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Abstract: Zero-shot sketch-based image retrieval (ZS-SBIR) is an important computer vision problem.
The image category in the test phase is a new category that was not visible in the training stage.
Because sketches are extremely abstract, the commonly used backbone networks (such as VGG-16
and ResNet-50) cannot handle both sketches and photos. Semantic similarities between the same
features in photos and sketches are difficult to reflect in deep models without textual assistance. To
solve this problem, we propose a novel and effective feature embedding model called Attention Map
Feature Fusion (AMFF). The AMFF model combines the excellent feature extraction capability of the
ResNet-50 network with the excellent representation ability of the attention network. By processing
the residuals of the ResNet-50 network, the attention map is finally obtained without introducing
external semantic knowledge. Most previous approaches treat the ZS-SBIR problem as a classification
problem, which ignores the huge domain gap between sketches and photos. This paper proposes an
effective method to optimize the entire network, called domain-aware triplets (DAT). Domain feature
discrimination and semantic feature embedding can be learned through DAT. In this paper, we also
use the classification loss function to stabilize the training process to avoid getting trapped in a local
optimum. Compared with the state-of-the-art methods, our method shows a superior performance.
For example, on the Tu-berlin dataset, we achieved 61.2 + 1.2% Prec200. On the Sketchy_c100 dataset,
we achieved 62.3 + 3.3% mAPall and 75.5 + 1.5% Prec100.

Keywords: sketch retrieval; ResNet-50; attention; metric learning; feature fusion; triplet loss

1. Introduction

The goal of Sketch-Based Image Retrieval (SBIR) is to locate the desired photo in the
database, and hand-drawn sketches are used as queries. Potential users can search without
using a photo query; it is easier to define pose or orientation by sketch than by textual
description, which is really convenient. It is widely used in sketch-based scene search and
e-commerce-related fields. Hand-drawn sketches can be easily drawn using touch-screen
devices such as smartphones and iPads. For example, Brazilian researchers Leo Sampaio
et al. [1] proposed a scene designer. Scene Designer is a novel method for searching and
generating images using free-hand sketches of scene compositions, i.e., drawings that
describe both the appearance and relative positions of objects. Taking the drawn sketch
as a query, the retrieval system can return some relevant photos according to the user’s
intention. In contrast to the typical image retrieval problem [2], querying sketches and
retrieving photos in a sketch retrieval task use different domains. A more practical and
realistic environment was used to introduce the Zero-Shot Sketch-Based Image Retrieval
(ZS-SBIR) [3], where the category of the query sketch is unknown throughout training.

Both traditional VGG-16 [4] and ResNet-50 [5] have a strong ability to extract local
and global structural features. In recent years, researchers have also applied models with
good embedding abilities to sketch inspection, such as the Siamese CNN proposed by
German researchers Laura et al. [6], which is trained to learn descriptors encoding local
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spatio-temporal structures between the two input image patches. However, for the ZS-SBIR
task, the sketch is so abstract that sometimes even the human eye cannot distinguish it.
Three main factors limit the performance of ZS-SBIR: (1) The sketch is too abstract and lacks
texture features. Most current methods are not good at extracting fine-grained and abstract
image features. (2) There is a huge domain gap between sketches and photos, and their
feature distributions are very different. It is more difficult to train a joint embedding model.
(3) Semantic similarities between the same features in photos and sketches are difficult to
reflect in deep models without textual assistance. The most recent methods [7–12] use word
embeddings extracted from language models [13] as supervised signals to guide feature
fusion of sketches and photos. Existing approaches have focused on the feature fusion
problem. Other studies [14–18] use adversarial networks (based on complex sub-networks)
to smooth the domain gap. These efforts enhance the performance of this cross-domain
retrieval work.

However, because sketches are extremely abstract, the commonly used backbone
networks (such as VGG-16 [4] and ResNet-50 [5]) cannot handle both sketches and photos.
Semantic similarities between the same features in photos and sketches are difficult to
reflect in deep models. Therefore, a better feature extraction technique is required. We
suggest an end-to-end module termed Attention Map Feature Fusion (AMFF) to be the
backbone network for feature extraction, which is inspired by EGFF [19], ExFuse [20], and
ATTENTION [21]. We use multi-layer features, considering both global and local features,
and fuse them to produce rich features to better serve the ZS-SBIR objective. We fuse
multi-layer features that employ a similar approach to EGFF and ExFuse, where EGFF
employs high-level semantic features and low-level layer structure features for direct feature
extraction. However, the lack of any parameters and an excessive reliance on the ResNet-
50 network’s functionality make this architecture unsuitable for the extraction of sketch
features. We intend to extract features that incorporate both global and local information,
and the attention computation partially uses trainable parameters, which distinguishes our
technique from EGFF and ExFuse in a key way. Similar semantic features of sketches and
photos are aligned. We introduce a deep metric learning strategy to provide resilience and
accurate retrieval. We utilize a modified form of self-attention as our attention component,
since SIMAM [22], ATTENTION is computationally small compared to SE [23], CBAM [24],
and ECA [25]. Contrary to self-attention, this technique creates the attention graph using
data from the intermediate layer, which helps to instruct the model to concentrate on areas
with high attention scores during the feature extraction stage. To improve the ability to
extract features, we make certain unique alterations to the suggested method, which is
not just a combination of EGFF, ExFuse, and attention. Significant performance gains are
realized when comparing the proposed strategy to existing ones. To further investigate
our AMFF module, an ablation study on feature fusion and feature layer selection was
also conducted.

To eliminate the large domain gap between sketches and photos, we propose a cross-
modal triplet loss for ZS-SBIR that maps sketches and photos to a common semantic space,
as shown in Figure 1. We use two basic deep metric learning (DML) [26–28], such as
classification training and pairwise training. The former uses supervised information
from the training set to construct a deep classifier, which motivates the model to create
class-distinct deep embeddings for feature representations. We observe that previous work
on ZS-SBIR has mainly used this learning approach [9,10]. The latter is a direct one-to-one
comparison of attributes, consisting of an anchor image, a positive sample, and a negative
sample in a feature triplet. The model tries to push the anchor away from the negative
feature sample and bring the positive sample closer. The learned inter-class difference in
the depth embedding is increased by adding a second margin to the feature triplet [29].
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Figure 1. The illustration of our proposed model (a) Visualization of attention maps with different
feature layers obtained using the ResNet-50 backbone (both sketches and photos are presented).
(b) The triplet loss we construct can effectively reduce the domain gap.

The study contributions are summarized as follows:
1. We proposed the Attention Map Feature Fusion (AMFF) network. AMFF combines

the ResNet-50 network and the Attention network. With an excellent embedding ability, it
can align similar semantic features of different modalities.

2. We proposed a domain-aware triplets to optimize the entire model to address
the domain gap problem, which further narrows the modality gap with three types of
pair-wise learning.

3. Extensive experimental results on three popular datasets demonstrate that our
model outperforms the state-of-the-art by a significant margin.

2. Related Work
2.1. Deep Metric Learning

In recent years, the application of contrastive learning to self-supervised represen-
tation learning has made great progress. The application of contrastive learning in the
unsupervised field has made the deep model achieve incredible performances, such as that
of Prannay Khosla [30] of the famous American scientific research institution Google. The
self-supervised and unsupervised domains are extended to the fully supervised domain,
and a superior performance is obtained.

Self-supervised learning, which avoids the need to annotate large-scale data, is gaining
popularity. As in a related work by Ashish Jaiswal et al. [31], it aims to embed enhanced ver-
sions of the same sample that are close to each other while trying to push away embeddings
from different samples.

An efficient way to learn a distance metric between sample pairs isusing depth metric
learning. Convolutional neural networks are used in deep metric learning to extract the
samples’ deep features. In metric learning, there are three elements: positive samples
and negative samples. We must choose an anchor point, increase the Euclidean distance
between the anchor point and the negative sample, decrease the Euclidean distance with
the positive sample, and employ multiple loss functions. For example, contrastive loss [32]
and triplet loss [29,33] can only process two or three samples at a time, and only one
negative sample is selected. Lifted-structure loss [34] can select all negatives at the same
time. Use classification loss to explore the global relationship of each category, such as
softmax loss [35].
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2.2. Zero-Shot Sketch-Based Image Retrieval

ZS-SBIR is a zero-sample sketch retrieval task with a wide range of current practical
applications. The analogy in the test phase is not visible in the training phase. For example,
recent studies [3,12,15,17] explored representing images of different modalities in the same
semantic space, thus enabling cross-modal sketch retrieval. However, the huge modality
gap between sketches and photos poses a great difficulty for such exploration [16,36,37]. To
address this domain gap, relatively new approaches [9,10] introduce semantic information
to extract deep information from text semantics. However, this approach increases the
computational effort, the added text semantic information is uncertain and some texts
contain multiple semantics, which can easily lead the model to a bad local optimum. In
contrast to these methods, our model uses the current, more popular contrast learning
method to effectively address the modal domain divide. By reducing the distance between
identical labels and increasing the distance between samples with different labels, our
cross-modal triplet comparison method can fully exploit the relationship between sketches
and photos to reduce the domain gap.

2.3. Feature Fusion

Feature fusion aims to combine different levels of semantic features. Many early
works included related studies, such as fusing features from multiple intermediate layers.
ExFuse [20] uses features from adjacent layers to guide feature extraction. SimAM [22]
is based on an attention mechanism to fuse multi-layer features, which do not have any
parameters. However, since this approach uses the features of each intermediate layer
independently and does not connect the intermediate feature layers, this design does
not much improve the final retrieval performance. Our goal is to obtain embeddings
that contain both global and local features. We utilize global features to influence the
extraction of local features, which is key to achieving accurate and stable retrieval. The
recent work EGFF [19] uses energy strategy to achieve a combination of low-level structural
features and high-level semantic features to guide the embedding of the most total features.
However, because it does not involve any learnable parameters, his representation ability
is insufficient for guiding the final feature embedding. Our method contains learnable
parameters, which guide the final feature embedding.

3. Methodology
3.1. Problem Description

In the ZS-SBIR task, the dataset was split into two parts: training and validation.
We trained the model in the training set and then tested our model in the validation
set. The categories in the validation set are not available in the training set, where the
training set is represented as T seen = {P seen ,Sseen }. The test set is represented as
T unseen = {Punseen ,Sunseen }, where P represents the photo and S represents the sketch.
We definedP seen =

{(
Pj, yj

)
| yj ∈ Cseen }N1

j=1 and Sseen = {(Si, yi) | yi ∈ Cseen }N2
i=1, where

yi denotes the image classes, and Cseen denotes the existing categories. N1 and N2 represent
the number of photos and sketches. C denotes the set of categories of images or sketches.

We extracted sketches and images from the training set and use the corresponding
labels as supervised information to direct the model to excellent feature embedding. In the
testing phase, a sketch Query ∈ Sunseen that needs to be queried is given, where Query is
not visible in the training set, and his label is y ∈ Cunseen . If Cunseen denotes the category in
the test set, such a category does not exist in the training set, and we considered a retrieval
to be successful if the retrieved image label is the same as the sketch label that needs to be
queried. An overview of our model is given in Figure 2.
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Figure 2. An overview of our proposed ZS-SBIR method.

3.2. Model Structure

We used the novel AMFF method to conduct feature embedding. We combined
the embedding capability of the ResNet-50 network with the learning ability of the self-
attention mechanism of the ATTENTION network to enable the model to learn useful
features efficiently.

We used two forms of triplet (intra-modal triplet and hybrid triplet) and a gradient-
based weighting module to complement the cross-modal triplet. The ternary loss largely
reduced the domain gap, while we used cross-entropy loss to optimize the model and
avoid bad local optima. Finally, the total embedding loss was calculated.

We used a single-stream network for feature extraction, mapping sketch and photo
inputs into the same embedding space, as shown in Figure 2. The backbone network
received the batch of carefully sampled sketches and photos to extract multilayer features,
and then the AMFF module was applied for feature fusion of the different feature layers.
Then, the model embedding was optimized using the basic method of deep metric learning
(DML). The model embedding was optimized by the fully connected layers being converted
to the same number of class dimensions for classification training, which will prevent the
model from falling into a bad local optimum. This also enables further optimization of the
model embedding.

3.2.1. Attention Map Feature Fusion

Attention Map Feature Fusion (AMFF) combined the ResNet-50 [5] network and the
attention network, respectively, recording the original features of different residual blocks
and then using the output of the residual blocks as the input of the attention network. As
shown in Figure 3, the attention network output the attention map, and then the output
of the three different layers are summed to obtain the total attention map, and finally the
new feature embedding was obtained by splicing with the output of the original feature
layer. Finally, L2 normalization was employed to derive the retrieval task’s embedding
dimension. It is worth noting that we added the attention maps of the three residual blocks
and then stitched them together instead of using the original attention maps of the three
residual blocks alone.

The feature extraction part is ResNet-50, where “Conv-1” denoted the first convo-
lutional block of the backbone network and “blocks-1, 2, 3, and 4” denoted the residual
blocks of the backbone network. The purpose of using the attention module to calculate
the attention score of the residual blocks was to enhance and guide the final feature embed-
ding using the semantic features of the intermediate layers, thus improving the retrieval
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performance of the whole model. The dashed box in the lower left corner was the data
stream of the feature map.

Figure 3. The general structure of the AMFF model.

3.2.2. Attention

The AMFF module uses the transformer network of Vaswani et al. [21], and the dashed
line in the lower left corner of Figure 3 shows the structure of the self attention. We used
a convolution kernel size of 7 × 7 and a step size of 7. We linearly embedded each of the
fixed-size patches from the feature map before feeding the resulting sequence of vectors
to the transformer [38]. The sigmoid activation function was used after regularizing the
outcome. The transformer’s attention mechanism enables the network to select which
components to emphasize. The formulation of each Multi-Head Attention (MHA) layer is
as follows:

SHA(k, q, v) = softmax
(

αqkT
)

v. (1)

MHA(k, q, v) =
[
SHA0

(
kWk

0 , qWq
0 , vWv

0

)
, . . .

SHAm

(
kWk

m, qWq
m, vWv

m

)]
W0

. (2)

where k, q, and v represent the Single-Headed Attention (SHA) module’s Key, Query, and
Value inputs, respectively. The module determines how closely two feature pairs—Query
and Key—are related, normalizes these scores, and then utilizes them as a projection matrix
for Value features. The Multi-Head Attention (MHA) module combines the outputs of
several single-heads and projects the outcomes to the lower dimension, where α is the
scaling constant and W is the learnable weight matrix.

3.2.3. Domain Aware Triplet

We improved the domain-aware triplet(DAT), and based on the idea of self-supervision,
we improved the ordinary triplet into Lsin triplet and Lmul triplet. It is worth noting that
both positive and negative samples in Lsin include two different modalities, as shown in
Figure 4.
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Figure 4. Our improved DAT triplet loss, where a represents the anchor point, p represents the
positive sample, and n represents the negative sample.

Single modal triplet. The basic method of metric learning consists of choosing an
anchor point and its positive and negative samples, increasing the distance between the
anchor point and the negative samples and decreasing the distance between the anchor
point and the positive samples, where both the anchor point and the positive and nega-
tive samples are from the same modality (ma=mn=mp) and the loss function is defined
as follows:

Lsin =
∣∣∣E(xs

a, xs
i )− E

(
xs

a, xs
j

)∣∣∣
+
∣∣∣E(xp

a , xp
i

)
− E

(
xp

a , xp
j

)∣∣∣+ γ·
(3)

where E represents the Euclidean distance, a represents the anchor point, s represents the
sketch, p represents the photo, ya = yi 6= yj.

Multimodal triplet. The main challenge in sketch retrieval is the domain gap, and
learning discriminative feature embeddings is also crucial. The model was asked to discrim-
inate whether the current input image is a sketch or a photo. Earlier works directly solved
this problem using classification training, which does not make the model discriminative
due to the huge domain gap problem, and the retrieval results of this method are very poor.
Later on, generative adversarial networks were used to help the model learn discriminative
properties. This method is difficult to train with a large number of parameters. Additionally,
due to the significant domain difference between sketches and photos, generative adver-
sarial networks may be used to degrade the expressiveness of feature embedding, further
degrading SBIR performance. To address the modal discrepancy issue while maintaining
inter-class variances, we designed hybrid triplet loss. An anchor photo, a cross-modal
modal positive example image, and a homomodal negative example image make up the
hybrid triplet. The corresponding loss function is written as:

Lmul =
∣∣∣E(xs

a, xp
i

)
− E

(
xs

a, xs
j

)∣∣∣
+
∣∣∣E(xp

a , xs
i

)
− E

(
xp

a , xp
j

)∣∣∣+ γ
. (4)

The above loss function aims to reduce the domain gap of cross-modality E(xa, xi),
where xa and xi are from different modality (ma 6= mi). It also raises the between-class
disparity E

(
xa, xj

)
, where xa and xj are from same modality (ma = mi). Hybrid triplet loss

suppresses the domain gap while maintaining between-class variation.
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3.3. Training Approaches
3.3.1. Embedding Learning

Normalized softmax loss [39], which is widely used in metric learning [25], has
excellent embedding abilities, especially for the ZS-SBIR task, which guarantees that images
from different modalities can be embedded in a common semantic space. We assign a
learnable agent (represented as a vector) to each category, and our goal is to embed sketches
and photos into the category agents and as far as possible from other agents. The objective
function is (5).

Lnorm = − log

 exp
(

xT py
t

)
∑z∈Z exp

(
xT pz

t

)
. (5)

where Z is the set of all agencies, Py is the agency of its category, and t is the temperature
scale. as suggested in [39], we have set t = 0.05.

Classification training [40], the main purpose of this training was to stabilize the
training process so that the model achieves a steady state in feature embeddings of different
dimensions, and we used classification loss to store all classes of agents. Because pairwise
training focuses on the internal relationship between each batch size, we needed classifica-
tion training to stabilize the training of the model and avoid entering a bad local optimum.
Classification training uses cross-entropy loss, whose formula is defined as follows:

Lcls = −
N

∑
i=1

log
exp

(
α>yi

fi + βyi

)
∑j∈Cseen exp

(
α>j fi + β j

) . (6)

where α and β is the weight and bias of the classifier, and N denotes the number of samples
in a training batch.

3.3.2. Pairwise Training

Pairwise training [41], since the sketch and the photo in ZS-SBIR are from different
modalities, we aimed to make the anchor point closer to his positive example image and
further from his negative example image, i.e., the sketch has a smaller Euclidean distance
from the image with the same label and a larger Euclidean distance from the image with
different labels.

E
(

xs
a, xp

i

)
< E

(
xs

a, xp
j

)
, ya = yi 6= yj. (7)

where E denotes the Euclidean distance, xa denotes the anchor image, y denotes the
category label, and s and p represent the sketch and photo, respectively.

To reduce the Euclidean distance between the anchor point and the positive example
image, the distance between the anchor point and the negative example image should
be increased. We propose a cross-modal method for reducing E

(
xs

a, xp
i

)
while increasing

E
(

xs
a, xp

j

)
. It is worth noting that the positive and negative example images of the anchor

point are different from the modalities of the anchor point. They can also come from the
same modality. To achieve the above goal, we introduced a cross-modal triplet where
both sketches and photos are selected as anchor points. The cross-modal triplet loss is
defined as:

Lcro =
∣∣∣E(xs

a, xp
i

)
− E

(
xs

a, xp
j

)∣∣∣
+
∣∣∣E(xp

a , xs
i

)
− E

(
xp

a , xs
j

)∣∣∣+ γ·
(8)

where xa and xj are from various groups, whereas xa and xi are both from the same
category. For improved categorization in the embedding space, a positive margin parameter
was added.
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3.3.3. Objective and Optimization

The overall optimization function is (9). We seek the minimum value of L

L = Lnorm + λ(Lcls + Lsin + Lmul)· (9)

where λ is the hyperparameter that balances the performance of the model. More operation
details are provided in the whole training procedure, which is presented in an Algorithm 1.

Algorithm 1 Overall training procedure

Input: training set T seen = {Pseen ,Sseen }; batch size N; hyperparameter of regularizer λ;
Parameter: Model parameters F (T seen , θ); classification layer (W, b)

1: Freeze classification layer parameters
2: for each iteration do
3: for each mini batch do
4: Calculate Lnorm Equation (5), Lcls Equation (6), Lsin Equation (3), Lmul

Equation (4)
5: Calculate L = Lnorm + λ(Lcls + Lsin + Lmul) Equation (9)
6: Update parameters with ∇L by AdamW
7: end for
8: end for
9: return feature extractor F (T seen , θ)

Output: Model parameters F (T seen , θ);

4. Experiments

In order to verify the efficiency of the method, we evaluated it using three pop-
ular datasets, namely Sketchy Extended [42], Tu-berlin Extended [43] and Quickdraw
Extended [7]. As shown in Figure 5, the three datasets have increasing levels of abstraction.

4.1. Datasets

Sketchy Extended dataset consists of approximately 75,000 sketches and 12,500 images
with a total of 125 different classes, and [44] randomly selected 25 classes as the validation
set and 100 classes as the training set to train the model using the weights pre-trained
in ImageNet [45]. However, the results show [3] that some categories in the validation
set appear in the ImageNet pre-training data and, to avoid the influence of pre-training
belonging, we selected 21 categories that do not appear in the ImageNet pre-training data
for the validation set, and 104 categories of images for the training data. We conducted
experiments in both the different validation categories of the same dataset. To distinguish
the two, we named the former Sketchy_c100 and the latter Sketchy.

Tu-berlin Extended dataset is a challenging dataset with 250 different classes, and Liu
et al. [14] extended this dataset with about 200,000 photos from the ImageNet dataset. The
Tu-berlin Extended has only 20,000 sketches, so it is a very unbalanced dataset, with each
sketch corresponding to ten photos. We followed the protocol to construct the training
and validation sets [15], and we randomly selected 220 categories for the training set and
30 categories for the validation set (containing at least 400 images).

Quickdraw Extended dataset is a highly abstract dataset, containing a large number of
sketches and photos. It has extremely low recognizability, which poses a greater challenge
to the model. We followed a similar protocol to the partitioning proposed by Yelamarthi
et al. [33], with a total of 110 different categories. We randomly selected 80 categories as
the training set and 30 categories as the validation set.

The Sketchy, Tu-berlin, and Quickdraw datasets have increasing levels of abstraction.
It is worth noting that, despite being the most abstract dataset, Quickdraw sketches can
still be identified.
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Figure 5. Qualitative comparison of Sketch datasets, with columns showing examples belonging to
the same class.

4.2. Evaluation Metrics

In the sketch retrieval (SBIR) task, precision and average precision are important
measures of model performance, where precision (Prec@K) indicates the proportion of
retrieved K photos (i.e., 100 or 200), of which the correct retrievals are among the total
retrievals, and average precision (mAP@K), which calculates the average retrieval results
for K photos.

AP@K =
K

∑
i=1

P@i× γ(i)
N

· (10)

N is the total number of relevant documents and γ(i) is 1 if the i ranked result is
relevant; otherwise, it is 0. mAP@k is the mean AP@k of all queries.

4.3. Implementation Details

We used the Pytorch development framework with Ubuntu 20.04 LTS. Using an
NVIDIA GeForce RTX 3090 GPU, we used AMFF pretrained on ImageNet as the backbone
network, with learning rate set to 1× e−5, learning rate decay set to 5× e−4, batch size
set to where the hyperparameters λ = 0.8, and the hyperparameter α is set to 0.2 for all
ternary losses.

4.4. Comparing with the State-of-the-Arts

We compared our model with some excellent SBIR, ZSL, and ZS-SBIR techniques.
Examples include the earlier results ZSIH [44] and Doodle2Search [7], both of which
utilize a fairly simple framework that uses a single autoencoder or reconstruction loss
to merge semantic information and visual features to obtain excellent embedding results.
Recent works employ more complex frameworks, such as OCEAN [10] and SketchGCN [9].
To learn a shared semantic space, they combined generative adversarial networks with
autoencoders. Another recent work, EGFF [19], combines low-level structural features
and high-level semantic features to guide feature embedding, making the final feature
embedding more linearly separable. Our approach was compared with two models that
use a deep metric learning (DML) approach, e.g., MATHM [41], DSN [40], both of which
use the classical depth metric learning approach for model optimization. To be fair, some of
our comparison experiments were performed using the same setup, and some of the earlier
experimental results are cited in other papers.

In most experiments, we showed better performance than other models, and we even
outperformed many approaches using text semantic-assisted models. We also compared
different embedding dimensions. We used an embedding dimension of 512 dimensions,
and we also conducted related experiments in 64 dimensions, with both showing excellent
performance. The comparison results in the Sketchy and Tu-berlin datasets are shown in
Table 1. Table 2 shows the comparison results in the Quickdraw dataset.
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Table 1. Comparison of retrieval performance with existing mainstream methods (where best
performance is shown in bold).

Task Methods Dimention
Sketchy_c100 Sketchy Tu-Berlin

mAP@all Prce@100 mAP@200 Prec@200 mAP@all Prce@100

SBIR GN Triplet (2016) [42] 1024 20.4 29.6 - - 17.5 25.3
DSHb (2017) [14] 64 17.1 23.1 - - 12.9 18.9

ZSL SAE (2017) [46] 300 21.6 29.3 - - 16.7 22.1
FRWGAN (2018) [44] 512 12.7 16.9 - - 11.0 15.7

ZS-SBIR

Doodle2Search (2019) [7] 4096 - - 46.1 37.0 10.9 -
Sake (2019) [8] 512 - - 49.7 59.8 47.5 59.9

SketchyGCN (2020) [9] 1024 38.2 53.8 - - 32.4 50.5
OCEAN (2020) [10] 512 46.2 59.0 - 33.3 46.7
PCMSN (2020) [12] 64 52.3 61.6 - - 42.4 51.7
SBTKNet (2021) [18] 512 55.2 69.7 50.2 59.6 48.0 60.8

DSN (2021) [40] 512 58.1 70.0 - - 49.3 60.7
NAVE (2021) [17] 512 61.3 72.5 - - 48.4 59.1

MATHM (2021) [41] 512 62.9 73.8 48.5 58.1 46.1 59.8
EGFF (2022) [19] 512 62.3 75.5 51.7 61.2 46.2 60.4

BDA-SketRet (2022) [47] 64 - - 43.7 51.4 37.4 50.4
FFMLN (ours) 64 55.9 67.8 46.1 56.2 44.0 54.4
FFMLN (ours) 512 65.6 77.0 53.6 62.4 49.3 61.9

Table 2. For the ZS-SBIR task, the performance of our proposed method on the Quickdraw Extended
dataset; the best performance is shown in bold.

Methods Dimention
Quickdraw

mAP@all mAP@200 P@200

CVAE (2018) [3] 4096 0.30 - 0.30
Doodle2Search (2019) [7] 4096 7.52 9.01 6.75

SBTKNet (2021) [18] 512 11.9 - 16.7
FFMLN (ours) 64 26.7 29.3 39.7
FFMLN (ours) 512 28.8 34.5 45.1

4.5. Qualitative Results

We have conducted relevant validation experiments on three different datasets, and
we show part of the results, including successful or failed cases, among which we show the
top 8 results for the Sketchy dataset and the Tu-berlin dataset, and top 10 results for the
retrieval of the Quickdraw dataset. Figures 6 and 7 show the retrieval results for Sketchy
and Tu-berlin, respectively, and Figure 8 shows the retrieval results of Quickdraw. As
can be seen from the figures, our method can retrieve exactly the right results when the
retrieved target has obvious appearance characteristics and vice versa. If the retrieved
sketch does not have a clear appearance, many wrong results may be retrieved.

As shown in Figure 6, green borders indicate correct retrieval results and incorrect
retrieval results are indicated by red boxes. As shown in the figure, rows 1, 2, and 4 are
completely correct, and the third row shows some incorrect results.

Correct results are shown with green borders Figure 7, while incorrect results are
shown with red borders. The top three rows are all correct, and the fourth row is par-
tially rcorrect.



Entropy 2023, 25, 502 12 of 17

Figure 6. Top-8 results on the Sketchy dataset.

Figure 7. Top-8 retrieved by our model on Tu-berlin Extended datasets.

Figure 8. The top 10 ZS-SBIR results were retrieved from the Quickdraw Extended dataset.

Correct results are shown with green borders Figure 8, while incorrect results are
shown with red borders. The first row is correct in all cases. The second, third, and fourth
rows have varying degrees of errors, with the fourth row showing the most incorrect results.

The qualitative results are shown in Figures 6–8. We created a visualization of four
different sketches that were randomly selected from each dataset. The visualization results
illustrate the effectiveness of our proposed method. For example, Figure 6, the Sketchy
Extended dataset, retrieved the correct photos for “banana”, “horse”, and laptop in rows
1, 2, and 3. For some difficult cases in Figure 7, such as the sketch “pizza” in row 4
of the Tu-berlin Extended dataset, it is very difficult to distinguish “pizza” because its
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appearance is not obvious and there are many similar photos. For example, as the level
of sketch abstraction increases, the query sketch will be more ambiguous and it will be
increasingly difficult to obtain the correct retrieved photo. For example, in Figure 8, the
second and fourth rows have very serious retrieval errors because many photos have very
similar appearance features, and the more abstract the query sketch is, the more difficult
it is to retrieve. Therefore, for more challenging and abstract cases, In Figure 8, row 2,
“chair,” the 6th photo retrieved belongs to “camel,” and we think this failure is because the
retrieved error results are visually similar to the given query sketch. They share a common
search space.

4.6. Ablation Studies

We also explored different combinations of feature layers on the Sketchy Extended
dataset, and the results are shown in Table 3. The results show that the best results can be
obtained by combining higher-level semantic features with lower-level semantic features
(using features from levels 2, 3, and 4). The attention map based on ResNet-50 for different
feature layers is shown in Figure 9. We can see that the model in the lower-level features
(i.e., levels 2 and 3) is not fully focused and has numerous spurious signals, as shown in the
yellow rectangular box in the figure, while the higher-level features (feature level 4) focus
only on the distinguished regions and ignore the local regions (red box). Our proposed
method pays more attention to detail by combining features at different levels and, with an
increasing range of attention, more useful features can be extracted from sketches or photos.

Table 3. The results obtained by using different optimization functions (embedding dimension is 512).

Loss Function
Sketchy_c100 Tu-Berlin

map@all prec@100 map@all prec@100

Lnorm 61.01 75.23 44.73 59.47
Lnorm + Lcls 61.96 75.55 46.57 60.39

Lnorm + Lcls + Lin 64.22 76.22 47.91 60.85
Lnorm + Lcls + Lhyb 65.52 77.11 48.92 61.53
FFMLN (ours) 65.63 77.05 49.30 61.90

Figure 9 shows the results obtained by fusing different layers. The results show that
optimal results are achieved when fusing layers 2, 3, and 4.

To verify the validity and importance of each different component, we first traiedn a
shared semantic space containing only classification losses. Then, we optimized the model
with each of the three different triplet loss functions. The results show that each type of
triplet loss improves the performance of the model by different magnitudes. As seen in
Table 3, the intra-modal triplet loss and cross-modal triplet loss do not improve mAP and
Prec significantly, while the mixed triplet loss outperforms the other loss functions and is
close to the optimal result. This implies that the mixed triad loss is more important than the
cross-modal triad loss in our model. However, using these three loss functions separately
does not lead to the best performance. The last row uses all loss functions to achieve the
best performance, and it is worth noting that the best performance was achieved using only
the mixed triplet prec@100 in the Sketchy dataset.

Due to the particularity of our method, the complexity of our method is high. In order
to evaluate the relationship between revenue and model complexity, we compared several
works in the last two years on the Tuberlin dataset. We used an RTX 3090 GPU with a batch
size of 64. As can be seen from the results, our method does not sacrifice much training and
inference time. In future research, we will reduce the model’s complexity to better balance
the relationship between complexity and benefit, as shown in Table 4.
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Figure 9. We visualize the attention map of our proposed backbone network. The model in the
lower-level features (i.e., levels 2 and 3) is not fully focused and has numerous spurious signals
(yellow box), while the higher-level features (feature level 4) focus only on the distinguished regions
and ignore the local regions (red box).

We introduced the parameter λ in order to balance the performance of the model.
We studied the impact of different λ on performance. We conducted experiments on the
Sketchy and Tu-berlin. We took a different λ value, and the Figure 10 showed that the best
performance was obtained when λ ∈ (0.7, 1).

Table 4. Assess the relationship between yield and model complexity. Inference time represents the
number of images per second that can be processed in our operating environment.

Method Parameter Convergence Training Time Inference Time mAP@all

EGFF (2022) [19] 56.19 M 10 119.8 min 286 46.2
DSN (2021) [40] 54.36 M 16 346.1 min - 49.3

Ours 290.1 M 6 81 min 278 49.3

0.2 0.4 0.6 0.8 1
58

60

62

64

66

λ

Pr
ec

@
10

0

Tu-berlin
Sketchy

Figure 10. Parameter sensitivity analysis. The blue part represents the results on the Tu-berlin dataset,
and the green part represents the results on the Sketchy dataset.

In order to verify the validity of AMFF, we used the same method for training and
compare several major embedding networks. The results show Table 5 that our AMFF
is effective.
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Table 5. Overview of Feature Embedding Capabilities.

Task Embedding Method
Sketchy_c100 Tu-Berlin

Prce@100 mAP@all

ZS-SBIR

VGG-16 59.8 36.9
CSE_ResNet-50 73.8 46.1

EGFF 75.5 47.2
Siamese CNN 73.1 46.5
AMFF (ours) 77.0 49.3

5. Limitation

Our method had an excellent performance on the Sketch and Tu-berlin datasets but did
not perform well on the Quickdraw dataset. We speculate that this dataset is too abstract,
which causes the first residual block of the ResNet-50 network to extract meaningless
features, thus leading to the failure of the attention network, which we will explore in
subsequent work. In addition, since our introduction of the attention network leads to
an increase in the number of model parameters and computational complexity, we will
explore simplifying the model to obtain a better performance in our subsequent work to
address this problem.

6. Conclusions

In this paper, we propose a useful network for ZS-SBIR. First, we propose the AMFF
model as a backbone network. This approach enhances the embedding capability of the
model by combining the efficiency of the ResNet-50 network with the representation
capability of the attention network. Second, we used classification loss to solve the stability
problem during training and avoid bad local optima, and finally, we constructed a modality-
aware triplet with enough positive and negative samples to smooth the domain gap. We
conducted extensive experiments on three popular datasets, namely, Sketchy, Tu-berlin, and
Quickdraw. Experiments show that our method achieved the performance of the current
best methods.
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