reveals the predefined effective Hamiltonian function (He f f = ln p0) by
Klimontovich directly from the calculations. We have also shown that such kind of relation
between q-renormalized entropy and q-generalized relative entropies (in the form of both
Bregmann and Csiszar) can be written by introducing new q-Gibbsian equalities as the
necessary conditions of self-organisation. The crucial point for the new equalities is that
they are only valid for a unique q = q∗ value for the transition between two states and
lead to the same mean energy equality that is 〈E〉q∗

p0 = 〈E〉p. To achieve this result, it is
necessary to apply a transformation on the reference state for the Bregman form of the
generalized relative entropy taking p0 = pord and on the other state for the Csiszar form
of the generalized relative entropy taking p0 = pnor as the stationary distributions of the
(2− q)-exponential and q-exponential forms, respectively. To verify the results numerically,
we have used the control parameter evolution of the logistic map. As the control parameter
changes in a ∈ [0, 2], we have shown a fall in the q-renormalized entropies through period
doublings in the range of a ∈ [0, ac] and an increase in the q-renormalized entropies
through chaotic band mergings in the range of a ∈ [ac, 2]. Such kind of behaviour of
the q-renormalized entropy is compatible with the SDL complexity of type-III and type-I
as the signs of emerging and destroying highly organized structures in the phase space,
respectively [5]. We have also looked closely at the chaos threshold of the map, and
interestingly we discovered that the unique q∗ value is q∗ ' 0.2445, which coincides with
the value of qsensitivity given in the literature [28,29].

Finally, it would be good to note that these considerations could be applied to some
specific class of nonextensive systems, such as black holes and other gravitational systems.
An interesting future work addressing a possible discussion of our scheme for such systems
would be highly welcomed.
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