
Citation: Shekaramiz, M.; Moon, T.K.

Compressive Sensing via Variational

Bayesian Inference under Two Widely

Used Priors: Modeling, Comparison

and Discussion. Entropy 2023, 25, 511.

https://doi.org/10.3390/e25030511

Academic Editor: Carlos M.

Travieso-González

Received: 30 January 2023

Revised: 6 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Compressive Sensing via Variational Bayesian Inference under
Two Widely Used Priors: Modeling, Comparison
and Discussion
Mohammad Shekaramiz 1,* and Todd K. Moon 2

1 Machine Learning & Drone Lab, Electrical and Computer Engineering Program, Engineering Department,
Utah Valley University, 800 West University Parkway, Orem, UT 84058, USA

2 Electrical and Computer Engineering Department, Utah State University, 4120 Old Main Hill,
Logan, UT 84322, USA

* Correspondence: mshekaramiz@uvu.edu; Tel.: +1-801-863-4665

Abstract: Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition
and reconstruction of sparse or compressible signals. In order to account for the sparsity of the
underlying signal of interest, it is common to use sparsifying priors such as Bernoulli–Gaussian-
inverse Gamma (BGiG) and Gaussian-inverse Gamma (GiG) priors on the components of the signal.
With the introduction of variational Bayesian inference, the sparse Bayesian learning (SBL) methods
for solving the inverse problem of compressive sensing have received significant interest as the SBL
methods become more efficient in terms of execution time. In this paper, we consider the sparse
signal recovery problem using compressive sensing and the variational Bayesian (VB) inference
framework. More specifically, we consider two widely used Bayesian models of BGiG and GiG for
modeling the underlying sparse signal for this problem. Although these two models have been widely
used for sparse recovery problems under various signal structures, the question of which model
can outperform the other for sparse signal recovery under no specific structure has yet to be fully
addressed under the VB inference setting. Here, we study these two models specifically under VB
inference in detail, provide some motivating examples regarding the issues in signal reconstruction
that may occur under each model, perform comparisons and provide suggestions on how to improve
the performance of each model.

Keywords: compressive sensing; signal recovery; variational Bayes inference; sparse Bayesian
learning; prior modeling; hyperparameters; graphical Bayesian representation

1. Introduction

Compressive sensing (CS) involves efficient signal acquisition and reconstruction
techniques in a sub-Nyquist sampling sense. The CS framework can capture the vital
information of the underlying signal via a small number of measurements while retaining
the ability to reconstruct the signal. CS operates under the assumption that the signal
is compressible or sparse, and the number and location of dominating components are
unknown in most cases [1–3]. Compressibility or sparsity means that the signal has
few dominating elements under some proper basis. CS has been used in a variety of
applications such as the single-pixel camera, missing pixels and inpainting removal of
images, biomedical such as heart rate estimation, internet of things (IoT), geostatistical data
analysis, seismic tomography, communications such as blind multi-narrowband signals
sampling and recovery, the direction of arrival (DoA) estimation, spectrum sharing of radar
and communication signals, wireless networks and many more [4–27]. In the linear CS
framework, the problem is posed as

y = Axs + e, (1)

Entropy 2023, 25, 511. https://doi.org/10.3390/e25030511 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1176-3284
https://orcid.org/0000-0001-7124-0384
https://doi.org/10.3390/e25030511
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030511?type=check_update&version=1

Entropy 2023, 25, 511 2 of 32

where y ∈ RM contains the measurements, xs ∈ RN is the sparse signal of interest, e is
the noise representing either the measurement noise or the insignificant coefficients of xs
and, generally, M�N [1,2]. The measurement matrix can be defined as A=ΦΨ, where
Φ is the sensing design matrix and Ψ is a proper sparsifying basis. There exist various
approaches to solve for xs in (1) including greedy-based, convex-based, thresholding-based
and sparse Bayesian learning (SBL) algorithms [27–64]. Typically, the performance of CS
reconstruction is determined in terms of the mean-squared reconstruction error. In this
paper, we are also interested in the more demanding requirements of the probability of
detection and the false alarm of the nonzero components. This is of more interest to CS
applications such as blind multinarrowband signals, spectrum sharing RADAR, etc. [11–15].

The focus of this paper is on sparse Bayesian learning (SBL) for the CS problem.
Bayesian learning models are flexible in incorporating prior knowledge of the characteristics
of the underlying signal into the model. Bayesian learning also provides a distribution of
the hidden variables, which is more informative than the point estimate approaches. A prior
favoring the sparsity or compressibility in xs can be represented in the SBL framework
via Gaussian-inverse Gamma (GiG), Laplace-inverse Gamma (LiG), Bernoulli–Gaussian-
inverse Gamma (BGiG), often referred to as spike-and-slab prior, etc. [27,46–59]. The infer-
ence on parameters and hidden variables in these models is usually made using Markov
chain Monte Carlo (MCMC) and variational Bayes (VB) [27,45–52]. In this paper, we focus
on the two most commonly used SBL prior models for solving the inverse problem of com-
pressive sensing: Bernoulli–Gaussian-inverse Gamma (BGiG) prior and Gaussian-inverse
Gamma (GiG). These models have been widely used, along with some additional priors,
for sparse recovery of signals or images with block-sparsity/clustering patterns, sparse
signals with correlated coefficients or other structured patterns [26,27,48–51,62,63].

We use VB inference to estimate the variables and parameters of the SBL model. VB is
preferred over MCMC because MCMC is computationally expensive, though it can numer-
ically approximate exact posterior distributions with a sufficient amount of computation.
The convergence diagnostic of MCMC requires additional work, such as measuring the
potential scale reduction factor (PSRF) for all the hidden variables and parameters of the
model or monitoring their trace plots [45,50–52,65]. In contrast, VB inference can lead to a
reasonable approximation of the exact posteriors, using less computation than MCMC and
less effort to monitor the convergence [45,51,66,67]. In this paper, we present the derivation
of the update rules of the parameters and variables using VB inference for both the BGiG
and GiG models. (Portions of this derivation have been previously presented in [68,69]).
Although these prior models have been widely used in various applications of compressive
sensing, the study of the overall performance of these models under VB inference has yet
to be thoroughly investigated. The preference for one model over the other becomes crucial
when dealing with moderate or low sampling ratios, which we discuss in this paper. Here,
we study the issues associated with each model via some motivational examples. Pre-
/postprocessing approaches will then be discussed to tackle the issues. Finally, the overall
performance of BGiG and GiG is compared.

The remainder of this work is organized as follows. In Section 2, we present a brief
background on VB inference. We study Bernoulli–Gaussian-inverse Gamma modeling for
CS using VB in Section 3. Some motivational examples are provided to show the issues
with this approach. Section 4 represents Gaussian-inverse Gamma modeling, the associated
update rules using VB inference and a motivational example of the issue that may occur
using this approach. In Section 5, we study the improvement of the performances of the
models after some pre-/postprocessing along with simulation results and comparisons.
Section 6 concludes this work.

2. Variational Bayesian Inference

Variational Bayes (VB) is an effective approach to approximate intractable integrals
that may arise in Bayesian inference. The main idea behind variational methods is to
use a family of distributions over the latent variables with their own variational param-

Entropy 2023, 25, 511 3 of 32

eters. VB is a fast alternative to sampling methods such as Markov chain Monte Carlo
(MCMC) and Sequential Monte Carlo (SMC) for performing approximate Bayesian infer-
ence [70,71]. For a probabilistic model with unknown parameters θ and hidden variables x,
the posterior distribution of the unknowns, given a set of observations y, can be written
as p(x, θ|y) = p(x, θ, y)/p(y). Finding the exact posterior in closed form to perform the
inference would be a challenge, as the marginal distribution p(y)=

∫
p(y, x, θ)dxdθ is often

intractable. As an efficient approximation method for such inference problems, VB provides
an analytical approximation to the posterior p(x, θ|y). VB approximates the joint density
p(x, θ|y) via a variational distribution Qx,θ(x, θ), i.e., p(x, θ|y)≈ Qx,θ(x, θ). VB assumes
that the distribution Q can be fully factorized with respect to the unknown parameters and
hidden variables, i.e.,

Qx,θ(x, θ) = qx(x)qθ(θ)

=
I

∏
i=1

qx(xi)
J

∏
j=1

qθ(θj),

where I and J are the number of unknown parameters and hidden variables, respectively.
This independence assumption in VB further simplifies the search for a closed-form so-
lution to the approximation of the actual posterior. We desire to select the variational
distribution Q∗x,θ(x, θ) as close as possible to p(x, θ|y), where the closeness metric for distri-
bution Qx,θ(x, θ) is formulated as minimizing the Kullback–Leibler (KL) divergence of the
approximation Qx,θ(x, θ) and the true posterior p(x, θ|y) as

Q?
x,θ(x, θ) = arg min

Qx,θ(x,θ)
KL
(
Qx,θ(x, θ)||p(x, θ|y)

)
= arg min

Qx,θ(x,θ)

∫
Qx,θ(x, θ) log

Qx,θ(x, θ)

p(x, θ|y) dxdθ.

The quantity log p(y) can be written as log p(y)= log{
∫

p(x, θ, y)dxdθ}. Then, defining

F
(
Qx,θ(x, θ)

)
=
∫

Qx,θ(x, θ) log
p(x, θ, y)
Qx,θ(x, θ)

dxdθ.

It is straightforward to show that

log p(y) = F
(
Qx,θ(x, θ)

)
+ KL

(
Qx,θ(x, θ), p(x, θ|y)

)
.

Since (by Jensen’s inequality) KL(Qx,θ(x, θ) ≥ 0, log(p(y) ≥ F(Qx,θ(x, θ). Since log(p(y) is
constant with respect to Qx,θ , minimizing the KL-divergence between the actual posterior
distribution and the variational distribution is equivalent to maximizing the lower bound
F(·) [66,67]. Since the term p(y) in p(x, θ|y) = p(x, θ, y)p(y) does not involve the varia-
tional distribution Qx,θ(x, θ), this term can be ignored when maximizing F(·). The lower
bound F(·) on the model log-marginal likelihood can be iteratively optimized until the
convergence by the following update rules [66,72].
VB-E step:

q[t+1]
x (x)∝exp {E

q[t]θ

[log p(x, y|θ)]} (2)

VB-M step:

q[t+1]
θ (θ)∝ p(θ) exp {E

q[t+1]
x

[log p(x, y|θ)]} (3)

This results in an iterative algorithm analogous to the expectation-maximization (EM)
approach.

Entropy 2023, 25, 511 4 of 32

3. Bernoulli–Gaussian-Inverse Gamma Modeling and SBL(BGiG) Algorithm

In the inverse problem of CS defined in (1), the goal is to recover the sparse vector xs.
In the Bernoulli–Gaussian-inverse Gamma model, the sparse solution is defined as

xs =(s ◦ x), (4)

where s is a binary support vector indicating the non-zero locations in the solution, x
represents values of the solution and ◦ is Hadamard (element-by-element) product [47].
We refer to the algorithm associated with this Bayesian modeling based on VB inference as
SBL(BGiG). SBL using VB inference for the clustered pattern of sparse signals has already
been investigated in the recent literature [45,50,51,58]. In this paper, however, we intend to
focus on the ordinary SBL using VB inference modeling without promoting any structure on
the supports other than sparsity itself. We show that when the sampling ratio is moderate
or low (with respect to the sparsity level), the reconstruction performance becomes sensitive
to selecting the support-related hyperparameters.

We define a set of priors as follows [47,68,69]. We model the elements of vector s as

sn∼Bernoulli(γn), γn∼Beta(α0, β0), ∀n, (5)

where α0 and β0 are the support-related hyperparameters. Setting α0 and β0 to small values
and with α0� β0 encourages s to be sparse on average. The prior on the solution value
vector is defined as

x∼N (0, τ−1 IN), τ∼Gamma(a0, b0). (6)

Here, τ is the precision value. Finally, the prior on the noise is

e ∼ N (0, ε−1 IM), ε ∼ Gamma(θ0, θ1), (7)

where θ0 and θ1 are set to small positive values.

3.1. Update Rules of SBL(BGiG) Using VB Inference

According to the VB algorithm defined in (2) and (3), the update rule of the variables
and parameters of the BGiG model can be simplified as follows [68]. The details of these
derivations appear in Appendix A.1.

• Update rule for the support vector s

q(sn|−) ∼ Bernoulli(
1

1 + cnκn
), ∀n = 1, . . . , N,

where conditioning on − denotes conditioning on all relevant variables and observations.
Therefore,

s̃n =
1

1+cnκn
, ∀n = 1, . . . , N, (8)

where

cn := eψ(β1,n)−ψ(α1,n),

κn := e
1
2 ε̃
(
‖an‖2

2(x̃n
2+σ2

x̃n)−2x̃naT
n ỹ−n

)
,

ỹ−n
m :=ym−

N

∑
l 6=n

aml s̃l x̃l .

(9)

Here, x̃ :=< x >qx , ψ is the digamma function (the logarithmic derivative of the gamma
function), and ỹ−n =[ỹ−n

1 , . . . , ỹ−n
M]T .

• Update rule for the solution value matrix x

q(x|−) ∼ N (x̃, Σx̃),

Entropy 2023, 25, 511 5 of 32

where

Σx̃ =
(

τ̃ IN + ε̃Φ̃
)−1

and x̃ = ε̃Σx̃diag(s̃)ATy, (10)

and where diag(s) denotes a diagonal matrix with the components of s on its main diagonal,
and

Φ̃ :=
[
(AT A) ◦

(
s̃s̃T+diag(s̃ ◦ (1− s̃))

)]
. (11)

• Update rule for γn

q(γn|−) ∼ Beta(α1,n, β1,n), ∀n = 1, . . . , N.

Therefore,
γ̃n =

α1,n

α1,n + β1,n
, ∀n = 1, . . . , N, (12)

where
α1,n := α0 + s̃n and β1,n := β0 + 1− s̃n. (13)

• Update rule for the solution precision τ

q(τ|−) ∼ Gamma
(
a0 +

N
2

, b0 +
1
2
(‖x̃‖2

2 + Tr (Σx̃))
)
,

where Σx̃ =diag (σ2
x̃1

, . . . , σ2
x̃N
) and Tr(A) is the trace of matrix A. Thus

τ̃ =
a0 +

N
2

b0 +
1
2
(
‖x̃‖2

2 + ∑N
n=1 σ2

x̃n

) . (14)

• Update rule for the noise precision ε

q(ε|−) ∼ Gamma(θ0 +
M
2

, θ1 +
1
2

Ψ̃),

where
Ψ̃ :=

(
yTy− 2(x̃ ◦ s̃)T ATy + Tr

(
(x̃x̃T + Σx̃)Φ̃

))
. (15)

This yields to the following update rule for the precision of the noise component

ε̃ =
θ0 +

M
2

θ1 +
1
2 Ψ̃

. (16)

The stopping criterion of the algorithm is made based on the log-marginalized likeli-
hood. We define the stopping condition in terms of L := log {p(y|s, ε, τ)}. The marginalized
likelihood can be written as

p(y|s, ε, τ)=
∫

p(y|x, s, ε)p(x|τ IN)dx.

After some simplification, the negative log-likelihood is proportional to

−L ∝ log |Σ−1
0 |+ yTΣ0y,

where
Σ0=(ε̃−1 IM+τ̃−1 AS̃2 AT)−1 (17)

and S̃ :=diag{s̃}. Therefore, the stopping condition can be made as

∆L[t]
n := |∆L[t]|/|L[t−1]| ≤ T0, (18)

for some small value of threshold T0 [50], where

L[t] := log Σ[t]
0 − yTΣ[t]

0 y. (19)

Entropy 2023, 25, 511 6 of 32

and

∆L[t] : = L[t] − L[t−1]

= log |
Σ[t]

0

Σ[t−1]
0

|+ yT(Σ[t−1]
0 − Σ[t]

0)y.
(20)

Figure 1 illustrates the graphical Bayesian representation of the BGiG model, which is
an undirected graph. The shaded node y shows the observations (measurements), and the
small solid nodes represent the hyperparameters. Each unshaded node denotes a random
variable (or a group of random variables).

Figure 1. Graphical Bayesian representation of the BGiG model.

The flowchart representation of the algorithm is shown in Figure 2 motivated by
the graphical approach in [47,73]. According to the pseudocode in Algorithm 1 and
the flowchart in Figure 2, first, the hyperparameters of the model are set. The support-
related hyperparameters α0 and β0 are suggested to be set to small values with α0�β0 to
encourage s to be sparse on the average. The hyperparameters a0 and b0 on the precision
of the solution-value vector are also initialized and suggested to be small not to bias the
estimation when the measurements are incorporated. The hyperparameters θ0 and θ1 on
the precision of the noise are recommended to be of order 10−6 for high SNRs. For moderate
and low SNRs, higher values are recommended. In the next step, all the main variables of
the model are drawn i.i.d. from their corresponding prior distributions defined in (5)–(7).
Then, the stopping condition is computed based on the log-marginalized likelihood in
(19). In the main loop, all of the main variables of the model are updated via the expected
values obtained from the VB inference. Specifically, we first update the support vector
and the solution value components; then, the precisions of the solution vector and the
noise are updated. Finally, the stopping criterion is computed through the measure of
the log-marginalized likelihood of the observations. The pseudocode of the algorithm is
provided below.

Entropy 2023, 25, 511 7 of 32

Figure 2. Flowchart of SBL(BGiG) algorithm.

Algorithm 1: SBL(BGiG) Algorithm
x̂s = x̃ ◦ s̃[
x̃, s̃
]
= SBL-BGiG(Y, A)

Set the hyperparameters, i.e., (α0, β0), (a0, b0), and (θ0, θ1)
% Variables Initialization
Draw s̃ and γ̃ from (5)
Draw x̃ and τ̃ from (6)
Draw ε̃ from (7)
t = 1 % Iterator
Compute L[t] from (19) and set L[0] = 0
% Main Loop for Estimations

While |L
[t]−L[t−1] |
|L[t−1] | ≥ T0. For example T0 = 10−6.

Compute s̃n from (8), ∀n = 1, . . . , N % (Support vector component)
Compute Σx̃ and x̃ from (10) % (Solution-value matrix component)
Compute α1,n and β1,n from (13) ∀n = 1, . . . , N % (Parameters of the hyperprior γ)
t Compute τ̃ from (14) % (Precision on the solution)
Compute ε̃ from (16) % (Precision on the noise)
Compute L[t] from (19) and then t = t + 1

End While

3.2. Issues with SBL(BGiG)

In this section, we show that the estimated solution using SBL(BGiG) algorithm is
sensitive to support-related hyperparameters, i.e., α0 and β0 in (5). We provide an example
under three cases to demonstrate this issue. We generated a random scenario, where
the true solution xs ∈ R100 has the sparsity level of k = 25, that is, the true x (or s) has
k active elements. The active elements of s were drawn randomly. The nonzeros of xs,
corresponding to the active locations of s, were drawn from N (0, σ2

x), with σ2
x = 1. Each

entry of the sensing matrix A was drawn i.i.d. from the Gaussian distributionN (0, 1), then
normalized, so each column has the Euclidian norm of 1. The elements of measurement
noise were drawn from N (0, σ2) with SNR = 25 dB, where SNR := 20 log10(σx/σ).
The hyperparameters of τ and ε were set to a0=b0=10−3 and θ0= θ1=10−6, respectively.
In Cases 1–3, we set the pair (α0, β0) with low emphasis on the prior (0.01, 0.99), moderate
emphasis (0.1, 0.9) and fairly high emphasis (1.4, 2), respectively.

From the top to the bottom row of Figures 3–5, we illustrate the estimated results
with the number of measurements set to 80, 60 and 40 (that is, the sample ratio λ is 0.80,
0.60, and 0.40), respectively. In each row of Figures 3–5 from left to right, we show the
comparison between the measurements y and the computed measurements based on
ŷ=A(s̃◦x̃), the true signal xs = s ◦ x and the reconstructed signal x̂s = s̃ ◦ x̃, the true support

Entropy 2023, 25, 511 8 of 32

vector s and the estimated support vector s̃ and the evolution of the estimated supports
with respect to the iterations in the SBL(BGiG) algorithm.

0 20 40 60 80

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

20 40 60 80 100 120

Iteration

20

40

60

80

100

0 20 40 60

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

50 100 150 200 250 300

Iteration

20

40

60

80

100

0 10 20 30 40

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

50 100 150 200 250 300

Iteration

20

40

60

80

100

Figure 3. Case 1: (α0, β0) = (0.01, 0.99). From top to bottom, the rows show the results of SBL(BGiG)
for the sampling ratio λ = 0.80, 0.60, 0.40, respectively.

0 20 40 60 80

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

20 40 60 80 100

Iteration

20

40

60

80

100

0 20 40 60

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

50 100 150

Iteration

20

40

60

80

100

0 10 20 30 40

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

50 100 150 200 250 300

Iteration

20

40

60

80

100

Figure 4. Case 2: (α0, β0) = (0.1, 0.9). From top to bottom, the rows show the results of SBL(BGiG)
for the sampling ratio λ = 0.80, 0.60, 0.40, respectively.

According to Figure 3, the setting for (α0, β0) in Case 1 fails to provide perfect results
even for high sampling ratios. Similarly, Figure 4 shows that the settings for (α0, β0) in
Case 2 do not provide encouraging results even for high sampling ratios. Specifically, it
turns out that Case 1 and Case 2 provide sparse solutions for the sampling ratios within
the range [0, 1], where λ = 1 means M = N.

According to Figure 5, setting (α0, β0) to (1.4, 2) seems to be a reasonable choice for
high sampling ratios (over 70%), while it is not a good choice for the lower sampling ratios.
This issue can be seen in the supports plot in the 2nd and 3rd row of Figure 5. One may
argue that the estimated support vector ŝ can be filtered via some threshold value (such as
0.3) for λ=0.6. However, thresholding will adversely affect the detection rate, and setting

Entropy 2023, 25, 511 9 of 32

the threshold depends on our understanding of the signal characteristics. Furthermore, we
should account for the effect of the filtered supports since their corresponding estimated
components in x̂s contribute to fitting the model to the measurements.

In Table 1, we summarize the performance of the generated example for Cases 1–3,
where PD, PFA and NMSE denote the detection rate and false alarm rate in support recovery
and the normalized mean-squared error between the true and the estimated sparse signal.
This also shows that the algorithm fails to provide reasonable results for the sampling ratio
of λ = 0.4.

0 20 40 60 80

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

10 20 30 40

Iteration

20

40

60

80

100

0 20 40 60

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

100 200 300 400

Iteration

20

40

60

80

100

0 10 20 30 40

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100

-3

-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

100 200 300 400 500

Iteration

20

40

60

80

100

Figure 5. Case 3: (α0, β0) = (1.4, 2). From top to bottom, the rows show the results of SBL(BGiG) for
the sampling ratio λ = 0.80, 0.60, 0.40, respectively.

These experiments suggest that there is no fixed setting for (α0, β0) capable of per-
forming reasonably well for all sampling ratios and thus, selecting the hyperparameters
(α0, β0) should be made with care.

Table 1. Performance results of SBL(BGiG) for Cases 1–3.

Case 1: (α0 = 0.01, β0 = 0.99) Case 2: (α0 = 0.1, β0 = 0.9) Case 3: (α0 = 1.4, β0 = 2.0)

λ PD PFA
NMSE

(dB) λ PD PFA
NMSE

(dB) λ PD PFA
NMSE

(dB)

0.8 0.20 0 −2.367 0.8 0.24 0 −3.109 0.8 0.72 0 −16.264

0.6 0.08 0 −1.326 0.6 0.16 0 −2.197 0.6 1 0 −5.226

0.4 0.08 0 −1.181 0.4 0.08 0 −1.181 0.4 1 1 −0.088

Continuing this examination, in Figures 6–8, we illustrate the negative log-marginalized
likelihood, the noise precision estimation and the estimated precision on the generated
true solution in Cases 1–3, respectively. The horizontal axis shows the iterations until the
stopping rule is met.

Entropy 2023, 25, 511 10 of 32

0 100 200 300 400

Iteration

-100

-80

-60

-40

-20

0

20

40
Log-Marginalized Likelihood

=0.4

=0.6

=0.8

0 100 200 300 400

Iteration

0

0.2

0.4

0.6

0.8

1

1.2
Estimate of Solution Precision ()

=0.4

=0.6

=0.8

0 100 200 300 400

Iteration

0

2

4

6

8

10

12
Estimate of Noise Precision ()

=0.4

=0.6

=0.8

Figure 6. Case 1: Performance evaluation of SBL(BGiG).

0 100 200 300 400

Iteration

-100

-80

-60

-40

-20

0

20

40
Log-Marginalized Likelihood

=0.4

=0.6

=0.8

0 100 200 300 400

Iteration

0

0.2

0.4

0.6

0.8

1

1.2
Estimate of Solution Precision ()

=0.4

=0.6

=0.8

0 100 200 300 400

Iteration

0

2

4

6

8

10

12
Estimate of Noise Precision ()

=0.4

=0.6

=0.8

Figure 7. Case 2: Performance evaluation of SBL(BGiG).

0 100 200 300 400 500 600

Iteration

-300

-250

-200

-150

-100

-50

0

50
Log-Marginalized Likelihood

=0.4

=0.6

=0.8

0 100 200 300 400 500 600

Iteration

0

20

40

60

80
Estimate of Solution Precision ()

=0.4

=0.6

=0.8

0 100 200 300 400 500 600

Iteration

0

50

100

150

200

250
Estimate of Noise Precision ()

=0.4

=0.6

=0.8

Figure 8. Case 3: Performance evaluation of SBL(BGiG).

As expected, as the sampling ratio increases, the algorithm requires fewer iterations to
meet its stopping condition. This can be seen on the negative log-marginalized likelihood
plots in Figures 6–8. In these experiments, the actual precision of the solution components
was set to τ=1, and the actual noise precision was set to ε=316.2.

For Cases 1 and 2, according to Figures 6–8, the estimated precisions on both the noise
and solution components were far off from the actual ones even for λ=0.8. Thus, it resulted
in poor performance in signal recovery for Cases 1 and 2 (see Figures 3 and 4).

For Case 3, the estimated precisions on the noise and the solution components were
acceptable for λ=0.8 but far off from the actual ones for lower sampling ratios (see Figure 8).
The main issue of the failures can be found in the update rule of the support learning vector
s̃ defined in (8). It is important to balance between the terms cn and κn, where cn imposes
the effect of hyper-prior on s accompanied by the current estimate of sn. In contrast, κn
imposes the contribution of the current estimates of noise precision, solution and other
supports in fitting the model to the measurements. Therefore, if we impose a substantial
weight on the sparsity via cn, the solution tends to neglect the effect of κn and vice versa.
This is why we had sparse (with poor performance) in Cases 1 and 2 for all the represented
sampling ratios and nonsparse (with poor performance) for moderate and lower sampling
ratios in Case 3. These results suggest that the algorithm and its update rules are sensitive
to the selection of hyperparameters on the Gamma prior on the support vector s. The main
issue can be seen in (9), where the selection of the hyperparameters α0 and β0 resulted in a
large or small value in cn due to the digamma function.

4. Gaussian-Inverse Gamma Modeling and SBL(GiG) Algorithm

In this section, we consider the Gaussian-inverse Gamma (GiG) model. In this model,
each component xn of the solution is modeled by zero-mean Gaussian with the precision

Entropy 2023, 25, 511 11 of 32

τn. The main difference between this model and the model defined in Section 3 is that the
GiG model does not have the support vector s; instead, different precisions are considered
on the components of the solution vector xs in (1). A simpler version of GiG can also be
used by defining the same precision τ for all the components of xs.

Here, we rather use different precisions to make the GiG model have almost the same
complexity as the BGiG model in terms of the parameters to be learned. The set of priors in
this model is defined as follows.

xn∼N (0, τ−1
n), τn∼Gamma(a0, b0), ∀n, (21)

where a0 and b0 denote the shape and rate of the Gamma distribution, respectively. The en-
tries of the noise component e are defined the same as (7), i.e.,

e ∼ N (0, ε−1 IM), ε ∼ Gamma(θ0, θ1),

where θ0 and θ1 are set to small positive values. The estimation of the parameters in this
model is carried out using VB inference, as discussed below.

4.1. Update Rules of SBL(GiG) Using VB Inference

According to the VB algorithm described in (2) and (3), the update rule of the vari-
ables and parameters of the GiG model can be simplified as follows. The details of these
derivations appear in Appendix A.2.

• Update rule for the precision τn on xn using VB

q(τn)∼Gamma
(
a0 +

1
2

, b0 +
1
2
(x̃2

n + σ2
x̃n)
)
, ∀n = 1, . . . , N.

Thus,

τ̃n =
a0 +

1
2

b0 +
1
2 (x̃2

n + σ2
x̃n
)

, ∀n= 1, 2, . . . , N. (22)

• Update rule for the noise precision ε using VB

q(ε)∼Gamma(θ0 +
M
2

, b0 +
1
2

Ψ̃)

which yields

ε̃ =
θ0 +

M
2

θ1 +
1
2 Ψ̃

, (23)

where
Ψ̃ := yTy− 2x̃T ATy + Tr

(
(x̃x̃T + Σx̃)AT A

)
. (24)

• Update rule for the solution vector x using VB

qx(x) ∼ N (x̃, Σx̃), (25)

where
Σx̃ := (T̃ + ε̃AT A)−1 and x̃ := ε̃Σx̃ ATy, (26)

and
T̃ := diag{[τ̃1, . . . , τ̃N]}.

We set the stopping rule of the algorithm using the marginalized likelihood (evidence)
defined as

p(y|ε, τ) =
∫

p(y|x, ε, τ)p(x|τ)dx.

After simplification and for the comparison purposes of L[t] with L[t−1] in the updating
process, we have

L[t] ∝ log |Σ[t]
0 | − yTΣ[t]

0 y,

Entropy 2023, 25, 511 12 of 32

where Σ0 is defined as
Σ0 :=(ε̃−1 IM+T̃−1 AAT)−1. (27)

Therefore, similar to SBL(BGiG), the stopping condition can be made as

∆L[t]
n := |∆L[t]|/|L[t−1]| ≤ T0, (28)

for some small value of threshold T0.
Figure 9 illustrates the graphical Bayesian representation of the GiG model, which

is an undirected graph. Similar to Figure 1, the shaded node y shows the observations,
the small solid nodes represent the hyperparameters and the unshaded nodes denote the
random variables.

Figure 9. Graphical Bayesian representation of the GiG model.

The flowchart representation of the algorithm is shown in Figure 10. According to the
pseudocode in Algorithm 2 and the flowchart in Figure 10, first, the hyperparameters of the
model are set. The hyperparameters a0 and b0 on the precision of the solution-value vector
are initialized and suggested to be small. Similar to SBL(BGiG), the hyperparameters θ0 and
θ1 on the precision of the noise are recommended to be of order 10−6 for high SNRs. All the
main variables of the model are drawn i.i.d. from their corresponding prior distributions
defined in (22)–(26). Then, the stopping condition is computed based on (28). In the main
loop, all the main variables of the model are updated via the expected values obtained from
the VB inference through (22)–(26). The pseudocode of the algorithm is provided below.

Entropy 2023, 25, 511 13 of 32

Figure 10. Flowchart of SBL(GiG) algorithm.

Algorithm 2: SBL(GiG) Algorithm
x̃s = SBL-GiG(Y, A)
Set the hyperparameters, i.e., (a0, b0) and (θ0, θ1)
% Variables’ Initialization
Draw x̃s and ø̃ from (21)
Draw ε̃ from (7)
t = 1 % Iterator
Compute L̃[t] from (28) and (27), and set L̃[0] = 0
% Main Loop for Estimations
t = 1
While |L

[t]−L[t−1] |
|L[t−1] | ≥ T0. For example T0 = 10−6.

Compute Σx̃ and x̃s from (26) % (Solution-value matrix component)
Compute T̃ from (22) % (Precisions on the solution)
Compute ε̃ from (23) % (Precision on the noise)
Compute L[t] from (28) and (27), and then t = t + 1

End While

4.2. Issues with SBL(GiG)

An issue with the SBL(GiG) algorithm is that the solution becomes nonsparse since
it does not incorporate a binary vector s (hard-thresholding or soft-thresholding if the
expected value is used) as we had in SBL(BGiG). This may have no major effect on the
signal reconstruction for high sampling ratios. However, the nonsparseness effect appears
in low sampling ratios by misleading the algorithm to wrongly activate many components
in the estimated signal yet providing a good fit of the model to the measurements. Here, we
use the same example as we made for the SBL(BGiG) model with the same sensing matrix
A, measurement vector y and noise e. Notice that in the SBL(BGiG) model, we considered
the same precision τ on all the components of the solution value vector x support vector
s. In contrast, the SBL(GiG) model does not have the support learning vector; instead, we
assume that each component of the solution vector has different precision τn. It turns out
that SBL(GiG) is not very sensitive to the selection of the hyperparameters as the SBL(BGiG).
Thus, here, we show the results for one case scenario for the hyperparameters. We use the
same setting for the parameters of ε in the hyper prior as before, i.e., θ0= θ1=10−6, and the
same parameters for all the precisions τn of the solution component, i.e., a0 = b0 = 10−3.
In Figures 11 and 12, we illustrate the results after applying the SBL(GiG) algorithm.
In Figure 11, from left to right, we show the results for sampling ratios of λ =0.8, 0.6,
and 0.40, respectively. The first row shows the comparison of y with ŷ=Ax̃s, the second row

Entropy 2023, 25, 511 14 of 32

shows the true solution xs and the estimated solution x̃s, and the third row demonstrates
the estimated precisions on the solution components. In Figure 12, we demonstrate the
negative log-marginalized likelihood comparison and the estimated noise precision against
the true noise precision for the sampling ratios of λ = 0.8, 0.6 and 0.4.

0 20 40 60 80

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

-3

-2

-1

0

1

2

0 20 40 60 80 100

-3

-2

-1

0

1

2

20 40 60 80 100

-2

-1

0

1

2

Figure 11. From left to right, we show the results for sampling ratios of λ =0.8, 0.6 and 0.40,
respectively. The first row shows the comparison of y with ŷ=Ax̃s, the second row shows the true
solution xs and the estimated solution x̃s, and the third row demonstrates the estimated precisions
on the solution components.

0 500 1000 1500 2000

Iteration

-400

-200

0

200

400

600
Log-Marginalized Likelihood

0 500 1000 1500 2000

Iteration

0

2

4

6

8

10

12

14
10

4 Estimate of Noise Precision

Figure 12. The behavior of negative marginalized log-likelihood and the precision on the noise using
SBL(GiG) for the sampling ratios of 0.4, 0.6 and 0.80.

From the results shown in Figures 11 and 12, we observe that the recovered signal
tends to become nonsparse. This effect is illustrated in the second row of Figure 11. This can
also be observed in the precision estimations of the solution components. More specifically,
the true nonzero components in our simulations were drawn from a zero-mean Gaussian
with the precision of τn =1. Thus, the ideal precision estimation would be within the two
classes of values of 1 and infinity or very large values. However, the estimated results
in our simulation do not show such a classification. As the sampling ratio decreases,

Entropy 2023, 25, 511 15 of 32

the solution estimate has poor performance, due not only to the reduction in the number of
measurements but also the nonsparseness behavior.

5. Preprocessing versus Postprocessing and Simulations

In this section, we show that in order to improve the performance of Bernoulli–
Gaussian-inverse Gamma modeling using the SBL(BGiG) algorithm, we need to perform a
preprocessing step. The results in Section 4 suggest one can perform some postprocessing
for the SBL(GiG) algorithm to improve the reconstruction performance. Below, we provide
more details for each of these algorithms.

5.1. Pre-Processing for the SBL(BGiG) Algorithm

Based on the observations made on the performance of SBL(BGiG) in Section 3.2, we
showed that the pair of hyperparameters (α0,β0) should be selected with care. In other
words, obtaining good performance with this algorithm needs some preprocessing to
assess an appropriate setting for the parameters. For a more rigorous study, here, we
perform a grid search on the hyperparameters (α0, β0) to see whether we can find some
common pattern in selecting these parameters for all sampling ratios. The grid search runs
the algorithm for different values of α0 and β0 with the search range of [0.1, 2] with the
resolution of 0.1. For each (α0, β0) within this range, we ran 200 random trials and then
averaged the results. The settings of these trials are represented in Table 2.

Table 2. Settings for preprocessing analysis and simulations on SBL(BGiG).

α0 β0 a0 b0 θ0 θ1 Sparsity γ N

[0.1, 2] [0.1, 2] 10−3 10−3 10−6 10−6 25 (5) 100

s τ x xs M ε e A y

(5) (6) (6) xs = x ◦ s 5 : N 316 (7) [A]mn ∼ N (0, 1) Axs + e

We generated a random scenario, where the true solution xs ∈R100 has the sparsity
level of k=25. The active elements of s were drawn randomly. The nonzeros of xs were
drawn from N (0, σ2

x), with σ2
x = 1. Each entry of the sensing matrix A was drawn i.i.d.

from the Gaussian distribution N (0, 1), then normalized. The elements of measurement
noise were drawn from N (0, σ2) with SNR = 25 dB. The results were examined to see
what values of (α0, β0) provided the highest performance in the detection rate vs. and false
alarm rate. The simulation was executed for a range of sampling ratios in the range [0.05, 1]
with the step size of 0.05. The results are demonstrated in Figure 13. In this figure, we also
provide the results of performing a random Sobol search for (α0, β0). A Sobol sequence is a
low discrepancy quasirandom sequence. The two right plots in Figure 13 show the results
for the best setting of (α0, β0).

0 0.2 0.4 0.6 0.8 1

M/N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
y
p
e
rp

a
ra

m
e
te

rs
 t
u
n
in

g

Grid search

0
*

0
*

0 0.2 0.4 0.6 0.8 1
M/N

0

0.5

1

1.5

2

H
y
p
e
rp

a
ra

m
e
te

rs
 t
u
n
in

g

Random Sobol search

0
*

0
*

Figure 13. Cont.

Entropy 2023, 25, 511 16 of 32

0 0.2 0.4 0.6 0.8 1
M/N

0

0.2

0.4

0.6

0.8

1
 Grid search-based tuned hyperparameters

P
D

P
FA

P
D

-P
FA

0 0.2 0.4 0.6 0.8 1
M/N

0

0.2

0.4

0.6

0.8

1
Sobol search-based tuned hyperparameters

P
D

P
FA

P
D

-P
FA

Figure 13. Performance evaluation of SBL(BGiG) using grid and random Sobol search.

It should be clear from Figure 13 that there is no fixed setting for these parameters
in order to get the best performance for all sampling ratios. The two plots on the right of
Figure 13 illustrate the performance based on the best values of these hyperparameters,
which provided the best performance, i.e., tuned hyperparameters. We also examined
the grid search results for the top 10 highest performances for each sampling ratio, where
performance is in terms of PD− PFA and the normalized mean-squared error (NMSE).
In Figure 14a, we demonstrate the top 10 highest performances based on NMSE and
PD− PFA for different sampling ratios. In Figure 14b,c, we illustrate the values of (α0, β0),
which led to the performances shown in Figure 14a for different sampling ratios. Figure 15
details the top 10 values of (α0, β0) vs. sampling ratio.

0 0.2 0.4 0.6 0.8 1

M/N

-20

-15

-10

-5

0

N
M

S
E

 (
d

B
)

0

0.2

0.4

0.6

0.8

1

P
D

-P
F

A

(a)

(b)
(c)

Figure 14. (a) Overall performance (b) Top 10 (α0, β0) with lowest NMSE (c) Top 10 (α0, β0) with
highest PD−PFA.

Entropy 2023, 25, 511 17 of 32

(a) (b)

Figure 15. (a) Top 10 (α0, β0) with lowest NMSE vs. sampling ratio (b) Top 10 (α0, β0) with highest
PD−PFA vs. sampling ratio.

According to Figure 14b,c, there is no specific pattern for these hyperparameters.
Figure 15 also shows that hyperparameters need to be carefully selected.

5.2. Post-Processing for the SBL(GiG) Algorithm

Since the SBL(GiG) algorithm does not include the binary support vector s, as SBL(BGiG)
possesses, the resulting solution tends to become nonsparse. This leads to a high detection
rate for the location of active supports and a high false alarm rate. Thus, as the sampling
ratio decreases, there is a high chance that this algorithm overwhelms the locations of the
true solution. Therefore, SBL(GiG) requires some postprocessing to discard the components
with low amplitudes. This problem becomes of great importance for applications where
detecting the correct nonzero components is more crucial than the magnitudes of the
nonzeros in the signal. This effect can be seen in Figure 16b. The curves with solid lines in
this plot show the detection and false alarm rate in support recovery and the difference
between the rates. This issue can be resolved by some postprocessing such as data-driven
threshold tuning. That way, the amplitudes in the reconstructed signal with lower values
than the threshold can be discarded. For this purpose, we set up 200 random trials, the same
way as the one explained for SBL(BGiG), and then evaluate the performance in terms of
NMSE by varying the threshold. Figure 16b shows the averaged results of 200 trials.
The settings of these trials are represented in Table 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Threshold

-20

-15

-10

-5

0

5

N
M

S
E

 (
d

B
)

M/N =5

M/N =10

M/N =15

M/N =20

M/N =25

M/N =30

M/N =35

M/N =40

M/N =45

M/N =50

M/N =55

M/N =60

M/N =65

M/N =70

M/N =75

M/N =80

M/N =85

M/N =90

M/N =95

M/N =100

0 0.2 0.4 0.6 0.8 1

M/N

0

0.2

0.4

0.6

0.8

1

P
D

 (Threshold = 0)

P
FA

 (Threshold = 0)

P
D

 - P
FA

 (Threshold = 0)

P
D

 (Threshold = 0.25)

P
FA

 (Threshold = 0.25)

P
D

 - P
FA

 (Threshold = 0.25)

(a) (b)

Figure 16. Performance of SBL(GiG). (a) NMSE of SBL(GiG) vs. threshold. (b) Performance of
SBL(GiG) before and after postprocessing.

Entropy 2023, 25, 511 18 of 32

Table 3. Settings for preprocessing analysis and simulations on SBL(GiG).

a0 b0 θ0 θ1 Sparsity N

10−3 10−3 10−6 10−6 25 100

τn xs M e A y

(22) (25) 5 : N (23) [A]mn ∼
N (0, 1) Axs + e

In Figure 16a, we observe that the postprocessing does not benefit us so much in terms
of the reconstruction error for low and moderate sampling ratios. However, there is a
threshold of around 0.25, for which the postprocessing step reduced the reconstruction
error by approximately 3 dB. We set the threshold to 0.25 and ran 200 random trials by
applying SBL(GiG) and evaluating the performance based on the detection and false alarm
rate in support recovery. According to Figure 16b, the additional post-processing step
provides reasonable performance.

Finally, in Figure 17, we compare the performance of the SBL(BGiG) algorithm (with
performing the preprocessing step) with the SBL(GiG) algorithm (after performing post-
processing). We see that Bernoulli–Gaussian-inverse Gamma implemented via SBL(BGiG)
provides better performance for low and high sampling ratios. In contrast, Gaussian-inverse
Gamma modeling implemented via SBL(GiG) performs much better for the moderate sam-
pling ratios.

0 0.2 0.4 0.6 0.8 1

M/N

-20

-15

-10

-5

0

5

N
M

S
E

 (
d

B
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
D

-P
F

A

BGiG (NMSE)

GiG (NMSE)

BGiG (P
D

- P
FA

)

GiG (P
D

- P
FA

)

Figure 17. Performance of SBL(BGiG) and SBL(GiG) after preprocessing and postprocessing, respectively.

6. Conclusions

We investigated solving the inverse problem of compressive sensing using VB in-
ference for two sparse Bayesian models of Bernoulli–Gaussian-inverse Gamma (BGiG)
and Gaussian-inverse Gamma (GiG). The issues of each approach were discussed and the
performance between the two models was compared. Specifically, we showed the behavior
of these models and algorithms when the sampling ratio is low and moderate as well as
the importance of selecting the hyperparameters of BGiG model with care. We further
provided some intuition for performing additional pre/post-processing steps, depending
on the selected model for better performance.

Based on our study on the synthetic data and considering the overall performance of
both algorithms and the complexity in additional pre-/postprocessing, we observed that
for moderate sampling ratios, SBL(GiG) is performing better than SBL(BGiG) modeling
when using VB for sparse signals with no specific pattern in the supports. In contrast,
SBL(BGiG) provided better perfomance for low and high sampling ratios. Finally, a rigor-
ous comparison is required to study in the future under real-world scenarios and various
applications. The MATLAB codes for GiG and BGiG modeling are available at https:

https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling.git
https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling.git

Entropy 2023, 25, 511 19 of 32

//github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling.git, ac-
cessed on 15 December 2022.

Author Contributions: Methodology, M.S. and T.K.M.; Formal analysis, M.S. and T.K.M.; Investi-
gation, M.S.; Resources, M.S.; Writing—original draft, M.S.; Writing—review & editing, M.S. and
T.K.M.; Visualization, M.S.; Supervision, T.K.M. All authors have read and agreed to the published
version of the manuscript

Funding: This research received no external funding.

Data Availability Statement: https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-
BGiG-Modeling.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we provide details on deriving the update rules of the parameters and
variables for both models and the associated algorithms.

Appendix A.1. Bernoulli–Gaussian-Inverse-Gamma Modeling and the SBL(BGiG)

• Update rule for the precision τ of the solution value vector x

q(τ) ∝ p(τ; a0, b0)e(<log p(x|τ IN)>qx)

∝ τa0−1e−b0τe

(
<log

{
∏N

n=1 p(xn ;τ−1)
}
>qx

)
∝ τa0−1e−b0τe

{
<log {τ

N
2 e{−

τ
2 ‖x‖

2
2}}>qx

}
∝ τ(a0+

N
2)−1e−(b0+

1
2<‖x‖

2
2>qx)τ ,

where

< ‖x‖2
2 >qx=< xTx >qx= Tr(< xxT >qx) = ‖x̃‖2

2 +
N

∑
n=1

σ2
x̃n ,

and x̃ :=< x >qx . Therefore,

q(τ)∼Gamma
(
a0 +

N
2

, b0 +
1
2
(‖x̃‖2

2 +
N

∑
n=1

σ2
x̃n)
)
.

Finally, considering the point estimate on τ as the expected value of the Gamma
distribution in q(τ), the update rule for τ can be defined as

τ̃ =
a0 +

N
2

b0 +
1
2
(
‖x̃‖2

2 + ∑N
n=1 σ2

x̃n

) .

• Update rule for the noise precision ε

q(ε) ∝ p(ε; θ0, θ1)e
{
<log p(y|x,s,ε)>qxqs

}
∝ εθ0−1e−θ1εe

{
<log

{
ε

M
2 e

{
− 1

2 ε‖y−A(s◦x)‖22

}}
>qxqs

}
∝ ε(θ0+

M
2)−1e−(θ1+

1
2<‖y−A(s◦x)‖2

2>qxqs)ε,

https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling.git
https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling.git
https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling
https://github.com/MoShekaramiz/Compressive-Sensing-GiG-versus-BGiG-Modeling

Entropy 2023, 25, 511 20 of 32

where

< ‖y− A(s ◦ x)‖2
2 >qxqs =< ‖y− ASx)‖2

2 >qxqs

= yTy− 2 < xTSATy >qxqs + < xTSAT ASx >qxqs

= yTy− 2 < x >T
qx< S >qs ATy+ < xTSAT ASx >qxqs

= yTy− 2(x̃ ◦ s̃)T ATy+ < xT Msx >qxqs ,

where S = diag {s}, Ms := SAT AS, and

< xT Msx >qxqs = Tr (< xxT >qx< Ms >qs)

= Tr
(
(x̃x̃T + Σx̃) < Ms >qs

)
,

where Σx̃ = diag{σ2
x̃1

, . . . , σ2
˜xN
}, and

< Ms >s =< SAT AS >qs

=< (AT A) ◦ (ssT) >qs

= (AT A)◦ < (ssT) >qs

= (AT A) ◦
(

s̃s̃T + diag
(
s̃ ◦ (1− s̃)

))
.

Therefore,

< xT Msx >qxqs= Tr
(
(x̃x̃T + Σx̃)

(
(AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)})

))
.

As a result,

q(ε) ∼ Gamma
(
θ0 +

M
2

, θ1 +
1
2

Ψ̃
)
,

where

Ψ̃ :=< ‖y− A(s ◦ x)‖2
2) >qxqs

= yTy− 2(x̃ ◦ s̃)T ATy + Tr
(
(x̃x̃T + Σx̃)

(
(AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)})

))
.

Finally, the update rule for the precision of the noise can be written as

ε̃ =
θ0 +

M
2

θ1 +
1
2 Ψ̃

,

Remark A1. Notice that Tr (XTY) = ∑i,j(X ◦Y)ij = 1T(X ◦Y)1. Therefore,

Tr
(
(x̃x̃T + Σx̃)((AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)}))

)
= 1T((x̃x̃T + Σx̃) ◦ (AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)}))

)
1,

where 1 = [1, . . . , 1]T . Thus, Ψ̃ can be written as

Ψ̃ := yTy− 2(x̃ ◦ s̃)T ATy + 1T((x̃x̃T + Σx̃) ◦ (AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)}))
)
1.

• Update rule for γn

Entropy 2023, 25, 511 21 of 32

q(γn) ∝ p(γn; α0, β0)e(<log {p(x,s,y|θ)}>qxqs)

∝ γα0−1
n (1− γn)

β0−1e{<log {p(sn |γn)}>qxqs}

∝ γα0−1
n (1− γn)

β0−1e{<log {γsn
n (1−γn)1−sn}>qsn }

∝ γα0−1
n (1− γn)

β0−1e<sn>qsn log {γn}e(1−<sn>qsn) log {1−γn}

∝ γα0−1
n (1− γn)

β0−1γ
<sn>qsn
n (1− γn)

1−<sn>qsn

∝ γ
(α0+s̃n)−1
n (1− γn)

β0−s̃n .

Therefore,
qγn(γn) ∼ Beta(α1,n, β1,n), ∀n = 1, . . . , N,

where α1,n := α0 + s̃n and β1,n := β0 + 1− s̃n. Finally, the update rule for γn can be defined
as

γ̃n =
α1,n

α1,n + β1,n
.

• Update rule for the solution vector x

qx(x) ∝ e{<log {p(x,s,y|θ)}>qxqs}

∝ e{<log {p(x,s|θ)p(y|x,s,θ)}>qθ qs}

∝ e{<log {p(x|θ)}>qθ
}e{<log {p(y|x,s,θ)}>qθ qs}

∝ e{<log {p(x|τ)}>qτ }e{<log {p(y|x,s,ε)}>qεqs}.

To update the elements of x, we have

p(y|x, s, ε) ∝ e{−
1
2 ε‖y−A(s◦x)‖2

2}.

Therefore,

< log {p(y|x, s, ε)} >qεqs ∝ −1
2
< ε‖y− A(s ◦ x)‖2

2 >qεqs

∝ −1
2
< ε >qε< ‖y− A(s ◦ x)‖2

2 >qs

∝ −1
2

ε̃ < |y− A(s ◦ x)‖2
2 >qs

and

< ‖y− A(s ◦ x)‖2
2 >qs= < Tr

(
yyT + (x ◦ s)T AT A(x ◦ s)− 2(x ◦ s)T ATy

)
>qs

∝< Tr
(
(x ◦ s)T AT A(x ◦ s)− 2(x ◦ s)T ATy

)
>qs

∝< Tr
(
xTST AT ASx− 2xTSATy

)
>qs

∝ Tr
(
xT < SAT AS >qs x− 2xT S̃ATy

)
.

This yields to

< ‖y− A(s ◦ x)‖2
2 >qs ∝ xT < SAT AS >qs x− 2xT S̃ATy,

which results in

< log p(y|x, s, ε) >qεqs ∝ −1
2

ε̃(xT < SAT AS >qs x− 2xT S̃ATy).

Entropy 2023, 25, 511 22 of 32

Thus, we can write qx(x) as

qx(x) ∝ e<log {p(x|τ)}>qτ e<log {p(y|x,s,ε)}>qεqs

∝ e{−
1
2 τ̃xTx}e{−

1
2 ε̃(xT<SAT AS>qs x−2xT S̃ATy)}

∝ e{−
1
2 (x

T(τ̃ IN+ε̃>SAT AS>qs)x−2ε̃xT S̃ATy)}.

Notice that SAT AS = (AT A) ◦ (ssT). Since sn is drawn from a Bernoulli distribution, we
have < s2

n >qs=< sn >qs= s̃n, and

s̃s̃T =

 s̃2
1 s̃1 s̃2 . . . s̃1 s̃n
...

...
. . .

...
s̃n s̃1 s̃n s̃2 . . . s̃2

n

Therefore,

< ST AT AS >qs = (AT A) ◦ (s̃s̃T − diag {s̃ ◦ s̃}+ diag {s̃})
= (AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)}),

which yields to
qx(x) ∼ N (x̃, Σx̃),

where

Σx̃ =
(

τ̃ IN + ε̃
(
(AT A) ◦ (s̃s̃T + diag {s̃ ◦ (1− s̃)})

))−1

and
x̃ = ε̃Σx̃S̃ATy,

which x̃ is the update rule for the solution value vector x.

• Update rule for the support vector s

qsn(sn) ∼ e{<log {p(x,s,y|θ)}>qθ qx }

∝ e{<log {p(x,s|θ)p(y|x,s,θ)}>qθ qx }

∝ e{<log {p(sn ;γn)}>qγn }e{<log {p(y|x,s,ε)}>qs−n qxqε}

∝ e{<log {γsn
n (1−γn)1−sn}>qγn }e{<log {p(y|x,s,ε)}>qs−n qxqε},

where
e<log {γsn

n (1−γn)1−sn}>qγn = esn<log {γn}>qγn e(1−sn)<log {1−γn}>qγn ,

for which
< log γn >qγn∼ Beta(α1,n, β1,n) = ψ(α1,n)− ψ(α1,n + β1,n)

and
< log {1− γn} >qγn∼ Beta(α1,n, β1,n) = ψ(β1,n)− ψ(α1,n + β1,n),

where ψ(·) is digamma function, the logarithmic derivative of the gamma function, i.e.,
ψ(x)= d

dx log Γ(x). Therefore,

e<log {γsn
n (1−γn)1−sn}>qγn = esn

(
ψ(α1,n)−ψ(α1,n+β1,n)

)
e(1−sn)

(
ψ(β1,n)−ψ(α1,n+β1,n)

)
.

Also,

Entropy 2023, 25, 511 23 of 32

e<log {p(y|x,s,ε)}>qs−n qxqε ∝ e−
1
2<ε‖y−A(s◦x)‖2

2>qs−n qxqε

∝ e−
1
2 ε̃<‖y−A(s◦x)‖2

2>qs−n qx

∝ e−
1
2 ε̃<∑M

m=1(ym−∑N
n=1 amnsnxn)2>qs−n qx

∝ e−
1
2 ε̃<
(
(y1−∑N

l 6=n a1nsnxn)−a1nsnxn
)2

+···+
(
(yM−∑N

l 6=n aMl sl xl)−aMnsnxn
)2

>qs−n qx ,

where y−n
m := ym −∑N

l 6=n amlsl xl , ∀m = 1, 2, . . . , M. Therefore,

e<log {p(y|x,s,ε)}>qs−n qxqε ∝ e−
1
2 ε̃<∑M

m=1(amnsnxn−y−n
m)2>qs−n qx

∝ e−
1
2 ε ∑M

m=1

(
a2

mns2
n<x2

n>qx−2amnsn<xny−n
m >qs−n qx

)
∝ e−

1
2 ε̃
(
‖an‖2

2s2
n<x2

n>qx−2 ∑M
m=1 amnsn<xny−n

m >qx ,qs−n

)
∝ e−

1
2 ε̃
(
‖an‖2

2s2
n(x̃2

n+σ2
x̃n)−2sn x̃n ∑M

m=1 amn<y−n
m >qs−n qx

)
∝ e−

1
2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)s
2
n−2sn x̃naT

n<y−n>qs−n qx

)
,

where y−n
m contains no xn component and

y−n := [y−n
1 , y−n

2 , . . . , y−n
M].

Thus,

< y−n
m >qs−n qx=< ym −

N

∑
l 6=n

amlsl xl >qs−n qx= ym −
N

∑
l 6=n

aml s̃l x̃l

which yields to

ỹ−n
m := < y−n

m >qs−n qx

ỹ−n = y−
N

∑
l 6=n

s̃l x̃lal .

and thus
ỹ−n :=< y−n >qs−n qx .

Therefore,

e<log {p(y|x,s,ε)}>qs−n qxqε ∝ e
− 1

2 ε̃

((
‖an‖2

2(x̃2
n+σ2

x̃n)
)

s2
n−2(x̃naT

n ỹ−n)sn

)
.

Finally,

qsn(sn) ∝ e
{

sn
(

ψ(α1,n)−ψ(α1,n+β1,n)
)
+(1−sn)

(
ψ(β1,n)−ψ(α1,n+β1,n)

)
− 1

2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)s
2
n−2x̃naT

n ỹ−nsn
)}

.

Since sn is an outcome of a Bernoulli random variable,

qsn(sn = 0) ∝ e
{

ψ(β1,n)−ψ(α1,n+β1,n)
}

and
qsn(sn = 1) ∝ e{ψ(α1,n)−ψ(α1,n+β1,n)− 1

2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)−2x̃naT
n ỹ−n

)
}.

Entropy 2023, 25, 511 24 of 32

Therefore,

qsn(sn) ∼ Bernoulli
(qsn(sn = 1)

qsn(sn = 0) + qsn(sn = 1)

)
∼ Bernoulli

(1

1 + qsn (sn=0)
qsn (sn=1)

)
,

which yields to

qsn(sn) ∼ Bernoulli
(1

1 + eψ(β1,n)−ψ(α1,n+β1,n)e−ψ(α1,n)+ψ(α1,n+β1,n)+
1
2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)−2x̃naT
n ỹ−n

))
∼ Bernoulli

(1

1 + e
{

ψ(β1,n)−ψ(α1,n)+
1
2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)−2x̃naT
n ỹ−n

)}).

The update rule for the component sn can then be written as

s̃n =
1

1 + e
{

ψ(β1,n)−ψ(α1,n)+
1
2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃n)−2x̃naT
n ỹ−n

)}
or equivalently,

s̃n =
1

1 + cnκn
, ∀n = 1, . . . , N,

where
cn := e{ψ(β1,n)−ψ(α1,n)}

and

κn := e

{
1
2 ε̃
(
‖an‖2

2(x̃2
n+σ2

x̃2
n
)−2x̃naT

n ỹ−n
)}

.

• Stopping rule

The stopping rule of the algorithm can be set based on the marginalized likelihood
(evidence). We would rather follow the effect of s on the evidence because if s is learned, it
would be easy to compute xs. Therefore, we marginalize the distribution on y and integrate
x out. The details are described below.

p(y|s, ε, τ) =
∫

p(y, x|s, ε, τ)dx

=
∫

p(y|x, s, ε, τ)p(x|τ)dx

=
∫ 1

(2πε−1)
M
2

e−
1
2 ε‖y−A(s◦x)‖2

2
1

(2πτ−1)
N
2

e−
1
2 τ‖x‖2

2 dx

=
1

(2π)
M
2

ε
M
2 τ

N
2

∫ 1

(2π)
N
2

e
− 1

2

(
ε
(

yTy−2(s◦x)T ATy+(s◦x)T AT A(s◦x)
)
+τxTx

)
dx

=
1

(2π)
M
2

ε
M
2 τ

N
2

∫ 1

(2π)
N
2

e
− 1

2

(
ε
(

yTy−2xTSATy+xTSAT ASx
)
+τxTx

)
dx

=
1

(2π)
M
2

ε
M
2 τ

N
2 e−

1
2 εyTy

∫ 1

(2π)
N
2

e−
1
2

(
xT(εSAT AS+τ IN)x−2εxTSATy

)
dx

Entropy 2023, 25, 511 25 of 32

p(y|s, ε, τ) =
1

(2π)
M
2

ε
M
2 τ

N
2 e−

1
2 εyTy|(τ IN + εSAT AS)−1|

1
2

∫ 1

(2π)
N
2

1

|(τ IN + εSAT AS)−1| 12
× . . .

e−
1
2

(
xT(εSAT AS+τ IN)x−2εxTSATy

)
dx

=
1

(2π)
M
2

ε
M
2 τ

N
2 e−

1
2 εyTy|(τ IN + εSAT AS)−1|

1
2

∫ 1

(2π)
N
2

1

|(τ IN + εSAT AS)−1| 12
× . . .

e
− 1

2

((
x−(τ IN+εSAT AS)−1εSATy

)T
(τ IN+εSAT AS)

(
x−(τ IN+εSAT AS)−1εSATy

)
−ε2yT AS(τ IN+εSAT AS)−1SATy

)
dx,

which results in

p(y|s, ε, τ) =
1

(2π)
M
2

ε
M
2 τ

N
2 e−

1
2 εyTy|(τ IN + εSAT AS)−1|

1
2 e

1
2 ε2yT AS(τ IN+εSAT AS)−1SATy.

Thus,

log p(y|s, ε, τ) = −M
2

log {2π}+ M
2

log ε +
N
2

log τ − 1
2

εyTy + . . .

1
2

log {|(τ IN + εSAT AS)−1|}+ 1
2

ε2yT AS(τ IN + εSAT AS)−1SATy

and

−1
2

εyTy +
1
2

ε2yT AS(τ IN + εSAT AS)−1SATy = −1
2

yT(IM − εAS(τ IN + εSAT AS)−1SAT)y
Also,

N
2

log {τ}+ 1
2

log {|(τ IN + εSAT AS)−1|} = 1
2

log {|(τ IN)(τ IN + εSAT AS)−1|}

= −1
2

log {|(τ−1 IN)(τ IN + εSAT AS)|}

= −1
2

log {|IN +
ε

τ
SAT AS|}

= −1
2

log {|IM +
ε

τ
AS2 AT |}.

Thus,

L : = log p(y|s, ε, τ)

= −M
2

log {2π}+ M
2

log {ε} − 1
2

log |IM +
ε

τ
AS2 AT | − 1

2
εyT(IM − εAS(τ IN + εSAT AS)−1SAT)y.

For comparing the changes of L[t] with L[t−1] in the updating process, we have

L ∝
M
2

log {ε}+ 1
2

log {|(IM +
ε

τ
AS2 AT)−1|} − 1

2
εyT(IM − εAS(τ IN + εSAT AS)−1SAT)y

∝
1
2
(

log {|εIM|}+ log {|(IM +
ε

τ
AS2 AT)−1|}

)
− 1

2
yT(ε−1 IM +

1
τ

AS2 AT)−1y

∝
1
2

log {|ε−1 IM|−1|IM +
ε

τ
AS2 AT |−1} − 1

2
yT(ε−1 IM +

1
τ

AS2 AT)−1y

∝
1
2

log {|ε−1 IM(IM +
ε

τ
AS2 AT)−1|} − 1

2
yT(ε−1 IM +

1
τ

AS2 AT)−1y

∝ log {|ε−1 IM +
1
τ

AS2 AT |−1} − yT(ε−1 IM +
1
τ

AS2 AT)−1y.

Entropy 2023, 25, 511 26 of 32

Therefore,
L[t] ∝ log |Σ[t]

0 | − yTΣ[t]
0 y,

where
Σ0 := (ε̃−1 IM + τ̃−1 AS̃2 AT)−1,

which yields to
−L ∝ log {|Σ−1

0 |}+ yTΣ0y.

This means that
p(y|S, ε, τ) =

1

(2π)
M
2

1

|Σ−1
0 |

1
2

e{−
1
2 yTΣ0y}

or equivalently,
p(y|s, ε, τ) ∼ N (0, Σ−1

0).

Therefore, the stopping criterion can be made based on

∆L[t] :=L[t] − L[t−1]

= log {
Σ[t]

0

Σ[t−1]
0

}+ yT(Σ[t−1]
0 − Σ[t]

0)y.

Appendix A.2. Gaussian-Inverse-Gamma Modeling and the SBL(GiG)

• Update rule for the precision τn of the nth component of the solution vector x

q(τn) ∝ p(τn; a0, b0)e(<log p(x|T)>qxn)

∝ τa0−1
n e−b0τn e{<log

{
∏N

n=1 p(xn ;τ−1
n)
}
>qxn }

∝ τa0−1
n e−b0τn e{<log {τ

1
2

n e−
τn
2 x2

n}>qxn }

∝ τ
a0+

1
2−1

n e−b0τn e{−
τn
2 <x2

n>qxn }

∝ τ
(a0+

1
2)−1

n e−b0τn e−
τn
2 (x̃2

n+σ2
x̃n)

∝ τ
(a0+

1
2)−1

n e−
(

b0+
1
2 (x̃2

n+σ2
x̃n)
)

τn ,

where T :=diag {τ1, . . . , τN}. Therefore, we can model τn as

q(τn) ∼ Gamma
(
a0 +

1
2

, b0 +
1
2
(x̃2

n + σ2
x̃n)
)
.

The update rule for τn can be then defined as follows.

τ̃n =
a0 +

1
2

b0 +
1
2 (x̃2

n + σ2
x̃n
)

, ∀n = 1, 2, . . . , N

• Update rule for the noise precision ε

q(ε) ∝ p(ε; θ0, θ1)e{<log p(y|x,ε)>qx }

∝ εθ0−1e−θ1εe{<log {ε
M
2 e(−

1
2 ε‖y−Ax‖22)}>qx }

∝ ε(θ0+
M
2)−1e−ε(θ1+

1
2<‖y−Ax‖2

2>qx),

where

< ‖y− Ax‖2
2 >qx = yTy− 2 < x >T

qx ATy+ < xT AT Ax > qx

= yTy− 2x̃T ATy+ < xT AT Ax >qx ,

Entropy 2023, 25, 511 27 of 32

and

< xT AT Ax >qx = Tr (< xT AT Ax >qx)

= Tr (< xxT >qx AT A)

= Tr
(
(x̃x̃T + Σx̃)AT A

)
.

Therefore,

Ψ̃ :=< ‖y− Ax‖2
2 >qx= yTy− 2x̃T ATy + Tr

(
(x̃x̃T + Σx̃)AT A

)
.

Therefore, we can model ε̂ as

q(ε) ∼ Gamma
(

θ0 +
M
2

, θ1 +
1
2

Ψ̃
)

.

Finally, the update rule for ε can be then written as

ε̃ =
θ0 +

M
2

θ1 +
1
2 Ψ̃

.

• Update rule for the solution vector x

qx(x) ∝ e{<log {p(x,y|θ)}>qθ
}

∝ e{<log {p(x|θ)p(y|x,θ)}>qθ
}

∝ e{<log {p(x|T)}>qτ }e{<log {p(y|x,ε)}>qε}

∝ e{<log {p(x|T)}>qτ }e{−
1
2 xT T̃x},

where θ contains the information on the parameters T and ε, and T̃ := diag {τ̃1, . . . , τ̃N}.
To update the elements of x, we have

p(y, x, ε) ∝ ε
M
2 e{−

1
2 ε‖y−Ax‖2

2}

∝ e{−
1
2 ε‖y−Ax‖2

2}.

Therefore,

< log {p(y|x, ε)} >qε ∝ −1
2
< ε‖y− Ax‖2

2 >qε

∝ −1
2
< ε >qε ‖y− Ax‖2

2

∝ −1
2

ε̃‖y− Ax‖2
2.

Thus, we can write qx(x) as

qx(x) ∝ e<log {p(x|T)}>qT e<log p(y|x,θ)>qθ

∝ e{−
1
2 xT T̃x}e{−

1
2 ε̃(xT AT Ax−2xT ATy)}

∝ e{−
1
2

(
xT(T̃+ε̃AT A)x−2ε̃xT ATy

)
}.

Finally,
qx(x)∼N (x̃, Σx̃),

where
Σx̃ := (T̃ + ε̃AT A)−1 and x̃ := ε̃Σx̃ ATy.

Entropy 2023, 25, 511 28 of 32

• Stopping rule

We set the stopping rule of the algorithm based on the marginalized log-likelihood (evi-
dence) defined as

p(y|ε, T) =
∫

p(y, x|ε, T)dx∫
p(y|x, ε, T)p(x|T)dx

=
∫ 1

(2πε−1)
M
2

e−
1
2 ε‖y−Ax‖2

2
1

((2π)N |T−1|) 1
2

e−
1
2 xT Txdx

=
1

(2π)
M
2

ε
M
2 |T|

1
2

∫ 1

(2π)
N
2

e−
1
2

(
ε(yTy−2xT ATy+xT AT Ax)+xT Tx

)
dx

=
1

(2π)
M
2

ε
M
2 |T|

1
2

∫ 1

(2π)
N
2

e−
1
2

(
ε(yTy−2xT ATy+xT AT Ax)+xT Tx

)
dx

=
1

(2π)
M
2

ε
M
2 |T|

1
2 e−

1
2 εyTy

∫ 1

(2π)
N
2

e−
1
2

(
xT(εAT A+T)x−2εxT ATy

)
dx

=
1

(2π)
M
2

ε
M
2 |T|

1
2 e−

1
2 εyTy|(T + εAT A)−1|

1
2

∫ 1

(2π)
N
2

1

|(T + εAT A)−1| 12
e−

1
2

(
xT(εAT A+T)x−2εxT ATy

)
dx

=
1

(2π)
M
2

ε
M
2 |T|

1
2 e−

1
2 εyTy|(T + εAT A)−1|

1
2

∫ 1

(2π)
N
2

1

|(T + εAT A)−1| 12
× . . .

e
− 1

2

((
x−(T+εAT A)−1εATy

)T
(T+εAT A)

(
x−(T+εAT A)−1εATy

)
−ε2yT A(T+εAT A)−1 ATy

)
dx.

Thus,

log p(y|ε, T) =

− M
2

log {2π}+ M
2

log ε +
1
2

log |T| − 1
2

εyTy +
1
2

log {|(T + εAT A)−1|}+ 1
2

ε2yT A(T + εAT A)−1 ATy.

Notice that

−1
2

εyTy +
1
2

ε2yT A(T + εAT A)−1 ATy = −1
2

yTε(IM − εA(T + εAT A)−1 AT)y

and,

1
2

log |T|+ 1
2

log {|(T + εAT A)−1|} = 1
2
(

log |T|+ log {|(T + εAT A)−1|}
)

= −1
2

log {|T−1(T + εAT A)|}

= −1
2

log {|IN + εT−1 AT A|}

= −1
2

log {|IM + εAT−1 AT |}.

Thus,

L : = log p(y|ε, T)

= −M
2

log {2π}+ M
2

log ε− 1
2

log {|IM + εAT−1 AT |} − 1
2

εyT(IM − εA(T + εAT A)−1 AT)y.

Entropy 2023, 25, 511 29 of 32

For the comparing L[t] with L[t−1] in the updating process, we have

L ∝
M
2

log ε +
1
2

log {|(IM + εAT−1 AT)−1|} − 1
2

εyT(IM − εA(T + εAT A)−1 AT)y.

Therefore,
IM − εA(T + εAT)−1 AT = (IM + εAT−1 AT)−1.

Thus,

L ∝
M
2

log ε +
1
2

log {|(IM ++εAT−1 AT)−1|} − 1
2

εyT(IM + εAT−1 AT)−1y

∝
1
2

log {|ε−1 IM|−1|IM + εAT−1 AT |−1} − 1
2

yT(ε−1 IM + AT−1 AT)−1y

∝
1
2

log {|ε−1 IM(IM + εAT−1 AT)−1|} − 1
2

yT(ε−1 IM + AT−1 AT)−1y

∝ log {|ε−1 IM + AT−1 AT |−1} − yT(ε−1 IM + AT−1 AT)−1y.

Therefore,
L[t] ∝ log |Σ[t]

0 |−yTΣ[t]
0 y,

where
Σ0 :=(ε̃−1 IM+AT̃−1 AT)−1.

This means that
p(y|ε, T) =

1

(2π)
M
2

1

|Σ−1
0 |

1
2

e{−
1
2 yTΣ0y}

or equivalently,
p(y|ε, T)∼N (0, Σ−1

0).

Thus, the stopping criterion can be made based on

∆L[t] :=L[t] − L[t−1]

= log |
Σ[t]

0

Σ[t−1]
0

|+ yT(Σ[t−1]
0 − Σ[t]

0)y.

References
1. Candes, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]
2. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
3. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [CrossRef]
4. Duarte, M.; Davenport, M.; Takhar, D.; Laska, J.; Sun, T.; Kelly, K.; Baraniuk, R. Single-pixel imaging via compressive sampling.

IEEE Signal Process. Mag. 2008, 25, 83–91. [CrossRef]
5. Bajwa, W.; Haupt, J.; Sayeed, A.; Nowak, R. Compressed channel sensing: A new approach to estimating sparse multipath

channels. Proc. IEEE 2010, 98, 1058–1076. [CrossRef]
6. Lustig, M.; Donoho, D.; Pauly, J. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.

2007, 58, 1182–1195. [CrossRef]
7. Kutynoik, G. Theory and applications of compressed sensing. GAMM-Mitteilungen 2013, 36, 79–101. [CrossRef]
8. Chang, K.; Ding, P.; Li, B. Compressive sensing reconstruction of correlated images using joint regularization. IEEE Signal Process.

Lett. 2016, 23, 449–453. [CrossRef]
9. Wijewardhana, U.L.; Codreanu, M.; Latva-aho, M. Bayesian method for image recovery from block compressive sensing. In

Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November
2016; pp. 379–383.

10. Qaisar, S.; Bilal, R.M.; Iqbal, W.; Naureen, M.; Lee, S. Compressive sensing: From theory to applications, a survey. Commun. Netw.
J. 2013, 15, 443–456. [CrossRef]

11. Mishali, M.; Eldar, Y.C. Blind multi-band signal reconstruction: Compressed sensing for analog signals. IEEE Trans. Signal Process.
2009, 57, 993–1009. [CrossRef]

http://doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1109/JPROC.2010.2042415
http://dx.doi.org/10.1002/mrm.21391
http://dx.doi.org/10.1002/gamm.201310005
http://dx.doi.org/10.1109/LSP.2016.2527680
http://dx.doi.org/10.1109/JCN.2013.000083
http://dx.doi.org/10.1109/TSP.2009.2012791

Entropy 2023, 25, 511 30 of 32

12. Mishali, M.; Eldar, Y.C. Xampling: Signal acquisition and processing in unions of subspaces. IEEE Trans. Signal Process. 2011, 59,
4719–4734. [CrossRef]

13. Cohen, D.; Mishra, K.V.; Eldar, Y.C. Spectrum sharing Radar: Coexistence via xampling. IEEE Trans. Aerosp. Electron. Syst. 2017,
54, 1279–1296. [CrossRef]

14. Aubry, A.; Carotenuto, V.; Maio, A.D.; Govoni, M.A.; Farina, A. Experimental analysis of block-sparsity-based spectrum sensing
techniques for cognitive Radar. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 355–370. [CrossRef]

15. Hwang, S.; Seo, J.; Park, J.; Kim, H.; Jeong, B.J. Compressive sensing-based Radar imaging and subcarrier allocation for joint
MIMO OFDM Radar and communication system. Sensors 2021, 21, 2382. [CrossRef]

16. Rani, M.; Dhok, S.B.; Deshmukh, R.B. A systematic review of compressive sensing: Concepts, implementations and applications.
IEEE Access 2018, 6, 4875–4894. [CrossRef]

17. Zhan, Z.; Li, Q.; Huang, J. Application of wavefield compressive sensing in surface wave tomography. Geophys. J. Int. 2018, 213,
1731–1743. [CrossRef]

18. Da Poian, G.; Rozell, C.J.; Bernardini, R.; Rinaldo, R.; Clifford, G.D. Matched filtering for heart rate estimation on compressive
sensing ECG measurements. IEEE Trans. Biomed. Eng. 2017, 65, 1349–1358. [CrossRef]

19. Djelouat, H.; Zhai, X.; Disi, M.A.; Amira, A.; Bensaali, F. System-on-chip solution for patients biometric: A compressive
sensing-based approach. IEEE Sens. J. 2018, 18, 9629–9639. [CrossRef]

20. Zhang, P.; Wang, S.; Guo, K.; Wang, J. A secure data collection scheme based on compressive sensing in wireless sensor networks.
Ad Hoc Netw. 2018, 70, 73–84. [CrossRef]

21. Sharma, S.K.; Chatzinotas, S.; Ottersten, B. Compressive sparsity order estimation for wideband cognitive radio receiver. IEEE
Trans. Signal Process. 2014, 62, 4984–4996. [CrossRef]

22. Zhao, T.; Wang, Y. Statistical interpolation of spatially varying but sparsely measured 3D geo-data using compressive sensing and
variational Bayesian inference. Math. Geosci. 2021, 53, 1171–1199. [CrossRef]

23. Han, R.; Bai, L.; Zhang, W.; Liu, J.; Choi, J.; Zhang, W. Variational inference based sparse signal detection for next generation
multiple access. IEEE J. Sel. Areas Commun. 2022, 40, 1114–1127. [CrossRef]

24. Tang, V.H.; Bouzerdoum, A.; Phung, S.L. Variational Bayesian compressive multipolarization indoor Radar imaging. IEEE Trans.
Geosci. Remote Sens. 2021, 59, 7459–7474. [CrossRef]

25. Wan, Q.; Fang, J.; Huang, Y.; Duan, H.; Li, H. A Variational Bayesian inference-inspired unrolled deep network for MIMO
detection. IEEE Trans. Signal Process. 2022, 70, 423–437. [CrossRef]

26. Fang, J.; Shen, Y.; Li, H.; Wang, P. Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals. IEEE Trans. Signal
Process. 2015, 63, 360–372. [CrossRef]

27. Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Bayesian compressive sensing of sparse signals with unknown clustering patterns.
Entropy 2019, 21, 247. [CrossRef]

28. Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis pursuit selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164.
[CrossRef]

29. Lv, F.; Zhang, C.; Tang, Z.; Zhang, P. Block-sparse signal recovery based on adaptive matching pursuit via spike and slab prior. In
Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11
June 2020; pp. 1–5.

30. Worley, B. Scalable mean-field sparse Bayesian learning. IEEE Trans. Signal Process. 2019, 67, 6314–6326. [CrossRef]
31. Chen, P.; Zhao, J.; Bai, X. Block inverse-free sparse Bayesian learning for block sparse signal recovery. In Proceedings of the 2019

IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019;
pp. 1–4.

32. Hilli, A.A.; Najafizadeh, L.; Petropulu, A. Weighted sparse Bayesian learning (WSBL) for basis selection in linear underdetermined
systems. IEEE Trans. Veh. Technol. 2019, 68, 7353–7367. [CrossRef]

33. Wang, D.; Zhang, Z. Variational Bayesian inference based robust multiple measurement sparse signal recovery. Digit. Signal
Process. 2019, 89, 131–144. [CrossRef]

34. Bayisa, F.L.; Zhou, Z.; Cronie, O.; Yu, J. Adaptive algorithm for sparse signal recovery. Digit. Signal Process. 2019, 87, 10–18.
[CrossRef]

35. Nayek, R.; Fuentes, R.; Worden, K.; Cross, E.J. On spike-and-slab priors for Bayesian equation discovery of nonlinear dynamical
systems via sparse linear regression. Mech. Syst. Signal Process. 2021, 161, 107986. [CrossRef]

36. Li, J.; Zhou, W.; Cheng, C. Adaptive support-driven Bayesian reweighted algorithm for sparse signal recovery. Signal Image Video
Process. 2021, 15, 1295–1302. [CrossRef]

37. Zong-Long, B.; Li-Ming, S.; Jin-Wei, S. Sparse Bayesian learning using adaptive LASSO priors. Acta Autom. Sin. 2021, 45, 1–16.
38. Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415.

[CrossRef]
39. Blumensath, T.; Davies, M.E. Iterative hard thresholding for compressive sensing. Appl. Comput. Harmon. Anal. 2009, 27, 265–274.

[CrossRef]
40. Stankovic̀, L.; Dakovic̀, M.; Vujovic̀, S. Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal

Process. 2014, 8, 246–256. [CrossRef]

http://dx.doi.org/10.1109/TSP.2011.2161472
http://dx.doi.org/10.1109/TAES.2017.2780599
http://dx.doi.org/10.1109/TAES.2020.3021810
http://dx.doi.org/10.3390/s21072382
http://dx.doi.org/10.1109/ACCESS.2018.2793851
http://dx.doi.org/10.1093/gji/ggy082
http://dx.doi.org/10.1109/TBME.2017.2752422
http://dx.doi.org/10.1109/JSEN.2018.2871411
http://dx.doi.org/10.1016/j.adhoc.2017.11.011
http://dx.doi.org/10.1109/TSP.2014.2343949
http://dx.doi.org/10.1007/s11004-020-09913-x
http://dx.doi.org/10.1109/JSAC.2022.3143234
http://dx.doi.org/10.1109/TGRS.2021.3051955
http://dx.doi.org/10.1109/TSP.2022.3140926
http://dx.doi.org/10.1109/TSP.2014.2375133
http://dx.doi.org/10.3390/e21030247
http://dx.doi.org/10.1109/TSP.2004.831016
http://dx.doi.org/10.1109/TSP.2019.2954504
http://dx.doi.org/10.1109/TVT.2019.2922369
http://dx.doi.org/10.1016/j.dsp.2019.03.013
http://dx.doi.org/10.1016/j.dsp.2019.01.002
http://dx.doi.org/10.1016/j.ymssp.2021.107986
http://dx.doi.org/10.1007/s11760-021-01860-2
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1016/j.acha.2009.04.002
http://dx.doi.org/10.1049/iet-spr.2013.0385

Entropy 2023, 25, 511 31 of 32

41. Chen, S.; Donoho, D. Basis pursuit. In Proceedings of the 1994 28th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 31 October–2 November 1994; pp. 41–44.

42. Zhou, W.; Zhang, H.T.; Wang, J. An efficient sparse Bayesian learning algorithm based on Gaussian-scale mixtures. IEEE Trans.
Neural Netw. Learn. Syst. 2021, 33, 3065–3078. [CrossRef]

43. Sant, A.; Leinonen, M.; Rao, B.D. General total variation regularized sparse Bayesian learning for robust block-sparse signal
recovery. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 5604–5608.

44. Liu, J.; Wu, Q.; Amin, M.G. Multi-Task Bayesian compressive sensing exploiting signal structures. Signal Process. 2021, 178, 107804.
[CrossRef]

45. He, L.; Chen, H.; Carin, L. Tree-structured compressive sensing with variational Bayesian analysis. IEEE Signal Process. Lett. 2010,
17, 233–236.

46. Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [CrossRef]
47. Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Hierarchical Bayesian approach for jointly-sparse solution of multiple-measurement

vectors. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5
November 2014; pp. 1962–1966.

48. Oikonomou, V.P.; Nikolopoulos, S.; Kompatsiaris, I. A novel compressive sensing scheme under the variational Bayesian
framework. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September
2019; pp. 1–5.

49. Wang, L.; Zhao, L.; Yu, L.; Wang, J.; Bi, G. Structured Bayesian learning for recovery of clustered sparse signal. Signal Process. 2020,
166, 107255. [CrossRef]

50. Yu, L.; Wei, C.; Jia, J.; Sun, H. Compressive sensing for cluster structured sparse signals: Variational Bayes approach. IET Signal
Process. 2016, 10, 770–779. [CrossRef]

51. Babacan, S.D.; Nakajima, S.; Do, M.N. Bayesian group-sparse modeling and variational inference. IEEE Trans. Signal Process. 2014,
62, 2906–2921. [CrossRef]

52. Yu, L.; Sun, H.; Barbot, J.P.; Zheng, G. Bayesian compressive sensing for cluster structured sparse signals. Signal Process. 2012, 92,
259–269. [CrossRef]

53. Anderson, M.R.; Winther, O.; Hansen, L.K. Bayesian inference for structured spike and slab priors. In Proceedings of the Advances
in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 1745–1753.

54. Babacan, S.; Molina, R.; Katsaggelos, A. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2010, 19,
53–63. [CrossRef]

55. Hernandez-Lobato, D.; Hernandez-Lobato, J.M.; Dupont, P. Generalized spike-and-slab priors for Bayesian group feature selection
using expectation propagation. J. Mach. Learn. Res. 2013, 14, 1891–1945.

56. Ji, S.; Dunson, D.; Carin, L. Multitask compressive sensing. IEEE Trans. Signal Process. 2009, 57, 92–106. [CrossRef]
57. Shekaramiz, M.; Moon, T.K.; Gunther, J.H. Sparse Bayesian learning using variational Bayes inference based on a greedy criterion.

In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1
November 2017; pp. 858–862.

58. Wu, Q.; Fang, S. Structured Bayesian compressive sensing with spatial location dependence via variational Bayesian inference.
Digit. Signal Process. 2017, 71, 95–107. [CrossRef]

59. Wipf, D.P.; Rao, B.D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans.
Signal Process. 2007, 55, 3704–3716. [CrossRef]

60. Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused LASSO. J. R. Stat. Soc. Ser. B
2005, 67, 91–108. [CrossRef]

61. Blumensath, T.; Davies, M.E. Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Top.
Signal Process. 2010, 4, 298–309. [CrossRef]

62. Qin, L.; Tan, J.; Wang, Z.; Wang, G.; Guo, X. Exploiting the tree-structured compressive sensing of Wavelet coefficients via block
sparse Bayesian learning. Electron. Lett. 2018, 54, 975–976. [CrossRef]

63. Ambat, S.K.; Chatterjee, S.; Hari, K.V. Fusion of greedy pursuits for compressed sensing signal reconstruction. In Proceedings of
the 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012;
pp. 1434–1438.

64. Cao, Z.; Dai, J.; Xu, W.; Chang, C. Fast variational Bayesian inference for temporally correlated sparse signal recovery. IEEE Sigal
Process. Lett. 2021, 28, 214–218. [CrossRef]

65. Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [CrossRef]
66. Beal, M. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Dissertation, University College London, London,

UK, 2003.
67. Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 2008,

25, 131–142. [CrossRef]
68. Shekaramiz, M.; Moon, T.K. Compressive sensing via variational Bayesian inference. In Proceedings of the 2020 Intermountain

Engineering, Technology and Computing (IETC), Orem, UT, USA, 2–3 October 2020; pp. 1–6.

http://dx.doi.org/10.1109/TNNLS.2020.3049056
http://dx.doi.org/10.1016/j.sigpro.2020.107804
http://dx.doi.org/10.1109/TSP.2007.914345
http://dx.doi.org/10.1016/j.sigpro.2019.107255
http://dx.doi.org/10.1049/iet-spr.2014.0157
http://dx.doi.org/10.1109/TSP.2014.2319775
http://dx.doi.org/10.1016/j.sigpro.2011.07.015
http://dx.doi.org/10.1109/TIP.2009.2032894
http://dx.doi.org/10.1109/TSP.2008.2005866
http://dx.doi.org/10.1016/j.dsp.2017.08.007
http://dx.doi.org/10.1109/TSP.2007.894265
http://dx.doi.org/10.1111/j.1467-9868.2005.00490.x
http://dx.doi.org/10.1109/JSTSP.2010.2042411
http://dx.doi.org/10.1049/el.2018.0224
http://dx.doi.org/10.1109/LSP.2020.3048833
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1109/MSP.2008.929620

Entropy 2023, 25, 511 32 of 32

69. Shekaramiz, M.; Moon, T.K. Sparse Bayesian learning via variational Bayes fused With orthogonal matching pursuit. In
Proceedings of the 2022 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 13–14 May 2022;
pp. 1–5.

70. You, C.; Ormerod, J.T.; Mueller, S. On variational Bayes estimation and variational information criteria for linear regression
models. Aust. N. Z. J. Stat. 2014, 56, 73–87. [CrossRef]

71. Tran, M.N.; Nguyen, T.N.; Dao, V.H. A practical tutorial on variational Bayes. arXiv 2021, arXiv:2103.01327.
72. Fox, C.; Roberts, S. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2011, 38, 85–95. [CrossRef]
73. Manipur, I.; Manzo, M.; Granata, I.; Giordano, M.; Maddalena, L.; Guarracino, M.R. Netpro2vec: A graph embedding framework

for biomedical applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 729–740. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/anzs.12063
http://dx.doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1109/TCBB.2021.3078089

	Introduction
	Variational Bayesian Inference
	Bernoulli–Gaussian-Inverse Gamma Modeling and SBL(BGiG) Algorithm
	Update Rules of SBL(BGiG) Using VB Inference
	Issues with SBL(BGiG)

	Gaussian-Inverse Gamma Modeling and SBL(GiG) Algorithm
	Update Rules of SBL(GiG) Using VB Inference
	Issues with SBL(GiG)

	Preprocessing versus Postprocessing and Simulations
	Pre-Processing for the SBL(BGiG) Algorithm
	Post-Processing for the SBL(GiG) Algorithm

	Conclusions
	
	Bernoulli–Gaussian-Inverse-Gamma Modeling and the SBL(BGiG)
	Gaussian-Inverse-Gamma Modeling and the SBL(GiG)

	References

