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Abstract: In recent years, side-channel analysis technology has been one of the greatest threats to
information security. SCA decrypts the key information in the encryption device by establishing an
appropriate leakage model. As one of many leakage models, the XOR operation leakage proposed by
linear regression has typical representative significance in side-channel analysis. However, linear
regression may have the problem of irreversibility of a singular matrix in the modeling stage of
template analysis and the problem of poor data fit in the template analysis after the cryptographic
algorithm is masked. Therefore, this paper proposes a second-order template analysis method based
on orthogonal transformation nonlinear regression. The irreversibility of a singular matrix and the
inaccuracy of the model are solved by orthogonal transformation and adding a negative direction
to the calculation of the regression coefficient matrix. In order to verify the data fitting effect of the
constructed template, a comparative experiment of template analysis based on regression, Gaussian,
and clustering was carried out on SAKURA-G. The experimental results show that the second-order
template analysis based on orthogonal transformation nonlinear regression can complete key recovery
without sacrificing the performance of regression estimation. Under the condition of high noise and
high order template analysis, the established template has good universality.

Keywords: block cipher; FPGA; linear regression; orthogonal transform; template analysis

1. Introduction

Since Kocher proposed the timing analysis method [1] in 1996, side-channel analysis,
a unique cryptanalysis method distinct from classical cryptanalysis, has become a research
hotspot in the field of cryptography, after more than 20 years of development with its pow-
erful analysis ability and wide application range. General classes of side-channel analysis
include timing analysis, power analysis [2–7], template analysis [8–14], electromagnetic
analysis [14–16], collision attack [17,18], fault analysis [19–21], and artificial intelligence
side-channel analysis [22–24].

Template analysis is a new side-channel attack method proposed by Chari et al. in
2002. This method has received keen attention since it was proposed. Due to the noise
interference when collecting the power consumption curve of cryptographic equipment, if
the signal-to-noise ratio of the collected power consumption signal is relatively low, the
traditional side-channel attack method may be limited, resulting in the failure of the attack.
Therefore, the attacker must use other methods to obtain the key. However, template
analysis can effectively use the noise in the power consumption information, so the noise
will not affect its attack results. Shortly after the template analysis was proposed, scholars
proposed a random attack using linear regression in the analysis stage [25]. Subsequently,
Wang et al. [26] proposed a ridge regression-based template analysis in 2018. With the
deepening of the research on template analysis, researchers realize some weaknesses in
regression analysis.

First, there may be the problem of irreversibility caused by singular matrices in
linear regression analysis. In order to solve this problem, this paper proposes to project
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the data of the characteristic matrix from the original space to the new space through
orthogonal transformation. At this time, the linearly related variables are transformed
into linearly uncorrelated variables, which can solve the problem of irreversibility caused
by singular matrices in linear regression analysis without sacrificing the performance of
regression estimation.

Secondly, compared with linear regression, ridge regression [26–28] improves its data
fitting effect, however, because the ridge regression coefficient takes up too much space
contributed by the original feature matrix, it may lead to large offset when the cryptographic
algorithm is masked, causing it to inaccurately fit the data. To solve this problem, nonlinear
regression is proposed in this paper. On the basis of linear regression, a negative direction
is added to the calculation of the regression coefficient matrix to make the least squares
estimation of the regression coefficients closer to the actual data.

Finally, in order to construct a generalized template for side-channel analysis, a second-
order template analysis based on orthogonal transform nonlinear regression model is
proposed in this paper. The template constructed by our method has superior universality
and has significant advantages over the existing template analysis based on regression in
the efficiency of key guessing under high noise and high order conditions.

Section 2 introduces the necessary knowledge of power consumption model, linear
regression, and ridge regression. In Section 3, a second-order template analysis based on or-
thogonal transform nonlinear regression is proposed. In Section 4, the possible causes of the
singular matrix are deduced, and the feasibility of the orthogonal transformation method
to solve this problem is analyzed. In Section 5, the key recovery efficiency and computa-
tional complexity of second-order and higher-order template analysis based on orthogonal
transformation nonlinear regression are verified through comparative experiments on
SAKURA-G. Finally, we conclude this paper in Section 6.

2. Related Works
2.1. Power Model

In power analysis, it is generally necessary to establish a corresponding relationship
between the operation data of the device and the simulation value of power consumption
to characterize the power consumption of cryptographic devices. In power consumption at-
tack, Hamming distance model and Hamming weight model are two principal models [29]
to describe circuit power consumption.

Hamming weight refers to the number of 1 in the binary representation of v. The
Hamming weight model is more suitable for microcontrollers using a precharge bus. When
the intermediate value of the cryptographic algorithm is copied from memory to register,
or other operations related to the data occur, Hamming weight leakage will occur. This
power consumption is usually related to Hamming weight, which is illustrated in (1):

T = a·HW(v) + b (1)

where v represents the intermediate value of the cryptographic operation, and HW repre-
sents the Hamming weight. T represents power consumption, a is the proportion coefficient
of power consumption, and b represents leakage and noise not related to the processed data.

Hamming distance refers to the Hamming weight after two values are XOR. The
Hamming distance model is suitable for register bit reversal in hardware implementation.
When the clock arrives, the register bit turns over, and the number of turns is used to
describe the power consumption value at that time. This power consumption is usually
related to the Hamming weight, as shown in (2):

T = a·HD(v1, v2) + b (2)

where v1 is recorded as the state before the circuit change, v2 is recorded as the state after
the change, and HD represents Hamming distance.
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In conclusion, the Hamming distance model is more suitable for describing the power
consumption caused by bit inversion in FPGA registers.

2.2. Regression Analysis

Regression analysis originates from statistical theory. Regression analysis is a common
method to study the logic between variables, make statistical analyses and build models.
Regression analysis is commonly used in practice, so it naturally derives a variety of
regression analyses. The most famous are linear regression and logistic regression.

Linear regression refers to a linear regression problem in which a sample has multiple
characteristics. For a sample i with n characteristics, its linear regression overall regression
model can be given in (3):

yi = w0 + w1xi,1 + w2xi,2 + . . . + wnxi,n (3)

where wj is called the regression coefficient, xi,j is the different characteristics of sample i,
and yi is the target variable.

If m samples are considered, the matrix form of the regression result is shown in (4):
ŷ1
ŷ2
ŷ3
. . .
ŷm

 =


1 x1,1 . . . x1,n
1 x2,1 . . . x2,n
1 x3,1 . . . x3,n

. . . . . . . . . . . .
1 xm,1 . . . xm,n




w0
w1
w2
. . .
wn

 (4)

where Y is the column vector containing the regression results of all m samples, X is a
characteristic matrix with structure (m, n + 1), and W can be regarded as a column matrix
with structure (n + 1, 1).

In linear regression, the definition of loss function can be expressed as (5):

m
∑

i=1
e2

i =
m
∑

i=1
(yi − ŷi)

2

=
m
∑

i=1
(yi − XiW)2

=
m
∑

i=1
(yi − w0 − w1xi,1 − . . .− wnxi,n)

2

(5)

The solution of the least squares normal equation is solved by minimizing the sum of
the squares of the residuals between the real value and the predicted value, and the least
squares estimate wj of the regression coefficient is obtained.

∂
∂w1

m
∑

i=1
e2

i = −2
m
∑

i=1
(yi − w0 − w1xi,1 . . .− wnxi,n) = 0

∂
∂w2

m
∑

i=1
e2

i = −2
m
∑

i=1
(yi − w0 − w1xi,1 . . .− wnxi,n)xi,1 = 0

. . .
∂

∂wn

m
∑

i=1
e2

i = −2
m
∑

i=1
(yi − w0 − w1xi,1 . . .− wnxi,n)xi,n = 0

(6)

According to (6), it can be seen that the residual vector e is orthogonal to each char-
acteristic of sample i. The least squares estimation Ŵ of linear regression coefficients is
shown in (7):

Ŵ = (XTX)
−1

XTY (7)

According to (7), it can be seen that the regression coefficient Ŵ will be obtained by Y
and X together.
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2.3. Template Analysis Based on Linear Regression

Template analysis is generally divided into two processes: modeling phase and tem-
plate matching phase, as shown in Figure 1. In the modeling phase, linear regression
establishes a mathematical relationship model between the power consumption and each
bit of the key based on the Hamming weight or Hamming distance leakage model, and then
directly uses this model to match the actual power consumption in the template matching
phase to guess the correct key.
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Modeling stage
The main purpose of the modeling stage is to characterize the device leakage through

the power consumption curve of a device with a known key and find the power consump-
tion model.

The linear regression can be matched to the power model of (1) and (2). Hamming
distance model is more suitable for describing the power consumption caused by bit
inversion in FPGA registers. Therefore, this paper takes the Hamming distance model as
an example for theoretical deduction, as shown in (8):

T = a·HD(v1, v2) + b
= a·HW(v1 ⊕ v2) + b

= a·
n
∑

i=1
(v1[j]⊕ v2[j]) + b

(8)

The relationship matrix between m power traces and the intermediate value can be
obtained by linear regression method, as shown in (9):

T1
T2
. . .
Tm

 =


1 v1,1[1]⊕ v1,2[1] . . . v1,1[n]⊕ v1,2[n]
1 v2,1[1]⊕ v2,2[1] . . . v2,1[n]⊕ v2,2[n]
1 . . . . . . . . .
1 vm,1[1]⊕ vm,2[1] . . . vm,1[n]⊕ vm,2[n]




a0
a1
. . .
an

 (9)

A set of regression coefficients A is obtained according to (7) and (9), and the modeling
is completed at this time.
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Template matching stage
The main purpose of the template matching phase is to recover the unknown key in

the tested device by using the constructed template.
In the template matching phase, the constructed template is used to calculate the

estimated power of all possible key values. The correct key with the best correlation is
matched by calculating the correlation coefficient of the estimated power consumption Ŷ
and the actual power consumption Y. The correlation coefficient is calculated as shown
in (10):

ρ =
E(Ŷ, Y)− E(Ŷ)E(Y)√

D(Ŷ)D(Y)
(10)

where E represents the expectation, D represents the variance, and ρ represents the correla-
tion coefficient.

The guess key with the highest correlation coefficient is the correct key.

2.4. AES-128 Algorithm

This paper aims to solve the second-order template analysis problem of the AES-
128 algorithm with a mask. The AES-128 algorithm is shown in Figure 2. The AES-128
algorithm consists of 10 round functions. Before the round function, XOR is performed
between the whitening key and the plaintext. Round functions from round 1 to round 9
include four operations: SubByte, ShiftRow, MixColumn, and AddRounKey. The last
round does not perform MixColumn. The following four operation stages of the round
function in AES are introduced, respectively. These four operation processes fully confuse
the input bits.
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SubByte: SubByte is actually a simple table lookup operation. The elements in the
state matrix are mapped to a new byte by taking the upper 4 bits of the byte as row values
and the lower 4 bits as column values.

ShiftRow: ShiftRow is a simple left rotation operation. When the key length is 128 bits,
row 0 of the state matrix is shifted 0 bytes to the left, row 1 is shifted 1 byte to the left, row 2
is shifted 2 bytes to the left, and row 3 is shifted 3 bytes to the left.

MixColumn: MixColumn transformation is realized by matrix multiplication. The
state matrix after row shift is multiplied with the fixed matrix to obtain the confused
state matrix.

AddRounKey: AddRounKey is a bit-by-bit XOR operation between the 128-bit round
key and the data in the state matrix.

As shown in Figure 3, the power consumption curve and leakage analysis curve of the
complete AES-128 algorithm are shown. The red curve represents the power consumption,
and the blue curve represents the leakage analysis. Each peak of the power consumption
curve represents a round of encryption (decryption), and the peak position of the leakage
analysis curve represents the leakage area. The peak position of the leakage analysis curve
corresponds to the eleventh peaks of the power consumption curve, indicating that power
leakage occurred in the tenth round of encryption (decryption). Therefore, register A of the
AES-128 algorithm in Figure 2 is selected to discuss the efficiency of template analysis.
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3. Orthogonal Transformation Nonlinear Regression Analysis
3.1. Orthogonal Transformation Nonlinear Regression Model

In the second section, the solving principle of linear regression using the least square
method is derived, and the regression coefficient W is obtained. It can be seen from
Equation (7) that there is an inverse operation in the equation. If XTX is a singular matrix,
we will not be able to obtain its inverse. This situation exists in the actual power consump-
tion acquisition process. If XTX is a singular matrix, then only a new set of power traces
can be collected for analysis. In 2018, Wang et al. [26] proposed a ridge regression method
to solve this problem. Coefficient α avoids the influence of a singular matrix. However,
in the case where the cryptographic algorithm is masked, because coefficient α occupies
too much space contributed by the original characteristic matrix in W, it may lead to large
deviation in W and incorrectly fit the real face of the data.

The inability to solve by least squares and poor data fit of existing regressions in the
case of masked cryptographic algorithms, can be solved with a new regression model.
Therefore, an orthogonal transform nonlinear regression model is proposed in this paper.
The orthogonal transformation nonlinear regression model can solve the problem of a
singular matrix being irreversible in multivariate linear regression analysis, and has a good
data fitting effect in the cases of high noise and high order. The specific implementation
steps are as follows:
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Step 1: Collect the power consumption waveform to form the sample matrix X. The m
power consumption waveforms of the circuit are collected through the power consumption
acquisition platform. Each power consumption waveform has n sampling points, forming
an [m, n] sample matrix X.

Step 2: Calculate the mean value of the sample. Take the average value of each column
of the sample matrix X to obtain the sample mean vector X, and its calculation formula is
shown in (11):

X = [ 1
m

m
∑

i=1
xi,1

1
m

m
∑

i=1
xi,2 . . . 1

m

m
∑

i=1
xi,n] (11)

Step 3: Centralized sample matrix. The centralized sample matrix is to subtract the
sample mean X from each column of sample matrix X to obtain the centralized sample
matrix X̂. The calculation formula of matrix X̂ is shown in (12):

X̂ =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
. . . . . . . . . . . .

xm,1 xm,2 . . . xm,n

−


x1
x2
. . .
xn


T

(12)

Step 4: Calculate the covariance matrix C. Calculate the covariance matrix C of the
centralized sample matrix X̂. The calculation method of [n, n] matrix C is shown in (13):

C =
1

m− 1
X̂TX̂ (13)

Step 5: Calculate the eigenvector matrix and eigenvalue matrix. The covariance matrix
C is decomposed into eigenvalues, and its eigenvalues and eigenvectors are obtained. The
calculation method is shown in (14):

ATCA = λ (14)

where A is called the eigenvector matrix and λ is the eigenvalue diagonal matrix.
Step 6: Orthogonal transformation. The centralized sample matrix X̂ is projected into

the new space to obtain the matrix X̃ after orthogonal transformation, as shown in (15):

X̃ = X̂·An×k (15)

The sample matrix X, which may lead to the appearance of a singular matrix in XTX,
is orthogonally transformed into a new matrix X̃.

Step 7: Nonlinear regression. The reconstructed uncorrelated matrix X̃ can only solve
the problem that the original singular matrix is irreversible. If we use the least square
method to solve the regression coefficient matrix W with the reconstructed uncorrelated
matrix X̃ according to the linear regression model, the data fitting effect will not be im-
proved. Therefore, in order to obtain a regression model with a better fitting effect in noisy
environments, this paper introduces αW into the loss function of linear regression, and the
definition of the loss function of the improved nonlinear regression model can be expressed
as (16):

m
∑

i=1
e2

i + αW =
m
∑

i=1
(yi − ŷi)

2 + αW

=
m
∑

i=1
(yi − XiW)2 + αW

(16)

The nonlinear regression model still uses the least square method to obtain the regres-
sion coefficient matrix W:

W = (XTX)
−1

(XTY− AI) (17)

where matrix I is a unit matrix. The coefficient A takes any value, and it is linear regression
when A = 0.
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By increasing the coefficient A, a negative direction can be added to the calculation of
W, so as to limit the size of W in parameter estimation and prevent the problem of model
inaccuracy caused by too large of a parameter estimation.

3.2. Second-Order Template Analysis Based on Orthogonal Transform Nonlinear Regression

Second-order template analysis based on orthogonal transformation nonlinear regres-
sion adopts the idea of “divide and conquer” to model, as it calculates the corresponding
intermediate value through the known key, reconstructs the intermediate value matrix into
a linear uncorrelated matrix, and uses the corresponding regression coefficient matrix to
construct the template. Through the constructed template, the correlation coefficients of
the estimated power matrix and the actual power matrix of all possible key values are
calculated, and the correct key with the optimal correlation is matched. The specific process
of second-order template analysis based on orthogonal transform nonlinear regression is
given below, as shown in Algorithm 1.

Algorithm 1 Second-order Template analysis based on orthogonal transform nonlinear regression

Begin
for S = 1:16

/*Template building stage*/
for p = 1:num

HD(v∗1, v∗2)→ X∗(p, 1 : 8)
end
X̂∗ = X∗ − X∗

C = X̂∗T X̂∗/m− 1
A∗TCA∗ = λ∗

X̃∗(1 : num, 2 : 9) = X̂∗·A∗n×k
X̃∗(1 : num, 1) = zeros(num, 1) + 1
Y∗ = (ti,j −mean(tj))

2

W∗ = (X̃∗
T
X̃∗)

−1
(X̃∗

T
Y∗ − AI)

/*template analysis stage*/
for k = 0:255

for p = 1:num
HD(v1, v2)→ X(p, 1 : 8)

end
X̂ = X− X

X̃(1 : num, 2 : 9) = X̂·A∗n×k
X̃(1 : num, 1) = zeros(num, 1) + 1
Y = (t_testi,j −mean(t_testj))

2

Ŷ = X̃·W∗
for i = 1:Leakage_point

Corr(k + 1, i) = |ρ(Ŷ(:,i), Y(:,i))|
end

end
[m, n] = find(corr = max (max(corr)))
Correct_key(1,S) = m − 1
end

Modeling stage
Step 1: Collect n modeling power traces T of random plaintext with the known key and

combine the power consumption points with the centralized multiplication combination
function, as shown in (18), where each power traces corresponds to m sampling points. The
j-th sampling point of the i-th power traces is expressed as Ti,j. Record the corresponding
plaintext P and ciphertext C. Collect a set of matching power traces T′ of random plaintext
with unknown key. Record the corresponding plaintext P′ and ciphertext C′.

T′ i = (Ti,j −mean(Tj))
2 (18)
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Step 2: According to plaintext P and ciphertext C, the Hamming distance matrix of the
middle value of the known key is calculated as the characteristic matrix X∗ of regression
analysis.

Step 3: The Hamming distance matrix X∗ is reconstructed into a linearly uncorrelated
matrix X̃∗ by orthogonal transformation.

Step 4: Using the least square method, the reconstructed uncorrelated matrix X̃∗ is
used as the characteristic matrix. Our proposal solves the regression coefficient matrix W∗

according to Formula (17), and thus completes the template orthogonal transformation
nonlinear regression template construction stage.

Template matching stage
Step 5: According to plaintext P′ and ciphertext C′, calculate the intermediate Ham-

ming distance matrix under the possible values of all unknown keys as the characteristic
matrix X of regression analysis.

Step 6: The linear uncorrelated matrix X̃ is reconstructed by using the eigenvector
matrix of the covariance matrix C of the modeling stage matrix X∗, as shown in (15).

Step 7: The regression coefficient matrix W∗ and matrix X̃ are returned to (4) to
calculate the estimated power consumption matrix Ŷ.

Step 8: According to (10), the correlation coefficient between the estimated power
consumption matrix Ŷ and the actual power consumption matrix Y′ processed by the
centralized multiplication combination function is calculated.

The guess key with the highest correlation coefficient is the correct key.

3.3. Parameter Selection

Before implementing orthogonal transformation nonlinear regression modeling, the
attacker should first find an optimal parameter value A. Therefore, in this section, the
parameter A in the orthogonal transformation nonlinear regression is selected. Modeling
and matching are carried out respectively under the condition that the noise standard
deviations are 2 and 4. The parameter set to be selected is a = {0.1, 1, 10, 50, 200, 500, 1000,
2000, 5000, 10,000}. Next, 100 key-guessing experiments are carried out and the average
number of key bytes guessed is calculated.

As shown in Figure 4, for modeling and matching under different noise standard
deviations, the optimal solution of the parameter A is also different. When A ≥ 2000, the
number of bytes recovered from the key tends to be stable. Therefore, in the subsequent
experiment, we select A = 2000 for template construction.
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Figure 4. Average bytes of key recovery under different parameter values.
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4. Theoretical Analysis

In this section, we theoretically study the problems of linear regression analysis. Firstly,
we find the cause of paralysis of linear regression analysis by analyzing the principle of the
linear regression model. Then, aiming at specific problems, we solve the loopholes of linear
regression through orthogonal transformation nonlinear regression.

According to the previous section, the reason for the unavailability of linear regression
analysis is that matrix XTX is a singular matrix and irreversible. Next, we analyze the
conditions for matrix XTX to become a singular matrix, as shown in (19) below:

XT X =



m x1,1 + x2,1 + . . . + xm,1 x1,2 + x2,2 + . . . + xm,2 . . . x1,n + x2,n + . . . + xm,n

x1,1 + x2,1 + . . . + xm,1 x2
1,1 + x2

2,1 + . . . + x2
m,1 x1,1x1,2 + x2,1x2,2 + . . . + xm,1xm,2 . . . x1,1x1,n + x2,1x2,n + . . . + xm,1xm,n

x1,2 + x2,2 + . . . + xm,2 x1,2x1,1 + x2,2x2,1 + . . . + xm,2xm,1 x2
1,2 + x2

2,2 + . . . + x2
m,2 . . . x1,2x1,n + x2,2x2,n + . . . + xm,2xm,n

. . . . . . . . . . . . . . .

x1,n + x2,n + . . . + xm,n x1,n x1,1 + x2,n x2,1 + . . . + xm,n xm,1 x1,n x1,2 + x2,n x2,2 + . . . + xm,n xm,2 . . . x2
1,n + x2

2,n + . . . + x2
m,n


(19)

If the matrix XTX is a singular matrix, there must be a linear correlation between
two row vectors of matrix XTX, and the row vectors can be eliminated by elementary
transformation, resulting in the following two cases of (20) and (21):

x1,i + x2,i + . . . + xm,i = a·m
x1,ix1,1 + x2,ix2,1 + . . . + xm,ixm,1 = a·(x1,1 + x2,1 + . . . + xm,1)
x1,ix1,2 + x2,ix2,2 + . . . + xm,ixm,2 = a·(x1,2 + x2,2 + . . . + xm,2)

. . .
x1,ix1,n + x2,ix2,n + . . . + xm,ixm,n = a·(x1,n + x2,n + . . . + xm,n)

i = 1, 2, . . . , n (20)


x1,i + x2,i + . . . + xm,i = a·(x1,j + x2,j + . . . + xm,j)

x1,ix1,1 + x2,ix2,1 + . . . + xm,ixm,1 = a·(x1,jx1,1 + x2,jx2,1 + . . . + xm,jxm,1)
x1,ix1,2 + x2,ix2,2 + . . . + xm,ixm,2 = a·(x1,jx1,2 + x2,jx2,2 + . . . + xm,jxm,2)

. . .
x1,ix1,n + x2,ix2,n + . . . + xm,ixm,n = a·(x1,jx1,n + x2,jx2,n + . . . + xm,jxm,n)

i, j = 1, 2, . . . , n (21)

The different characteristic xi,j of the characteristic matrix X is composed of Hamming
distance of the intermediate value, so the characteristic xi,j can only be taken as 0 and 1, as
shown in Figure 5. If any column vector of characteristic matrix X is all 0 or all 1, XTX will
be an irreversible matrix.
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The orthogonal transformation nonlinear regression proposed in this paper projects
the original data of characteristic matrix X from the original space to the new space through
the eigenvector of the covariance matrix. The value range of characteristic xi,j ∈ R in the
new space is no longer limited to 0 and 1, as shown in Figure 6. Compared with the original
matrix space with only 0 and 1, the new matrix space is more complex and changeable, and
it is more difficult to have the problem of matrix irreversibility.
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4.1. Autocorrelation Test

Autocorrelation is mainly to test the correlation degree between the binary sequence to
be tested and the new sequence obtained by moving the sequence by k bits. The detection
method is generally realized by calculating the autocorrelation function of the sequence.
For the feature vector in linear regression, it should have very low linear correlation with
the new vector after moving any bit. The mathematical expression of its autocorrelation
function is defined in (22):

rx(k) = lim
N→∞

1
N

N−1

∑
n=0

x(n)x(n + k) (22)

There are two estimation formulas of autocorrelation, namely unbiased estimation
and biased estimation. Unbiased estimation can be defined as shown in (23):

Rx(k) =
1

N − |k|

N−1−|k|

∑
n=0

xN(n)xN(n + k) (23)

Mathematical deviation is defined as shown in Equation (24):

Rx(k) =
1
N

N−1−|k|

∑
n=0

xN(n)xN(n + k) (24)

Based on the above theoretical analysis, the eigenvectors of the three methods can be
tested by autocorrelation. Figure 7a shows the autocorrelation test results of characteristic
matrix X when the matrix XTX is a nonsingular matrix. It can be seen that the autocorre-
lation of the eight groups of eigenvectors is very weak, in micro correlation. Figure 7b–d
shows the autocorrelation test results of characteristic matrix X when the matrix XTX is a
singular matrix. The results in Figure 7b,c show that there is a group of eigenvectors with
strong autocorrelation in both linear regression and ridge regression, and the autocorrela-
tion estimation R(k) of other eigenvectors is concentrated at about 0.3. Since the orthogonal
transformation nonlinear regression projects the original data of the characteristic matrix
X from the original space to the new space, the results in Figure 7d show that there are
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no eigenvectors with strong autocorrelation in the new space, and all eigenvectors have
autocorrelation estimation R(k) closer to 0, showing good randomness.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 22 
 

 

Figure 6. Orthogonal transformation matrix space. 

4.1. Autocorrelation Test 

Autocorrelation is mainly to test the correlation degree between the binary sequence 

to be tested and the new sequence obtained by moving the sequence by k bits. The detec-

tion method is generally realized by calculating the autocorrelation function of the se-

quence. For the feature vector in linear regression, it should have very low linear correla-

tion with the new vector after moving any bit. The mathematical expression of its auto-

correlation function is defined in (22): 

1

0

1
( ) lim ( ) ( )

N

x
N

n

r k x n x n k
N

−

→
=

= +
 

(22) 

There are two estimation formulas of autocorrelation, namely unbiased estimation 

and biased estimation. Unbiased estimation can be defined as shown in (23): 

1

0

1
( ) ( ) ( )

N k

x N N

n

R k x n x n k
N k

− −

=

= +
−


 

(23) 

Mathematical deviation is defined as shown in equation (24): 

1

0

1
( ) ( ) ( )

N k

x N N

n

R k x n x n k
N

− −

=

= +
 

(24) 

Based on the above theoretical analysis, the eigenvectors of the three methods can be 

tested by autocorrelation. Figure 7a shows the autocorrelation test results of characteristic 

matrix X when the matrix 
TX X  is a nonsingular matrix. It can be seen that the autocor-

relation of the eight groups of eigenvectors is very weak, in micro correlation. Figure 7b–

d shows the autocorrelation test results of characteristic matrix X when the matrix 
TX X  

is a singular matrix. The results in Figure 7b,c show that there is a group of eigenvectors 

with strong autocorrelation in both linear regression and ridge regression, and the auto-

correlation estimation R(k) of other eigenvectors is concentrated at about 0.3. Since the 

orthogonal transformation nonlinear regression projects the original data of the charac-

teristic matrix X from the original space to the new space, the results in Figure 7d show 

that there are no eigenvectors with strong autocorrelation in the new space, and all eigen-

vectors have autocorrelation estimation R(k) closer to 0, showing good randomness. 

  

(a) TX X : nonsingular matrix (b) TX X : singular matrix, linear regression 

Entropy 2023, 25, x FOR PEER REVIEW 13 of 22 
 

 

  

(c) TX X : singular matrix, ridge regression (d) TX X : singular matrix, orthogonal transform 

Figure 7. Characteristic matrix X autocorrelation test. 

4.2. Cross Correlation Test 

In Figure 8, the correlation coefficients between vectors of a matrix 
TX X  of linear 

regression, and orthogonal transformation regression as well as matrix 
TX X I+  of 

ridge regression are obtained, respectively. The correlation coefficient matrix is shown in 

Figure 8, and yellow indicates complete correlation. As shown in Figure 8a, when the ma-

trix 
TX X  is a nonsingular matrix, each vector is only completely related to its own vec-

tor. As shown in Figure 8b, when the matrix 
TX X  is a singular matrix, vector 2 of linear 

regression is completely related to vector 1. As shown in Figure 8c, when matrix 
TX X  is 

a singular matrix, although ridge regression solves the problem of accurate correlation to 

a certain extent, there is still a strong correlation between vector 2 and vector 1, and the 

correlation coefficient reaches 0.99999984. As shown in Figure 8d, the minimum correla-

tion coefficient between the vectors of the matrix 
TX X  in our proposed orthogonal 

transformation regression is close to 0, indicating that the matrix 
TX X  does not have 

collinearity. To summarize, orthogonal transformation regression solves the problem that 

the original linear regression singular matrix cannot be inversed. 

  

(a) TX X : nonsingular matrix (b) TX X : singular matrix, linear regression 

Figure 7. Characteristic matrix X autocorrelation test.

4.2. Cross Correlation Test

In Figure 8, the correlation coefficients between vectors of a matrix XTX of linear
regression, and orthogonal transformation regression as well as matrix XTX + λI of ridge
regression are obtained, respectively. The correlation coefficient matrix is shown in Figure 8,
and yellow indicates complete correlation. As shown in Figure 8a, when the matrix XTX is
a nonsingular matrix, each vector is only completely related to its own vector. As shown
in Figure 8b, when the matrix XTX is a singular matrix, vector 2 of linear regression is
completely related to vector 1. As shown in Figure 8c, when matrix XTX is a singular matrix,
although ridge regression solves the problem of accurate correlation to a certain extent,
there is still a strong correlation between vector 2 and vector 1, and the correlation coefficient
reaches 0.99999984. As shown in Figure 8d, the minimum correlation coefficient between
the vectors of the matrix XTX in our proposed orthogonal transformation regression is close
to 0, indicating that the matrix XTX does not have collinearity. To summarize, orthogonal
transformation regression solves the problem that the original linear regression singular
matrix cannot be inversed.
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5. Security Analysis

In this paper we explore the key guessing efficiency of the orthogonal transformation
linear regression and orthogonal transformation nonlinear regression models proposed.
This section is compared with linear regression [25], ridge regression [26], Gaussian model-
ing [13], and cluster-based modeling method [30]. In this section, a power consumption
acquisition platform is built based on FPGA to perform key guessing experiments on six
template analyses. The attack target is the 10th round function register of the AES-128
algorithm. In the power waveform simulation, it is assumed that the simulation waveform
follows the Hamming distance model, the noise follows the Gaussian distribution, and the
noise standard deviations are 2 and 4, respectively. The power consumption acquisition
platform is shown in Figure 9:

5.1. Correlation of Second-Order Template Based on Regression

In order to verify the matching degree between the second-order template constructed
by the four regression methods and the actual power consumption, this section uses the
correct key to conduct correlation experiments in the leakage area of the tenth-round func-
tion of the AES-128 algorithm. It can be seen from Figure 10 that the correlation between
the second-order template constructed by linear regression and orthogonal transformation
linear regression in the leakage area of the 10th round function of AES-128 algorithm is
completely consistent with the actual power consumption, and the maximum Pearson
correlation coefficient is 0.052178875016667. The second-order template constructed by
ridge regression has the weakest correlation with actual power consumption, and its max-
imum Pearson correlation coefficient is 0.0464993727243824. The second-order template
constructed by orthogonal transformation nonlinear regression has the strongest correla-
tion with actual power consumption, and its maximum Pearson correlation coefficient is
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0.0528086329655253. Therefore, in the template matching phase, the second-order template
constructed based on orthogonal transformation nonlinear regression makes it easier to
separate the correct key from the wrong key.
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5.2. Calculation Complexity

Modeling under the condition that the noise standard deviation is 2, 100 experiments
are conducted for the four methods under a different number of template matching wave-
forms, and the comparison of the average calculation complexity of the 100 experiments
is shown in Figure 11. It can be seen from Figure 11 that the computational complexity
of the template analysis based on linear regression and template analysis based on ridge
regression is almost the same. The template analysis based on orthogonal transforma-
tion regression proposed in this paper increases the amount of computation due to the
projection of the characteristic matrix from the original space to the new space, so the
computational cost is slightly higher than that of linear regression and ridge regression,
but this computational cost is insignificant compared with the improvement of the attack
efficiency in the template matching.
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5.3. Guessing Entropy Experiment of Second-Order Template Based on Regression

We verify the universality of the template constructed by second-order template
analysis based on orthogonal transformation nonlinear regression. In the case of collecting
different numbers of modeling curves and template-matching curves, 100 groups of key-
guessing experiments were conducted, in which the measurement unit is guessing entropy.
Guessing entropy is the average ranking of 100 groups of correct keys. The set of the
number of selected modeling curves is [20, 100, 200, 500, 700, 1000]. The number range of
template matching curves is [1000, 10,000], and the step size is 1000.

The guessing entropy of the four methods under different number of modeling curves
and template-matching curves is shown in Figure 12. It can be seen from Figure 12
that the guessing entropy of the four methods gradually approaches 1 as the number of
template-matching curves increases. In addition, regression models can build effective
templates with few modeling curves. Comparing Figure 12a,c, it can be seen that although
orthogonal transformation can solve the irreversibility of a singular matrix, orthogonal
transformation linear regression has no effect on key guessing. The two methods have
exactly the same guessing entropy results under a different number of modeling curves and
template-matching curves. Although ridge regression has advantages in convergence speed
compared with orthogonal transformation linear regression and linear regression, only
the guessing entropy of template analysis based on orthogonal transformation nonlinear
regression reaches 1 and the convergence speed is the fastest among the four methods
under the condition of a limited number of template-matching curves. This means that the
template constructed by the orthogonal transformation nonlinear model is more effective
for the AES-128 algorithm with first-order mask protection.

5.4. Guessing Entropy Experiment of Second-Order Template Analysis under Different Noise
Conditions

Since noise will affect the efficiency of the template analysis, this section will discuss
the efficiency of key guessing by modeling and template matching under different noise
conditions. Since the guessing entropy of the orthogonal transformation linear regression
model and the linear regression model is completely consistent in the previous section, this
section only uses the other three regression models for key guess experiments and adds the
Gaussian modeling method and cluster-based modeling method. The study has carried out
100 experiments under 20 modeling curves and the different number of template-matching
curves, and still uses guessing entropy to measure the efficiency of key guessing.
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It can be seen from Figures 13 and 14 that when modeling under the condition that
the standard deviation of noise is 2, the guess entropy curves of ridge regression and linear
regression are intertwined up and down, and the guessing entropy gradually approaches
1 as the template-matching curve increases. In this scenario, the nonlinear regression
based on orthogonal transformation only needs 7000 and 80,000 power traces, and the
guessing entropy reaches 1, which means that all bytes of the guess key are successfully
recovered. Compared with ridge regression and linear regression, our method reduces the
power traces required for key recovery by at least 30% and 20%, respectively. Gaussian
modeling method and cluster-based modeling method have a high guess entropy, which is
not enough to recover the correct key under the limited number of power traces.

To verify the modeling effect of the regression model under noisy conditions, this
section conducts modeling under the condition that the noise standard deviation is 4. It
can be seen from Figures 15 and 16 that since ridge regression coefficients occupy too
much space contributed by the original characteristic matrix, the convergence rate of
ridge regression guessing entropy is even lower than that of linear regression. Under the
condition of limited template matching curve, the guessing entropy of linear regression and
ridge regression does not reach 1. At this time, nonlinear regression based on orthogonal
transformation only needs 8000 and 10,000 power traces, and its guessing entropy reaches
1 to complete key convergence. By applying noise in the modeling stage and template-
matching stage, guess entropy shows that the Gaussian modeling method and cluster-based
modeling method are still insufficient to recover the correct key. The experimental results
show that the nonlinear regression based on orthogonal transformation proposed in this
paper has the optimal key guess efficiency whether modeling or template matching under
various noise scenarios.
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5.5. Guessing Entropy Experiment of Higher-Order Template Analysis

In order to verify the modeling effect of the high-order model of orthogonal trans-
formation nonlinear regression, this section constructs second-order, fourth-order, and
eighth-order templates based on five methods for key-guessing experiments, and also uses
guessing entropy to measure the efficiency of key guessing under the condition of 20, 30,000
and 150,000 modeling curves.

It can be seen from Figures 17–19 that the template-matching curve required for
guessing the key of the template constructed by the five methods increases exponentially
with the increase of the order. The guessing entropy curve of the second-order template
constructed by ridge regression and linear regression is intertwined, but with the increase
of the order, because the ridge regression coefficient occupies too much space contributed
by the original characteristic matrix, the guessing entropy of the fourth-order templates is
even higher than that of the linear regression. In the scenario of the fourth-order template,
the guessing entropy of nonlinear regression based on orthogonal transformation proposed
in this paper only needs 40,000 template curves to reach 1, while the linear regression needs
80,000, and the guessing entropy of 1.3125 does not converge to 1 when the ridge regression
is 100,000. The guess entropy of linear regression and nonlinear regression based on
orthogonal transformation is completely consistent at the eighth-order template. Although
ridge regression converges quickly when the template curve is insufficient, the guessing
entropy of linear regression and nonlinear regression based on orthogonal transformation
converges to 1 at 120,000 template curves. At this time, the guessing entropy of ridge
regression is 1.0625, until the guessing entropy of 140,000 template curves ridge regression
completely converges. The Gaussian modeling method and cluster-based modeling method
have a worse effect on guessing the key in higher-order template analysis. The guessing
entropy convergence speed of nonlinear regression based on orthogonal transformation,
whether in order 2, 4, or 8, with limited number of template-matching curves, reaches 1 at
the fastest time to complete the key convergence, indicating that the higher-order modeling
effect of nonlinear regression based on orthogonal transformation is optimal and stable.
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6. Conclusions

This paper discusses the irreversibility of the singular matrix in the high-dimensional
feature space at the template-construction stage in the linear regression template analysis,
and the data fitting effect of the regression model when the cryptographic algorithm is
masked. In this paper, a second-order template analysis method based on orthogonal
transformation nonlinear regression is proposed. Our method uses an orthogonal transfor-
mation to convert linear correlated variables into linear uncorrelated variables, which can
solve the irreversibility problem of singular matrix in linear regression analysis without
sacrificing the performance of regression estimation. In order to verify the data fitting of the
template constructed by orthogonal transformation nonlinear regression, the key recovery
efficiency and computational complexity under different noise conditions, different order,
and the different number of modeling curves and template matching curves are compared
on SAKURA-G. Experimental results show that the scheme has good universality and key
guessing efficiency in high-noise and high-order template analyses.
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