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Abstract: Set Intersection Cardinality (SI-CA) computes the intersection cardinality of two parties’
sets, which has many important and practical applications such as data mining and data analysis.
However, in the face of big data sets, it is difficult for two parties to execute the SI-CA protocol
repeatedly. In order to reduce the execution pressure, a Private Set Intersection Cardinality (PSI-CA)
protocol based on a quantum homomorphic encryption scheme for the Toffoli gate is proposed. Two
parties encode their private sets into two quantum sequences and encrypt their sequences by way of
a quantum homomorphic encryption scheme. After receiving the encrypted results, the semi-honest
third party (TP) can determine the equality of two quantum sequences with the Toffoli gate and
decrypted keys. The simulation of the quantum homomorphic encryption scheme for the Toffoli gate
on two quantum bits is given by the IBM Quantum Experience platform. The simulation results show
that the scheme can also realize the corresponding function on two quantum sequences.

Keywords: private set intersection cardinality; Pauli gates; Toffoli gate; quantum homomorphic
encryption

1. Introduction

Secure multiparty computation (SMC) [1–3] is a crucial cryptographic primitive which
fits the following description: Assume that there is a function typically specified by a map
F : ({0, 1}∗)n → ({0, 1}∗)n and a set of n parties, P = {P1, ..., Pn}, who want to compute
values of this function with respect to their private data. Each party Pi has its input
xi ∈ {0, 1}∗ and output yi ∈ {0, 1}∗, following correspondence yi = F (xi). Our target is
to ensure that all parties in a subset C ⊂ P receive correct outputs from others while no
information related to the input can be accessed. SMC has raised widespread concerns and
has wide applications in electronic voting, cloud computing, online auction, etc.

A typical SMC [4] application is Private Set Intersection (PSI), which also known
as Private Matching (PM). Specifically, PSI permits two parties, P1 and P2, who respec-
tively have a private set x1 and x2. Without disclosing any information that does not
belong to this intersection, they seek to find the intersection x1 ∩ x2. There have been
many applications of PSI, such as privacy-preserving data mining [5], data outsourcing on
cloud [6], location-based privacy-preserving sharing [7], testing of fully-sequenced human
genomes [8], proximity testing [9], and other online services [10].

Due to the extensive and important applications, there have been many suggestions
for PSI protocols. In 2004, Freedman et al. [4] first gave the definition of PSI and presented
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several PSI protocols by using homomorphic encryption and balanced hashing. Homo-
morphic encryption was first proposed by Rivest et al. in 1978 [11]. A new symmetric
homomorphic functional encryption using modular multiplications over a hidden ring
was proposed [12]. Then, some PSI protocols were proposed based on classical cryptog-
raphy [13–16]. However, PSI reveals too much private information and it cannot meet
the higher privacy requirements in some scenarios. In this case, Private Set Intersection
Cardinality (PSI-CA) [17] was introduced, which can securely determine the size of set
intersection and can be used to generate association rules. In [18], a PSI-CA protocol was
the first to achieve security in the standard model under the Quadratic Residuosity QR
assumption with linear complexities, which can hide the size of the client’s private set.
In [19], a PSI-CA protocol was proposed, which had linear computation and communi-
cation complexities and was the most efficient PSI-CA protocol in previously proposed
PSI-CA protocols [18,19]. PSI-CA only outputs the intersection cardinality and does not
reveal the specific content of the intersection. The security of classical PSI-CA protocols is
based on the computational complexity assumptions, which are vulnerable to attack by the
quantum algorithms [20–22].

On the other hand, scholars began to seek a quantum approach to solving the PSI-CA
problem. In [23], Shi et al. presented two quantum protocols to solve the Oblivious Set-
member Decision problem. These protocols can be used to privately compute multi-party set
intersection and union in the quantum domain. In [24], Shi et al. informally gave a definition
of PSI first. Then they presented a quantum scheme for PSI based on n encoded states, n
quantum operators, and n von Neumann measurements. In [25], Arpita gave a two-party
protocol for computing set intersection securely in the quantum domain in a rational setting,
where the players are trying to maximize their utilities. However, PSI reveals too much private
personal information in some scenarios. In order to prevent revealing the specific content, Shi
et al. proposed some quantum protocols of PSI-CA [26–28]. PSI-CA and PSU-CA enable two
parties, each with a private set, to jointly compute the cardinality of their intersection or union
without disclosing any private information about their respective sets. These protocols are
useful in social networks and for privacy-preserving data mining.

In this paper, following the idea in [26], we propose a PSI-CA protocol based on a
quantum homomorphic encryption scheme for the Toffoli gate. With the help of a semi-
honest TP, two parties can use this protocol to privately obtain the number of all their
private sets’ common elements. When the amount of data is large, two parties, which
do not have strong quantum computing capabilities, only prepare and encrypt quantum
single-particle states. The role of semi-honest TP is to execute the protocol loyally and
record all the results of its intermediate computations. However, the TP cannot learn
anything about the private information. In our protocol, the semi-honest third party (TP)
can be used to perform Toffoli gate and decryption operations. It will keep a record of all its
intermediate results and might try to infer the private inputs from the record. Our protocol
is simpler and easier to implement.

This paper is organized as follows: we introduce some correlative preliminaries in
Section 2; we propose a quantum PSI-CA protocol in Section 3; in Section 4, we analyze the
correctness and security of our protocol and describe the implementation of our protocols
on the IBM Quantum Experience platform. A brief discussion and the concluding summary
are given in Section 5.

2. Preliminary
2.1. Pauli Gates

Some operators are introduced first. Four single-qubit operators I, X, Y, Z are shown
as follows:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(1)

The circuit symbols for the four single-qubit gates I, X, Y, Z are shown in Figure 1.
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I

X

Y

Z

Figure 1. The circuit symbols for the four single-qubit gates, I, X, Y, Z.

2.2. Quantum Toffoli Gate

The quantum Toffoli gate (called the T gate) is seen as an important component in the
theory of quantum computation. The unitary transform matrix of the T gate is as follows:

T =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2)

The T gate has three input bits and three output bits. For a three-qubit quantum
system, |a〉|b〉|c〉, the quantum T gate will act as:

T|a〉|b〉|c〉 = |a〉|b〉|c⊕ (a · b)〉. (3)

The circuit symbol for the T gate is shown in Figure 2.

a a

b b

c abc

Figure 2. The circuit symbol for the T gate.

2.3. Information-Theoretic Security

In [23], the conception of mixed states is introduced and a quantum information-
theoretic security criterion for a quantum protocol is given as follows:

The protocol is informationally secure for every input state ϕin if the output state ϕout
is the totally mixed state. The relation of the input state ϕin and the output state ϕout is
as follows:

ϕout = ∑
k

1
22n Uk ϕin(Uk)

† =
1
2n I2n , (4)

where ϕin is the density operator of all possible n-qubit input states and Uk are the corre-
sponding unitary operations applied on input state.

3. Quantum Private Computation Protocol for Set Intersection Cardinality

We use the definition of PSI-CA [19]. Suppose that there are two parties, Alice and
Bob. They input a private set SA = {a1, a2, ..., an1} and SB = {b1, b2, ..., bn2}, respectively. S
is a complete set {x1, x2, ..., xn} and SA, SB ⊂ S. After running the PSI-CA protocol with
a help of the semi-honest third party, Calvin, Alice and Bob output the cardinality of the
intersection of their private sets, i.e., |SA ∩ SB|, without leaking any information about their
sets. The quantum scheme for PSI-CA is described as follows:
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(1) Alice and Bob each prepare a (n + n′)-photon sequence, denoted by SqA =

(
∣∣ψA

1
〉
,
∣∣ψA

2
〉
, ...,

∣∣∣ψA
n+n′

〉
), SqB = (

∣∣ψB
1
〉∣∣ψB

2
〉
, ...,

∣∣∣ψB
n+n′

〉
). The first n particles of SqA, SqB

are prepared according to Alice’s and Bob’s private sets SA, SB:{ ∣∣ψA
i
〉
= |1〉, i f xi ∈ SA∣∣ψA

i
〉
= |0〉, i f xi /∈ SA

{ ∣∣ψB
i
〉
= |1〉, i f xi ∈ SB∣∣ψB

i
〉
= |0〉, i f xi /∈ SB

(5)

The last n′ particles of SqA, SqB are dummy photons, which are randomly chosen from
{|0〉, |1〉}.

(2) Alice and Bob work together to find the number of
∣∣ψA

i
〉

=
∣∣ψB

i
〉

= |1〉
(i = n + 1, ..., n + n

′
), denoted by N

′
CA ,which means how many bits are equal and equal to

|1〉 in the last n′ particles of SqA, SqB.
They also permutate SqA, SqB using the same permutation regulation π. The new se-

quences are denoted by Sq
′
A = (

∣∣∣ψA′
1

〉
,
∣∣∣ψA′

2

〉
, ...,
∣∣∣ψA′

n+n′

〉
), Sq

′
B = (

∣∣∣ψB′
1

〉
,
∣∣∣ψB′

2

〉
, ...,
∣∣∣ψB′

n+n′

〉
).

Each of them chooses a sequence, LA = (lA
1 , lA

2 , lA
3 , lA

4 , ..., lA
2(n+n′)−1, lA

2(n+n′))

(LB = (lB
1 , lB

2 , lB
3 , lB

4 , ..., lB
2(n+n′)−1, lB

2(n+n′))), where lB
2k−1, lB

2k are randomly chosen from {0, 1}.
Then, she(he) uses the Quantum One-time Pad algorithm (QOTP) [25] to encrypt the kth
particle of Sq

′
A(Sq

′
B) and get ZlA

2k−1 XlA
2k
∣∣ψA

k
〉
(ZlB

2k−1 XlB
2k
∣∣ψB

k
〉
). The new particles sequence

is denoted by S
′′
A = (ZlA

1 XlA
2

∣∣∣ψA′
1

〉
, ..., Z

lA
2(n+n′)−1 X

lA
2(n+n′)

∣∣∣ψA′
n+n′

〉
)(S

′′
B = (ZlB

1 XlB
2

∣∣∣ψB′
1

〉
, ...,

Z
lB
2(n+n′)−1 X

lB
2(n+n′)

∣∣∣ψB′
n+n′

〉
)).

Alice (Bob) also inserts some checking particles, which are randomly chosen from
{|0〉, |1〉, |+〉, |−〉}, into S

′′
A(S

′′
B) and sends the new sequence S

′′′
A(S

′′′
B ) to the third party Calvin.

After that, Alice(Bob) transmits the insert positions PoA(PoB) and LA(LB) to Calvin
using the quantum secure direct communication (QSDC) protocol. QSDC is one of the most
important branches of quantum communication and it directly transmits secret messages.

(3) After receiving S
′′′
A, S

′′′
B , Alice, Bob, and Calvin perform the eavesdropping check

using the insert positions PoA, PoB and the measuring bases of checking particles. If
the error rate exceeds the threshold they preset, they abort the scheme. Otherwise,
they discard the measured photons in S

′′′
A, S

′′′
B and Calvin gets two sequences S

′′
A =

(ZlA
1 XlA

2

∣∣∣ψA′
1

〉
, ..., Z

lA
2(n+n′)−1 X

lA
2(n+n′)

∣∣∣ψ(n + n′)A′
〉
), S

′′
B = (ZlB

1 XlB
2

∣∣∣ψB′
1

〉
, ..., Z

lB
2(n+n′)−1 X

lB
2(n+n′)∣∣∣ψ(n + n′)B′

〉
).

Calvin prepares a sequence SC = (
∣∣ψC

1
〉
,
∣∣ψC

2
〉
, ...,

∣∣∣ψC
n+n′

〉
), where

∣∣ψC
i
〉

is randomly
chosen from {|0〉, |1〉}.

(4) Calvin executes some operations on the ith quantum bits of S
′′
A, S

′′
B, SC and gets:∣∣∣ψA′′

i

〉
1

∣∣∣ψB′′
i

〉
2

∣∣∣ψC′
i

〉
3

= (CNOT
lB
2i

1,3 ⊗ I2)(I1 ⊗ CNOT
lA
2i

2,3)(ZlA
2i−1 XlA

2i ⊗ ZlB
2i−1 XlB

2i ⊗ XlA
2i lB

2i )T(ZlA
2i−1 XlA

2i ⊗ ZlB
2i−1 XlB

2i ⊗ I)
∣∣∣ψA′

i

〉
1

∣∣∣ψB′
i

〉
2

∣∣ψC
i
〉

3

=
∣∣∣ψA′

i

〉
1

∣∣∣ψB′
i

〉
2

∣∣∣ψC
i ⊕ ψA′

i ψB′
i

〉
3
.

(6)

Calvin measures
∣∣∣ψC′

i

〉
using the X basis and compares the measurement result with∣∣ψC

i
〉
. He also counts how many quantum bits

∣∣∣ψC′
i

〉
,
∣∣ψC

i
〉

are different and the number
is denoted by NCA′′ . It is obvious that the intersection cardinality of SA, SB is equal to
NCA′′ − NCA′ .

We have to point out that if Alice and Bob apply a NOT gate on each particle of
SqA, SqB in step(1), the private set union cardinality of SA, SB is equal to |S| − (NCA′′ −
NCA′) using the PSI-CA quantum protocol.
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4. Analysis and Comparison
4.1. Correctness Analysis

In this section, we illustrate the correctness of our protocol. Figure 3 describes the
circuit U used to privately apply the T gate on

∣∣ψA
i
〉∣∣ψB

i
〉∣∣ψC

i
〉

, where lA
2i−1, lA

2i , lB
2i−1, lB

2i ∈
{0, 1}. For i = 1, 2, ..., n + n′, Alice, Bob and Calvin can use the circuit U to privately
calculate T

∣∣ψA
i
〉∣∣ψB

i
〉∣∣ψC

i
〉
. If
∣∣ψC

i
〉

is reversed, they can determine
∣∣ψA

k
〉
=
∣∣ψB

k
〉
= |1〉.

A
il 12 

A
il2

B
il 12 

B
il2

A
i

B
i

C
i

Z Z X

X

XZ

X

Z X

Figure 3. The circuit U used to privately calculate T
∣∣ψA

k
〉∣∣ψB

k
〉∣∣ψC

k
〉
.

According to the circuit U, it can be verified that

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z0X0 ⊗ Z0X0 ⊗ X0)T(Z0X0 ⊗ Z0X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉
.

(7)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z0X0 ⊗ Z1X0 ⊗ X0)T(Z0X0 ⊗ Z1X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉
.

(8)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z1X0 ⊗ Z0X0 ⊗ X0)T(Z1X0 ⊗ Z0X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (9)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z1X0 ⊗ Z1X0 ⊗ X0)T(Z1X0 ⊗ Z1X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉
.

(10)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z0X1 ⊗ Z0X0 ⊗ X0)T(Z0X1 ⊗ Z0X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣∣ψB′

i

〉∣∣ψC
i
〉 (11)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z0X1 ⊗ Z1X0 ⊗ X0)T(Z0X1 ⊗ Z1X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (12)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z1X1 ⊗ Z0X0 ⊗ X0)T(Z1X1 ⊗ Z0X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (13)

(CNOT0
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z1X1 ⊗ Z1X0 ⊗ X0)T(Z1X1 ⊗ Z1X0 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (14)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z0X0 ⊗ Z0X1 ⊗ X0)T(Z0X0 ⊗ Z0X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (15)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z0X0 ⊗ Z1X1 ⊗ X0)T(Z0X0 ⊗ Z1X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (16)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z1X0 ⊗ Z0X1 ⊗ X0)T(Z1X0 ⊗ Z0X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (17)
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(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT0

2,3)(Z1X0 ⊗ Z1X1 ⊗ X0)T(Z1X0 ⊗ Z1X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (18)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z0X1 ⊗ Z0X1 ⊗ X1)T(Z0X1 ⊗ Z0X1 ⊗ I)
∣∣ψA

i
〉∣∣∣ψB′

i

〉∣∣ψC
i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (19)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z0X1 ⊗ Z1X1 ⊗ X1)T(Z0X1 ⊗ Z1X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (20)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z1X1 ⊗ Z0X1 ⊗ X1)T(Z1X1 ⊗ Z0X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= −T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉 (21)

(CNOT1
1,3 ⊗ I2)(I1 ⊗ CNOT1

2,3)(Z1X1 ⊗ Z1X1 ⊗ X1)T(Z1X1 ⊗ Z1X1 ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉
.

(22)

According to Equations (7)–(22), we can obtain

(CNOT
lB
2i

1,3 ⊗ I2)(I1 ⊗ CNOT
lA
2i

2,3)(ZlA
2i−1 XlA

2i ⊗ ZlB
2i−1 XlB

2i ⊗ XlA
2i lB

2i )T(ZlA
2i−1 XlA

2i ⊗ ZlB
2i−1 XlB

2i ⊗ I)
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

= T
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i
〉

=
∣∣ψA

i
〉∣∣ψB

i
〉∣∣ψC

i ⊕
(
ψA

i · ψB
i
)〉

.

(23)

Calvin measures
∣∣∣ψC

i ⊕
(

ψA
′

i · ψB
′

i

)〉
. If
∣∣∣ψC

i ⊕
(

ψA
′

i · ψB
′

i

)〉
is different from

∣∣ψC
i
〉
, we

can know
∣∣∣ψA

′

i

〉
=
∣∣∣ψB

′

i

〉
= |1〉. Alice and Bob have a common element in SA, SB.

Suppose that the private set of Alice is SA = {2, 4} and the private set of Bob is
SB = {3, 4} where a complete set is S = {2, 3, 4}. The photon sequence of Alice is
SqA = {|1〉, |0〉, |1〉} and the photon sequence of Bob is SqB = {|0〉, |1〉, |1〉}. Calvin pre-
pares a sequence SqC = {|1〉, |0〉, |0〉}. Alice chooses a sequence LA = (0, 1, 1, 1, 1, 0)
and Bob chooses a sequence LB = (0, 0, 1, 1, 0, 1). Alice, Bob and Calvin perform some
operations on {|1〉, |0〉, |1〉}, {|0〉, |1〉, |1〉}, {|1〉, |0〉, |0〉} using LA, LB and get (CNOT0

1,3 ⊗
I2)(I1⊗CNOT1

2,3)(Z0X1⊗ Z0X0⊗X0)T(Z0X1⊗ Z0X0⊗ I)|1〉|0〉|1〉, (CNOT1
1,3⊗ I2)(I1⊗

CNOT1
2,3)(Z1X1⊗Z1X1⊗X1)T(Z1X1⊗Z1X1⊗ I)|0〉|1〉|0〉,(CNOT1

1,3⊗ I2)(I1⊗CNOT0
2,3)

(Z1X0 ⊗ Z0X1 ⊗ X0)T(Z1X0 ⊗ Z0X1 ⊗ I)|1〉|1〉|0〉. Then they can get T(|1〉|0〉|1〉), T(|0〉
|1〉|0〉), T(|1〉|1〉|0〉) and the new photon sequence of Calvin is |1⊕ (1 · 0)〉|0⊕ (0 · 1)〉
|0⊕ (1 · 1)〉. Only the third photon in Calvin’s new sequence |0⊕ (1 · 1)〉 = |1〉} is different
from the third photon of his original sequence |0〉}. So we can get that Alice and Bob have
only one common element in SA, SB.

4.2. Implementation of Quantum PSI-CA Protocols on IBM Quantum Experience Platform

Now, we move forward through a similar approach to experimentally realize our
PSI-CA protocol on the IBM Quantum Experience platform. Let us say the two parties,
Alice and Bob, have a private set SA and SB, respectively, where S is a complete set and
SA, SB ∈ S. For the encoding procedure, SA and SB are encoded into two (n + n′)-particle
sequences. Alice, Bob, and Calvin can privately apply the T gate on their corresponding
position particles using the IBM Quantum Experience platform. The measuring results of
Calvin’s particle are related to the PSI-CA of SA, SB.

The circuit on the IBM Quantum Experience platform for privately computing for
eight cases of T|ψA0〉|ψB0〉|ψC0〉 and the experiment results with 1024 shots for eight cases
on the quantum circuit are shown in Figures 4–11. In the experiment results’ figures, the
x-axis represents 16 measurement results, and each of them includes the T|ψA0〉|ψB0〉|ψC0〉
and the information of lA0, lA1, lB0, lB1.The y-axis represents the frequency of each mea-
surement result. The first three binary bits in the x-axis correspond to the output of
T|ψA0〉|ψB0〉|ψC0〉 and the following four binary bits in the x-axis are lA0, lA1, lB0, lB2.
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In Figure 4, |ψA0〉 = |1〉, |ψB0〉 = |1〉, |ψC0〉 = |1〉. Take the measurement results
“1101010”, for example, in Figure 4, the last four bits 1010 represent the measurement results
of lA0, lA1, lB0, lB1, which are used to control the gates in the quantum circuit. The first three
bits 110 represent the new measurement result of |ψA0〉, |ψB0〉, |ψC0〉 after operating the
gates in the quantum circuit. From the frequency of each measurement result in Figure 4, it
can be verified that no matter what the lA0, lA1, lB0, lB1 is, the circuit will act as a T gate on
|ψA0〉 = |1〉, |ψB0〉 = |1〉, |ψC0〉 = |1〉. Using the same analysis method, we can reach the
same conclusion from the frequency of each measurement result in Figures 5–11.

Figure 4. The circuit used to privately calculate T|1〉|1〉|1〉 and the experiment results.

Figure 5. The circuit used to privately calculate T|0〉|0〉|0〉 and the experiment results.

Figure 6. The circuit used to privately calculate T|1〉|1〉|0〉 and the experiment results.

Figure 7. The circuit used to privately calculate T|1〉|0〉|1〉 and the experiment results.

Figure 8. The circuit used to privately calculate T|0〉|1〉|1〉 and the experiment results.
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Figure 9. The circuit used to privately calculate T|0〉|1〉|0〉 and the experiment results.

Figure 10. The circuit used to privately calculate T|0〉|0〉|1〉 and the experiment results.

Figure 11. The circuit used to privately calculate T|1〉|0〉|0〉 and the experiment results.

4.3. Security Analysis

In this section, we verify the security of our quantum PSI-CA scheme by analyzing an
external outside attack and a participant attack, respectively.

4.3.1. Outside Attacks

In terms of outside attacks, this protocol allows for outside eavesdroppers to attack
the quantum channel and obtain Alice and Bob’s particle sequences in step (2). Checking
particles are introduced to to defend against it. With several checking particles inserted,
the security checking procedure in Step (3) can detect the intercept–resend attack, the
measurement–resend attack, the entanglement–measure attack, and the denial-of-service
(DOS) attack with a nonzero probability.

In addition to this naive attack, there are some special forms of attack such as the
delay photon Trojan horse attack, the invisible photon eavesdropping (IPE) Trojan horse
attack, and the photon-number-splitting (PNS) attack, which are also available to outside
eavesdroppers. In response to these attacks, we use several defenses. To defeat the
delay-photon Trojan horse attack, we can use a photon-number splitter. To defeat the IPE
attack, we can insert filters in front of their devices to filter out the photon signal with
an illegitimate wavelength. To defeat the PNS attack, we can use the technology of beam
splitters to split the sampling signals and judge whether these received photons are single
photons or multiple photons. Therefore, the outside attacks are invalid to our protocol.

4.3.2. Participant Attack

Gao et al. proposed the term “participant attack” in Ref. [29], which has attracted
much attention in the cryptanalysis of quantum cryptography. It underlines that malicious
user attacks are typically more potent and should be given more consideration. We analyze
the possibility that Alice, Bob, and Calvin could use participant attacks to learn knowledge
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about the private binary strings in our protocol. Since both Alice and Bob’s sequences are
sent to Calvin after processing, it is most critical to consider Calvin’s behavior.

In our protocol, Calvin only gets two-particle sequences S
′′
A, S

′′
B. Calvin applies the T

gate on each sequence in step (3).
According to the definition of information-theoretic security given in Section 2.3, we

can know that the output state of step (2) in our protocol can be described as follows:

1
22 ∑

lA
2i−1,lA

2i∈{0,1}
ZlA

2i−1 XlA
2i
∣∣ψA

i
〉
(ZlA

2i−1 XlA
2i )†

= 1
4 Z0X0( 1

2 |0〉〈0|+
1
2 |1〉〈1|)(Z0X0)† + 1

4 Z0X1( 1
2 |0〉〈0|+

1
2 |1〉〈1|)(Z0X1)†

+ 1
4 Z1X0( 1

2 |0〉〈0|+
1
2 |1〉〈1|)(Z1X0)† + 1

4 Z1X1( 1
2 |0〉〈0|+

1
2 |1〉〈1|)(Z1X1)†

= 1
2

[
1 0
0 1

]
(24)

1
22 ∑

lB
2i−1,lB

2i∈{0,1}
ZlB

2i−1 XlB
2i
∣∣ψB

i
〉
(ZlB

2i−1 XlB
2i )†

= 1
4 Z0X0( 1

2 |0〉〈0|+
1
2 |1〉〈1|)(Z0X0)† + 1

4 Z0X1( 1
2 |0〉〈0|+

1
2 |1〉〈1|)(Z0X1)†

+ 1
4 Z1X0( 1

2 |0〉〈0|+
1
2 |1〉〈1|)(Z1X0)† + 1

4 Z1X1( 1
2 |0〉〈0|+

1
2 |1〉〈1|)(Z1X1)†

= 1
2

[
1 0
0 1.

]
(25)

These calculations indicate that all the states obtained by Calvin are just totally mixed
states. So Calvin cannot learn Alice’s and Bob’s private binary strings from the particle
sequences he obtained.

4.4. Comparison

The related quantum PSI-CA protocols in [27,28] required entangled states, other
complicated oracle operators and measurements in high dimensional Hilbert space, hence
it is more feasible with the current technologies than those proposed with entangled states.
Compared with some recently proposed protocols [27,28], our proposed quantum PSI-
CA protocol has the following advantages. First, it only needs to take single photons as
quantum resources and to apply single operators and measurements. Obviously, it is more
feasible to prepare these resources and implement these operators and measurements.
Second, our new protocol is more robust and can easily use the fault tolerant technologies
due to single photons. Therefore, our new quantum protocol for PSI-CA is more practical
and feasible compared with the existing protocols.

5. Discussion and Conclusions

In summary, we give a novel quantum solution for PSI-CA. With the help of the
quantum operators X, Z, and T, Calvin can help Alice and Bob obtain the PSI-CA results
of their private sets after performing. Moreover, we provide a theoretical correctness
study and use the Qiskit package to verify the scheme on the IBM Quantum Experience
platform by way of a simulation experiment. In the end, we provide a security analysis
of our protocol, which demonstrates that our protocol can resist various outside attacks,
such as the disturbance attack, the Trojan horse attack, the intercept–resend attack, the
entanglement-and-measure attack, and the man-in-the-middle attack. Additionally, it can
also overcome the problem of information leakage with acceptable efficiency. Furthermore,
we hope to extend our protocol for a generic case such as an n-qubit Toffoli gate and we
also hope that our methods can provide some new ideas to solve more secure multi-party
computations in the future.
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