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Abstract: This paper presents results concerning mechanistic modeling to describe the dynamics and
interactions between biomass growth, glucose consumption and ethanol production in batch culture
fermentation by Kluyveromyces marxianus (K. marxianus). The mathematical model was formulated
based on the biological assumptions underlying each variable and is given by a set of three coupled
nonlinear first-order Ordinary Differential Equations. The model has ten parameters, and their
values were fitted from the experimental data of 17 K. marxianus strains by means of a computational
algorithm design in Matlab. The latter allowed us to determine that seven of these parameters
share the same value among all the strains, while three parameters concerning biomass maximum
growth rate, and ethanol production due to biomass and glucose had specific values for each strain.
These values are presented with their corresponding standard error and 95% confidence interval.
The goodness of fit of our system was evaluated both qualitatively by in silico experimentation
and quantitative by means of the coefficient of determination and the Akaike Information Criterion.
Results regarding the fitting capabilities were compared with the classic model given by the logistic,
Pirt, and Luedeking–Piret Equations. Further, nonlinear theories were applied to investigate local
and global dynamics of the system, the Localization of Compact Invariant Sets Method was applied
to determine the so-called localizing domain, i.e., lower and upper bounds for each variable; whilst
Lyapunov’s stability theories allowed to establish sufficient conditions to ensure asymptotic stability
in the nonnegative octant, i.e., R3

+,0. Finally, the predictive ability of our mechanistic model was
explored through several numerical simulations with expected results according to microbiology
literature on batch fermentation.

Keywords: asymptotic stability; batch fermentation; in silico experimentation; Kluyveromyces marxianus;
nonlinear data fitting; nonlinear mechanistic model

1. Introduction

Alcoholic fermentation is an anaerobic process that transforms sugars like glucose
or fructose into ethanol and carbon dioxide. Several yeast species are used commonly in
this process, e.g., Kloeckera, Hanseniaspora, Candida, Pichia, Kluyveromyces, and Saccharomyces
among others. The growth rate of these microorganisms has an ultimate effect on the
sensorial characteristics of the final product, which can be positive or negative depending
on the yeast used [1].

Overall, yeasts are indispensable for biotechnological processes such as wine and
beer production [2]. In this research, we focus on investigating glucose consumption and
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ethanol production from several strains of Kluyveromyces marxianus (K. marxianus). This
yeast has a great potential for alcoholic fermentation due to its intraspecific characteristics
such as higher specific growth rates, the ability to grow on various substrates, and tolerance
to high temperatures [3–5]. Further, Kluyveromyces sp. produces aromatic compounds such
as fruity esters, carboxylic acids, ketones, furans, and other alcohols in liquid fermentation
such as 2-phenyl ethanol whose sensorial characteristics can influence the quality of wine,
distilled drinks, and fermented foods [6]; refer to Fonseca et al. for an extensive review on
the biotechnological potentials of K. marxianus [4,6].

Concerning industrial applications, fermentation is commonly performed in batch
culture, which brings certain advantages such as the reduction of contamination risk, in
addition to the fact that a large capital investment is not necessary since high-priced pro-
duction equipment is not required compared to a continuous culture process [7]. Batch
process implies that yeasts are incubated in a closed container under controlled conditions
with a culture medium composed of the necessary nutrients [8]. Hence, biomass cannot
grow indefinitely and four phases have been identified in its dynamics, i.e., lag phase,
exponential growth, stationary state, and death phase. While this process is carried out, the
substrate is consumed and converted into the product, e.g., ethanol produced by sugars
such as glucose [9]. Therefore, properly identifying the time interval of these phases as well
as predicting the maximum product concentration that could be produced from the initial
concentrations of both substrate and biomass may help to optimize production costs on
the resulting product of several applications. The latter may be achieved by mechanistic
modeling through predictive microbiology, which can be considered a powerful tool to
investigate and summarize the overall effects of varying conditions and environmental
factors within food formulation and processing [10]. Further, mathematical models could
aid in gaining insights concerning microbial food safety and quality assurance of increas-
ingly complex food products [11,12], as well as estimating shelf life and forecasting food
spoilage [13,14].

Mathematical models in predictive microbiology can be classified according to differ-
ent criteria, uses, and functionalities that are not mutually exclusive. Based on the type
and number of variables, models are classified into primary, secondary, and tertiary; they
can also be differentiated on the basis of their mathematical background as mechanistic or
empirical [15], and they can be categorized into structured and unstructured conforming
to the complexity of the chemical compounds of the biomass [16]. Primary models are
those that represent biomass growth dynamics as a function of time, the main equations in
the literature are the exponential functions of Gompertz [17] and Vazquez-Murado [18],
the logarithmic function of Baranyi et al. [19] and the cubic model of Garcia et al. [20].
All models are described by parameters such as maximum growth rate [µmax], lag time
[L], and both initial [X0] and maximum biomass [Xmax] Concentrations, while secondary
models relate to the latter with environmental conditions such as temperature and pH,
and other variables such as substrate and product concentrations over time, e.g., equations
of Monod [21], Teisser [22], Haldane [23], and Moser [24], which aim to describe biomass
growth dynamics as a function of substrate concentration and have been widely used to
investigate bacterial growth [25]. Tertiary models are the result of combining primary
and secondary models through the use of computer tools that allow predictions regarding
the growth or death of microorganisms in food when different environmental conditions
are combined [26]. Concerning the second classification mentioned, mechanistic models
are formulated by means of theoretical bases and provide an interpretation of microbial
growth in terms of known processes and empirical models are usually composed of poly-
nomials of the first or second degree and pragmatically describe the data with convenient
mathematical relationships, this does not usually give information on precise responses
of microorganisms, because they do not take into account known processes [27]. Finally,
according to the third category described, unstructured models consider biomass only
as a chemical compound in a culture and its dynamics is described by simple models,
while structured models also take into account changes in the internal cellular structure of
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biomass in terms such as the content of RNA, enzymes, reagents, metabolism and prod-
ucts [28]. The Gompertz, Vazquez-Murado, Baranyi and Garcia models, mentioned above,
are also classified as unstructured models since biomass is considered a variable described
only by its concentration. Mathematical models used by Sansonetti [29], Lei [30], and
Steinmeyer [31] are classified as structured because they describe the growth of biomass
considering the intracellular reactions produced by its metabolism.

Thus, it is important to highlight that in a batch fermentation process, multiple re-
actions occur, so the adaptability and evolution of microorganisms in short periods and
changes in environmental conditions usually characterize this type of process, consequently,
the modeling of these systems is complex due to time-varying characteristics of biological
systems, resulting in nonlinear systems dynamics [28]. Hence, a mathematical model
formulated from a system of nonlinear differential equations will allow the application
of nonlinear systems control methods to optimize the process so that the characteristics
of the final product can be predicted when the environmental conditions of the culture
are controlled and the initial conditions of biomass, substrate, and product values are
known. It is worth mentioning that most of the models found in the literature focus on
the yeast Saccharomyces cerevisiae since it is one of the most used in the industry; however,
biotechnological opportunities have been found in non-Saccharomyces yeasts because
they have metabolic characteristics that lead to the production of compounds of interest.
Therefore, it is important to model the growth of K. marxianus because of the great potential
in the production of esters compounds of industrial importance [32]. Thus, in this paper,
we applied mechanistic and computational modeling to formulate a system of three cou-
pled nonlinear first-order Ordinary Differential Equations (ODEs) that describe dynamics
between biomass, glucose (substrate), and ethanol (product) concentrations over time.
Mechanistic modeling allowed us to provide both qualitative and quantitative descrip-
tions concerning the relationships of biomass growth, glucose consumption, and ethanol
production from 17 strains of K. marxianus, while computational modeling was used to
fit experimental data from these three variables and establish numerical values for each
parameter of the mathematical model. Further, nonlinear theories such as the Localization
of Compact Invariant Sets (LCIS) method and Lyapunov’s Stability Theory were applied to
provide a complete analysis of the local and global dynamics of our proposed biological
system [33].

2. Materials and Methods

This section provides all the information concerning the experimental data of biomass
growth, substrate consumption and ethanol production, i.e., karyotypes of the K. marxianus
strains with identifiable chromosomal differences among them, environmental conditions,
chemical characteristics of the medium, lab equipment used for measurements, and periods
for each measurement, then the mathematical model is formulated and each equation as
well as values and units of parameters are described. This section concludes by describing
the procedure to approximate the experimental data and to fit the numerical values of each
parameter by designing an algorithm in Matlab.

2.1. Experimental Data: Culture Medium and Analytical Techniques

Experimental data was obtained from alcoholic fermentation in batch culture by
K. marxianus, 17 strains with different genetic profiles were incubated in 20 g/L of yeast
extract peptone dextrose agar at 30 ◦C in order to study their kinetic growth, glucose
consumption and ethanol production. Codification and origin of studied karyotypes of
K. marxianus are identified by Páez et al. in [34], where 15 strains were obtained from
different places of México, and they were isolated from agave fermentation for mezcal
production, in addition to 2 reference strains that were isolated from pozol (CBS6556) in
México, and from yoghurt (CBS397) in Netherlands.

Characteristics of the chemically defined medium are given as follows: glucose 20 g/L,
KH2PO4 3 g/L, (NH4)2SO4 3 g/L, Na2HPO4 1.49 g/L, glutamic acid 1 g/L, MgCl2 heptahy-
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drate 0.41 g/L, ZnCl2 0.0192 g/L, CuCl2 0.0006 g/L, MnCl2 0.044 g/L, CoCl2 0.0005 g/L,
CaCl 0.0117 g/L, FeCl2 0.011 g/L, (NH4)6Mo7O24 0.004 g/L, H3BO4 0.0030 g/L, aminoben-
zoic acid 0.0010 g/L, myo-inositol 0.1250 g/L, nicotinic acid 0.0050 g/L, pantothenic acid
0.005 g/L, pyridoxine 0.0050 g/L, thiamin HCl 0.005 g/L, biotin 0.000024 g/L [35]. This
medium was used to culture the strains for biomass development with agitation, for the
conservation of the strains, plates with the same medium with 20% agar were used and
stored at 4 ◦C.

Biomass concentration was measured with a spectrophotometer UV-VIS DR 6000
(HACH, Loveland, CO, USA) by optical density at 600 nm, values in g/L were obtained
relating optical density with a calibration curve of the dry weight of K. marxianus. For glu-
cose consumption and ethanol production by High-Performance Liquid Chromatography
(HPLC series 1200, Agilent Technology, Palo Alto, CA, USA), a BIORAD HP-87H+(8%) ion
exchange column was used, in an AGILENT® 1200 series equipment, with H2SO4 0.005
N as mobile phase, at a flow of 0.5 mL/min, the column temperature was 60 ◦C, and the
Refractive Index detector temperature was 60 ◦C. The injection volume of 5 µL, calibration
curves were made with glucose and ethanol Sigma Aldrich at 99% purity or higher, and a
determination coefficient higher than 0.99 for each compound [36,37].

Fermentation was made in duplicate for every strain and samples were taken each
hour for 13 consecutive hours. Two samples were taken every hour for each variable in the
time interval of the process where t goes from 0 to 13, then the average value of the two
measurements was computed. Therefore, each variable, i.e., biomass [x(t)], glucose [y(t)],
and ethanol [z(t)], has 14 observations with a total of 42 experimental data points (n) for
each K. marxianus strain.

2.2. The KM Mechanistic Model

The KM mechanistic model is proposed to describe the dynamics of alcoholic fermen-
tation. This is a biochemical process carried out by yeasts (also known as biomass), to
transform sugars such as glucose into ethyl alcohol, otherwise known as ethanol (main
product) and other byproducts. In this case, the alcoholic fermentation is taken in a batch
fermentation process with established laboratory conditions of temperature and known ini-
tial glucose concentrations (substrate). Our mathematical model describes the relationships
between biomass concentration [x(t)], glucose consumption [y(t)], and ethanol production
[z(t)] over time. The set of three first-order ODEs is presented below

ẋ =
ρ1xy

ρ2 + y
− ρ3xz− ρ4x, (1)

ẏ = −ρ5xy− ρ6yz− ρ7y, (2)

ż = ρ8xz + ρ9yz− ρ10z, (3)

where each state variable x(t), y(t) and z(t) are measured in g/L, and the time unit is given
in hours. Now, by considering results from Leenheer and Aeyels (see Section II.A in [38]),
all solutions with nonnegative initial conditions [x(0), y(0), z(0) ≥ 0, ] will be located in
the nonnegative octant as indicated below

R3
+,0 = {x(t), y(t), z(t) ≥ 0},

i.e., each positive half trajectory of the system will be positively forward invariant in R3
+,0.

The latter also considers the biological sense of each variable as there is no meaning for
negative values of biomass, glucose or ethanol in the scope of the KM system (1)–(3). It is
important to mention that variables cannot grow exponentially indefinitely, and they must
have biologically feasible limits which will be discussed in the next section. Values and
units of each parameter of the KM system (1)–(3) are given in Table 1.
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Table 1. Description, values, and units of variables and parameters for the KM mechanistic model.

Variables/
Parameters Description Values Units

x(t) Biomass concentration − g/L

y(t) Glucose concentration − g/L

z(t) Ethanol concentration − g/L

ρ1 Biomass maximum growth rate [289.385, 381.419]× 10−3 h−1

ρ2 Affinity with substrate constant 2.281 g/L

ρ3
Inhibition rate of biomass growth
due to product accumulation 1.066× 10−3 L/(g × h)

ρ4 Biomass death rate 7.275× 10−3 h−1

ρ5 Consumption rate for biomass growth 56.893× 10−3 L/(g × h)

ρ6 Consumption rate for ethanol production 71.842× 10−3 L/(g × h)

ρ7 Glucose spontaneous decomposition rate 824.233× 10−9 h−1

ρ8
Ethanol production associated
with the biomass growth rate [19.088, 49.816]× 10−3 L/(g × h)

ρ9 Glucose converted in ethanol [46.352, 70.349]× 10−3 L/(g × h)

ρ10 Ethanol degradation rate 149.899× 10−3 h−1

Now, let us describe our mechanistic model based on the experimental data described
in the previous section and the following biological assumptions. Biomass growth dynamics
is described by Equation (1), where the first term uses the classical Monod form for the
growth of microorganisms [21], where ρ1 is the biomass maximum growth rate (also
found in the literature as µmax), and ρ2 is the affinity or half-velocity constant for glucose
consumption. The second term describes biomass death due to ethanol accumulation
toxicity by the law of mass action (see Section 2.3 in [39]) with a rate ρ3. This term is
negative because ethanol accumulation increases the membrane fluidity and negatively
affects the membrane protein’s function, which can lead to cell growth inhibition or even
death [40,41]. The third term represents the natural yeast death rate [ρ4] mainly due to
environmental resources depletion [42]. Glucose dynamics is formulated in Equation (2)
as a decrescent function where the law of mass action gives the first two terms. The first
one represents glucose consumption to support biomass growth. In contrast, the second
term accounts for the glucose consumption used for ethanol production, with rates ρ5
and ρ6, respectively. The third term represents the spontaneous decomposition rate of
glucose [ρ7] [43]. The latter stems from the fact that the culture medium is placed in a sealed
container in batch fermentation, and no other nutrients (primarily glucose) are supplied
into the system. Ethanol dynamics is described in Equation (3). The first term represents
ethanol production associated with biomass growth. It is due to ethanol being recognized as
a primary metabolite, a product obtained from reactions required or cellular growth [44,45].
The second term represents the glucose conversion to ethanol not directly linked to cellular
growth, attributed to the need for Gibbs’s free energy for cellular maintenance [44,46]. In
both cases, terms are formulated by the law of mass action with respective rates ρ8 and ρ9.
Finally, the third term represents ethanol degradation with a rate ρ10. The flow diagram
shown in Figure 1 was constructed to illustrate the dynamics of the system.
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Figure 1. Flow diagram describing interactions between each variable and their corresponding
relationship with each parameter.

It should be noted that fixed parameters values were estimated for the 17 K. marxianus
strains, particularly for ρ2, ρ3, ρ4, ρ5, ρ6, ρ7 and ρ10. Further, concerning the death rate
of biomass [ρ4], spontaneous decomposition rate of glucose [ρ7], and degradation rate of
ethanol [ρ10], one can see that they are in a different order of magnitude and the following
constraint is formulated for these three parameters:

ρ10 > ρ4 > ρ7. (4)

Now, concerning the equilibrium points of the KM system, Equations (1)–(3) have a
unique biologically meaningful equilibrium point in the domain R3

+,0 given by

(x∗0 , y∗0 , z∗0) = (0, 0, 0). (5)

Another set of five equilibria with at least one negative value is shown in Appendix A;
therefore, these equilibrium points are discarded from the biologically meaningful dynam-
ics of the system. Further, from the biological characteristics of each variable the following
can be stated with respect to each solution as time increases

lim
t→∞

x(t) = lim
t→∞

y(t) = lim
t→∞

z(t) = 0,

due to the eventual death of microorganisms, glucose consumption and ethanol degrada-
tion [47], asymptotic stability of trajectories is discussed in the next section.

2.3. Parameter Value Estimation

First, let us compute the glucose decomposition rate [ρ7] by assuming a first-order
kinetics [48] for glucose dynamics, and considering a half-life [t1/2] of 96 years [43]. Then,
ρ7 can be computed from the next equation

y(t) = y0e−ρ7t,

as follows y0

2
= y0e−ρ7t1/2 ,

where y0 is the glucose initial concentration, i.e., y(0); hence

ρ7 =
ln 2
t1/2

= 824.233× 10−9 h−1.

Now, in order to determine the numerical values of parameters ρi, i = 1, 2, 3, 4, 5, 6, 8, 9,
10; the computational model of Equations (1)–(3) was formulated as follows
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xi+1 = xi +

(
ρ1xiyi
ρ2 + yi

− ρ3xizi − ρ4xi

)
∆t, (6)

yi+1 = yi + (−ρ5xiyi − ρ6yizi − ρ7yi)∆t, (7)

zi+1 = zi + (ρ8xizi + ρ9yizi − ρ10zi)∆t, (8)

by applying Euler’s method (see Section 1.7 in [49]) where ∆t was set to 1× 10−5. Then, an
algorithm was formulated in Matlab 2022b with the lsqcurvefit function from the optimiza-
tion toolbox as its core [50] (initial points were set as 1× 10−1 for each parameter [ρ1, ρ8, ρ9],
i.e., x0 = [1× 10−1; 1× 10−1; 1× 10−1], and optimotions of the function were set as follows:
Max Function Evaluations = 1× 103, Max Iterations = 1× 103, and Function Tolerance
= 1× 10−9). This allowed us to establish a fixed value for parameters ρj, j = 2, 3, 4, 5, 6, 10;
by averaging the corresponding values for each of the 17 strains, these results are shown
in Table 1. However, this procedure was not applicable for parameters ρ1, ρ8 and ρ9, as it
was expected that each strain of K. marxianus will have its own biomass growth rate [ρ1],
and its corresponding ethanol production rates (ρ8 and ρ9), this is directly linked to the
chromosomal differences among the strains affecting their growth kinetics. Hence, the
main algorithm was redesigned to fit these three parameters and consider the others as
fixed constants. Overall results are shown in Table 2 with their corresponding standard
error (SE), and 95% confidence interval (CI). These two statistics allow us to establish that
estimates for parameters ρ1, ρ8, and ρ9 in the 17 strains are statistically significant. The
latter follows from the fact that each SE(ρk) < ρk/2, k = 1, 8, 9; i.e., the value of the SE is
less than half of the value fitted for each parameter, thus, the null hypothesis [ρk = 0] can
be rejected (see Section 5.2.8 from Koutsoyiannis [51]). Furthermore, both the lower and
upper limit of the 95% CI of all fitted values are positive, hence, as there is no change in the
sign of the bounds, this implies that the value of the null hypothesis is excluded, and one
can conclude that all P-values are less than 0.05 (see Chapter 17 from Motulsky [52]).

Table 2. Fitted values, their standard error [SE(ρk)], and 95% confidence intervals [CI(ρk)] for the
biomass growth rate [ρ1], and ethanol production rates [ρ8, ρ9], where all values are written with a
magnitude of 10−3. Thus, it is possible to identify both lower and upper bounds for the values of the
three fitted parameters as follows ρ1 ∈ [289.385, 381.419]× 10−3, ρ8 ∈ [19.088, 49.816]× 10−3, and
ρ9 ∈ [46.352, 70.349]× 10−3.

Strain ρ1 SE (ρ1) 95% CI (ρ1) ρ8 SE (ρ8) 95% CI (ρ8) ρ9 SE (ρ9) 95% CI (ρ9)

1 312.378 14.457 (283.137, 341.620) 31.563 3.669 (24.140, 38.985) 60.706 1.151 (58.378, 63.033)

2 320.848 8.407 (303.842, 337.853) 40.073 2.395 (35.228, 44.919) 51.253 0.650 (49.937, 52.569)

3 315.502 9.267 (296.756, 334.247) 42.560 2.657 (37.186, 47.935) 52.146 0.797 (50.533, 53.759)

4 319.364 8.448 (302.276, 336.453) 38.795 2.368 (34.005, 43.585) 54.576 0.763 (53.032, 56.119)

5 312.618 13.016 (286.291, 338.945) 30.025 3.939 (22.056, 37.993) 57.305 1.125 (55.030, 59.580)

6 318.556 12.204 (293.870, 343.242) 25.252 3.360 (18.456, 32.048) 60.595 1.126 (58.316, 62.874)

7 336.119 7.376 (321.200, 351.038) 29.110 1.793 (25.483, 32.737) 56.806 0.627 (55.538, 58.075)

8 326.840 11.939 (302.691, 350.989) 25.102 2.794 (19.450, 30.754) 64.465 1.004 (62.434, 66.497)

9 322.375 17.757 (286.457, 358.293) 29.314 4.383 (20.448, 38.180) 61.948 1.570 (58.771, 65.125)

10 381.419 15.931 (349.195, 413.642) 19.088 3.051 (12.915, 25.260) 69.068 1.414 (66.208, 71.928)

11 307.816 9.485 (288.631, 327.002) 48.803 3.070 (42.593, 55.014) 46.352 0.810 (44.714, 47.990)

12 289.385 10.222 (268.709, 310.060) 49.816 3.380 (42.978, 56.654) 48.047 0.887 (46.252, 49.841)
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Table 2. Cont.

Strain ρ1 SE (ρ1) 95% CI (ρ1) ρ8 SE (ρ8) 95% CI (ρ8) ρ9 SE (ρ9) 95% CI (ρ9)

13 309.540 17.851 (273.434, 345.647) 28.475 4.498 (19.376, 37.574) 62.432 1.481 (59.436, 65.428)

14 312.244 12.998 (285.953, 338.536) 25.011 3.442 (18.050, 31.973) 61.883 1.121 (59.615, 64.151)

15 298.551 11.822 (274.638, 322.464) 37.245 3.440 (30.287, 44.202) 57.670 1.036 (55.574, 59.766)

16 335.425 16.486 (302.078, 368.773) 20.480 3.266 (13.873, 27.088) 70.349 1.295 (67.728, 72.969)

17 310.122 9.556 (290.793, 329.451) 44.563 2.980 (38.534, 50.592) 50.780 0.755 (49.252, 52.307)

Finally, it should be noted that the in silico experimentation performed in this research
was done on a high-end desktop computer with a Ryzen 9 5950X CPU, 128 GB of RAM
DDR4 CL18, a 12 GB GPU NVIDIA GeForce RTX 3080, and 1 TB Samsung 980 Pro Gen
4 NVMe M.2. The complete algorithm that was designed to fit the numerical values of
parameters [ρ1, ρ8, ρ9], and to determine results concerning the statistics and goodness of
fit can be found in the Supplementary Materials.

3. Results

In this section, the in silico experimentation is performed by means of several numeri-
cal simulations, and results relating to the nonlinear analysis of the system are derived, i.e.,
bounds for the localizing domain, asymptotic stability, and existence and uniqueness for
all solutions of our model in the nonnegative octant R3

+,0.

3.1. In Silico Experimentation and Goodness of Fit

First, qualitative results are illustrated by means of numerical simulations. For the
sake of simplicity, the strains were clustered in groups of four from strain 1 to the 16
(see Figures 2–5, respectively), and results concerning only for the strain 17 are shown
in Figure 6. In all panels, the × green marker represents the average value for the two
experimental data measurements for each variable, i.e., biomass [x(t)], glucose [y(t)], and
ethanol [z(t)], whilst the blue continuous line represents the approximated value given by
the KM system (1)–(3) when is solved by means of Equations (6)–(8) with ∆t = 1× 10−5.
The time units are given in hours and the concentration for each variable is measured in g/L
as indicated in each axis. Values for all ten parameters corresponding to each strain are
shown in Tables 1 and 2.

Now, let us provide a quantitative measure of the fitting capabilities of the KM
mechanistic model (1)–(3), thus, the coefficient of determination

[
R2] is calculated for each

variable with results shown in Table 3.
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Figure 2. Each column from left to right (in landscape orientation) illustrates both the experimental data (× green marker), and the approximated values obtained
with the KM system (continuous blue line) for each corresponding strain 1–4; the top row shows results for biomass [x(t)], the middle row for glucose [y(t)], and
the lower row for ethanol [z(t)]. The × green marker represents the average value calculated from the two measurements that were made for each variable in
every strain.
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Figure 3. Each column from left to right (in landscape orientation) illustrates both the experimental data (× green marker), and the approximated values obtained
with the KM system (continuous blue line) for each corresponding strain 5–8; the top row shows results for biomass [x(t)], the middle row for glucose [y(t)], and
the lower row for ethanol [z(t)]. The × green marker represents the average value calculated from the two measurements that were made for each variable in
every strain.
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Figure 4. Each column from left to right (in landscape orientation) illustrates both the experimental data (× green marker), and the approximated values obtained
with the KM system (continuous blue line) for each corresponding strain 9–12; the top row shows results for biomass [x(t)], the middle row for glucose [y(t)], and
the lower row for ethanol [z(t)]. The × green marker represents the average value calculated from the two measurements that were made for each variable in
every strain.
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Figure 5. Each column from left to right (in landscape orientation) illustrates both the experimental data (× green marker), and the approximated values obtained
with the KM system (continuous blue line) for each corresponding strain 13–16; the top row shows results for biomass [x(t)], the middle row for glucose [y(t)], and
the lower row for ethanol [z(t)]. The × green marker represents the average value calculated from the two measurements that were made for each variable in
every strain.
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Figure 6. Experimental data (×green marker), and approximated values obtained with the KM
system (continuous blue line) for strain 17; the top panel shows results for biomass [x(t)], the panel
row for glucose [y(t)], and the lower panel for ethanol [z(t)]. The × green marker represents the
average value calculated from the two measurements that were made for each variable in every strain.

Table 3. The R2 provides a measure of how well the experimental data are replicated by the KM
mathematical model (1)–(3) for each strain. This coefficient was computed independently for each
variable, i.e., biomass [x(t)], glucose [y(t)], and ethanol [z(t)]. One can see that the values for
R2 ranges between 0.902 to 0.997 which allows us to conclude an overall well goodness of fit for
the model.

Strain Biomass Glucose Ethanol

1 0.980 0.979 0.923

2 0.983 0.994 0.974

3 0.983 0.990 0.967

4 0.996 0.990 0.974
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Table 3. Cont.

Strain Biomass Glucose Ethanol

5 0.989 0.979 0.926

6 0.995 0.979 0.940

7 0.982 0.997 0.960

8 0.990 0.985 0.951

9 0.953 0.950 0.918

10 0.979 0.972 0.905

11 0.992 0.988 0.974

12 0.985 0.988 0.967

13 0.960 0.962 0.942

14 0.986 0.979 0.947

15 0.992 0.983 0.945

16 0.902 0.974 0.940

17 0.965 0.991 0.973

Further, the Akaike Information Criterion (AIC) [53–55] was computed by considering
a small sample relative to the number of parameters (n/K < 40) with a bias correction as
indicated below

AIC = n ln

(
∑n

i=1[ fe(i)− fa(i)]
2

n

)
+ 2K +

2K(K + 1)
n− K− 1

,

where n is the total number of experimental data points; fe the experimental data and fa the
approximated value for the residual sum of squares (RSS); and K the number of parameters
of the system; therefore, n/K = (3× 14)/10 = 4.2. Results, including RSS, AIC and R2, for
the complete trajectory of the system, i.e., φ(x, y, z) for the total of 42 experimental points
(14 for each variable) are summarized in Table 4.

Table 4. In order to provide overall measures for the fitting capabilities of our mathematical model,
i.e., the KM system (1)–(3), values were calculated for the RSS, the AIC, and the R2 to estimate and
describe the dynamics between the three variables φ(x, y, z), where x(t), y(t) and z(t) represent,
respectively, the evolution of biomass, glucose, and ethanol.

Strain RSS AIC R2

1 28.375 +10.626 0.976

2 9.233 −36.530 0.993

3 13.679 −20.020 0.989

4 12.267 −24.596 0.990

5 26.471 +7.709 0.979

6 24.403 +4.292 0.980

7 7.825 −43.478 0.994

8 19.638 −4.832 0.983

9 48.551 +33.184 0.954

10 37.663 +22.520 0.966
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Table 4. Cont.

Strain RSS AIC R2

11 13.978 −19.111 0.989

12 16.201 −12.912 0.988

13 43.020 +28.105 0.966

14 24.183 +3.912 0.980

15 21.902 −0.248 0.983

16 30.653 +13.869 0.972

17 13.047 −22.005 0.990

The AIC yields a value that relates the amount of information that our model loses
when approximating the experimental data. Hence, one can compare the capabilities of
the model to estimate the concentrations over time of biomass [x(t)], glucose [y(t)], and
ethanol [z(t)] among the 17 K. marxianus strains while providing a statistical measured for
the quality of the KM system (1)–(3).

3.2. Nonlinear Analysis: Localizing Domain, Asymptotic Stability, Existence and Uniqueness

The localizing domain can be determined by computing the upper bounds for all
variables of the KM mechanistic model (1)–(3), the lower bounds are given by the boundary
of the domain R3

+,0, i.e., {xinf = 0, yinf = 0, zinf = 0}. The latter is achieved by means
of integration and the LCIS method [56]. Within the localizing domain, one may find
all biologically meaningful dynamics of the system, i.e., compact invariant sets such as
equilibrium points, periodic orbits, limit cycles and chaotic attractors (see Section 3 in [57]),
among others.

First, in order to find the upper bound for the glucose concentration [y(t)], Equation (2)
is integrated as follows ∫ dy

y
= −

∫ t

0
f (x, z)dt,

where
f (x, z) = ρ5x + ρ6z + ρ7 > 0,

by considering ρ7 > 0 and x(t), z(t) ≥ 0 from the domain R3
+,0. Then,

y(t) = y(0) exp
[
−
∫ t

0
f (x, z)dt

]
,

with y(0) ∈ R+,0. Therefore, all solutions with nonnegative initial conditions will be
bounded as indicated below

Ky =
{

0 ≤ y(t) ≤ ysup = y(0)
}

,

hence, any upper bound for x(t) and z(t) depending on Ky will be directly related to the
glucose initial concentration [y(0)], which is expected as biomass and ethanol production
over time is directly related to glucose dynamics.

Now, let us provide the mathematical background that allows us to compute a localiz-
ing domain where all compact invariant sets of a nonlinear dynamical system are located.
The General Theorem concerning the LCIS method was formalized by Krishchenko and
Starkov (see Section 2 in [58]) and it states the following: Each compact invariant set Γ of
ẋ = f (x) is contained in the localizing domain:

K(h) =
{

hinf ≤ h(x) ≤ hsup
}

.
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From the latter f (x) is a C∞−differentiable vector function where x ∈ Rn is the state
vector. h(x) : Rn → R is a C∞−differentiable function called localizing function, h|S
denotes the restriction of h(x) on a set S ⊂ Rn with S(h) =

{
x ∈ Rn | L f h(x) = 0

}
, and

L f h(x) = (∂h/∂x) f (x) is the Lie derivative of f (x). Hence, one can define
hinf = inf{h(x) | x ∈ S(h)} and hsup = sup{h(x) | x ∈ S(h)}. Furthermore, if all compact
invariant sets are contained in the set K(hi) and in the set K

(
hj
)

then they are contained in
K(hi) ∩K

(
hj
)

as well. The nonexistence of compact invariant sets can be considered for a
given set Λ ⊂ Rn if Λ ∩ K(h) = ∅, then the system ẋ = f (x) has no compact invariant sets
located in Λ.

Following the LCIS method, one can explore the next localizing function

h1 = x + αy; α > 0,

then, the Lie derivative may be written as follows

L f h1 = −ρ4x− αρ7y− αρ5y + αρ2ρ5 − ρ1

ρ2 + y
xy− ρ3xz− αρ6yz,

and the set S(h1) =
{

L f h1 = 0
}

is given by

S(h1) =

{
ρ4x = −αρ7y− αρ5y + αρ2ρ5 − ρ1

ρ2 + y
xy− ρ3xz− αρ6yz

}
,

where x = h1 − αy, therefore set S(h1) is rewritten as indicated below

S(h1) =

{
h1 =

α(ρ4 − ρ7)

ρ4
y− αρ5y + αρ2ρ5 − ρ1

ρ4(ρ2 + y)
xy− ρ3

ρ4
xz− αρ6

ρ4
yz
}

,

and the next two conditions are formulated

ρ4 − ρ7 > 0, (9)

α >
ρ1

ρ2ρ5
, (10)

where (9) is directly fulfilled by (4). Now, let us apply the Iterative Theorem in order to
find an upper bound for the localizing function

S(h1) ∩ Ky ⊂
{

h1 ≤
α(ρ4 − ρ7)

ρ4
ysup

}
,

then

K(h1) =

{
x(t) + αy(t) ≤ α(ρ4 − ρ7)

ρ4
ysup

}
,

from the latter, the upper bound for the biomass concentration [x(t)] may be written in
terms of the parameters and the initial glucose concentration [y(0)] as follows

Kx =

{
0 ≤ x(t) ≤ xsup =

α(ρ4 − ρ7)

ρ4
ysup

}
.

Now, an upper bound for the ethanol concentration [z(t)] can be determined by the
following localizing function

h2 = β1x + β2y + z; β1, β2 > 0,

whose Lie derivative is computed as indicated below
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L f h2 = −β1ρ4x− β2ρ7y− ρ10z− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz,

and at this step, the following conditions are formulated

β1 >
ρ8

ρ3
, (11)

β2 > max
{

ρ9

ρ6
,

β1ρ1

ρ2ρ5

}
, (12)

then, set S(h2) =
{

L f h2 = 0
}

, can be written as follows

S(h2) =

{
ρ10z = −β1ρ4x− β2ρ7y− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz

}
,

hence, as z = h2 − β1x− β2y, then set S(h2) is rewritten as indicated below

S(h2) =

{
h2 =

β1(ρ10 − ρ4)

ρ10
x +

β2(ρ10 − ρ7)

ρ10
y− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz

}
,

where the next condition is formulated

ρ10 > max{ρ4, ρ7}, (13)

and it holds by (4). Then, the Iterative Theorem is applied to get the following result

S(h2) ∩ Kx ∩ Ky ⊂
{

h2 ≤
β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
,

then, the upper bound for the localizing function h2 is derived as follows

K(h2) =

{
β1x(t) + β2y(t) + z(t) ≤ β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
,

now, from the latter one can get the upper bound for ethanol concentration [z(t)] over time
in terms of the parameters, the initial glucose concentration [y(0)] and the upper bound of
biomass

[
xsup

]
as given below

Kz =

{
0 ≤ z(t) ≤ zsup =

β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
.

Results shown above allow us to conclude the following regarding the boundedness
of the KM system (1)–(3) solutions:

Theorem 1. Localizing domain. If conditions (9)–(13) are fulfilled, then all compact invariant
sets of the KM mechanistic model (1)–(3) are located either at the boundaries or within the following
domain

KΓ = Kx ∩ Ky ∩ Kz,

where KΓ ⊂ R3
+,0, and the ultimate bounds for biomass [x(t)], glucose [y(t)], and ethanol [z(t)]

concentrations over time are given below

Kx =

{
0 ≤ x(t) ≤ xsup =

α(ρ4 − ρ7)

ρ4
ysup

}
,

Ky =
{

0 ≤ y(t) ≤ ysup = y(0)
}

,

Kz =

{
0 ≤ z(t) ≤ zsup =

β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
.
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Now, let us briefly provide the mathematical background concerning the stabil-
ity theory in the sense of Lyapunov, particularly the direct method where it is neces-
sary to formulate a Lyapunov candidate function, which is usually denoted as V(x) :
Rn → R, a continuously differentiable function whose temporal derivative is given by
V̇(x) = (∂V/∂x) f (x). This function must be positive definite, i.e., V(0) = 0 and V(x) > 0
for x 6= 0, whilst a negative definite function is also V(0) = 0 but V(x) < 0 for x 6= 0.
Further, function V(x) is said to be radially unbounded if V(x) → ∞ as ‖x‖ → ∞. The
latter allows the formulation of the Global Asymptotic Stability Theorem (see Chapter 4
in [59] and Chapter 2 in [60]) which states the following: The equilibrium point x∗ is globally
asymptotically stable if there exists a function V(x) positive definite, radially unbounded and
decrescent such that its temporal derivative V̇(x) is negative definite. A function V(x) satisfying
properties of this theorem is called Lyapunov function.

Following the latter, let us explore the next Lyapunov candidate function

V(x, y, z) = γ1x + γ2y + z,

with
γ1, γ2 > 0,

then, the time derivative is computed as shown below

V̇(x, y, z) = γ1

(
ρ1xy

ρ2 + y
− ρ3xz− ρ4x

)
− γ2(ρ5xy + ρ6yz + ρ7y) + ρ8xz + ρ9yz− ρ10z,

which can be rewritten as follows

V̇(x, y, z) = −γ1ρ4x− γ2ρ7y− ρ10z− (γ1ρ3 − ρ8)xz− (γ2ρ6 − ρ9)yz− yγ2ρ5 + γ2ρ2ρ5 − γ1ρ1

ρ2 + y
xy,

where it is evident that V̇(0, 0, 0) = 0, therefore the following constraints on coefficients γ1
and γ2 are formulated to ensure V̇(x, y, z) < 0

γ1 >
ρ8

ρ3
, (14)

γ2 > max
{

ρ9

ρ6
,

γ1ρ1

ρ2ρ5

}
, (15)

thus, as parameters ρi, i = 1, 2, 3, 5, 6, 8, 9; in both conditions are different for each term,
then it is possible to assume that there exists a set of solutions that satisfies (14) and (15).
Hence, the following result can be concluded:

Theorem 2. Asymptotic stability. If conditions (14) and (15) are fulfilled, then the KM mech-
anistic model (1)–(3) is asymptotically stable and all trajectories will go to the equilibrium point
(x∗0 , y∗0 , z∗0) = (0, 0, 0).

The latter implies that any given trajectory [φ(x(t), y(t), z(t))] with nonnegative initial
conditions [x(0), y(0), z(0) ≥ 0] passing through any point (x(t), y(t), z(t))T in R3

+,0 its
ω−limit set is not empty and it is a compact invariant set, i.e.,

lim
t→∞

φ(x(t), y(t), z(t)) = (0, 0, 0)T ,

see Lemma 4.1 by Khalil in [59] at Section 4.2 and Theorem 1 by Perko in [61] at Section 3.2.
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Concerning the existence and uniqueness of solutions for the KM system (1)–(3), let us
introduce the following notations for the sake of simplicity

f1(t, x, y, z) =
ρ1xy

ρ2 + y
− ρ3xz− ρ4x,

f2(t, x, y, z) = −ρ5xy− ρ6yz− ρ7y,

f3(t, x, y, z) = ρ8xz + ρ9yz− ρ10z,

and compute the Jacobian matrix [∂ f /∂u](t, u) (see [49] at Section 7.4) with results shown
below for fi(t, u), i = 1, 2, 3; and u = [x, y, z]T

J =


ρ1y

ρ2 + y
− ρ3z− ρ4

ρ1ρ2x

(ρ2 + y)2 −ρ3x

−ρ5y −ρ5x− ρ6z− ρ7 −ρ6y
ρ8z ρ9z ρ8x + ρ9y− ρ10

, (16)

and it is evident that fi(t, u) and [∂ f /∂u](t, u) are continuous and exist on the domain
Ω =

[
t0, t f

]
× KΓ with

[
t0, t f

]
∈ [t0, ∞] and KΓ ⊂ R3

+,0 [33]. Hence, the latter implies that
fi(t, u) is locally Lipschitz in u on Ω (see Lemma 3.2 by Khalil in [59] at Section 3.1). Further,
each element of (16) is bounded by Theorem 1. Thus, the following can be concluded:

Theorem 3. Existence and uniqueness. There is a Lipschitz constant ` ≥ 0 such that
‖[∂ f /∂u](t, u)‖ ≤ ` on Ω. Then, fi(t, u) satisfies the Lipschitz condition

‖ f (t, u1)− f (t, u2)‖ ≤ `‖u1 − u2‖,

and there exists some δ > 0 such that the KM mechanistic model (1)–(3), given as u̇ = fi(t, u)
with u(t0) = u0, has a unique solution over [t0, t0 + δ].

Although conditions for asymptotic stability of the equilibrium point (x∗0 , y∗0 , z∗0) = (0, 0, 0)
in R3

+,0 were established in Theorem 2, it is straightforward to demonstrate its local asymp-
totic stability by evaluating (5) in (16) as follows

J(0,0,0) =

 −ρ4 0 0
0 −ρ7 0
0 0 −ρ10

,

where the eigenvalues [λi, i = 1, 2, 3] are given by each element of the diagonal. Thus,
λ1 = −ρ4, λ2 = −ρ7, and λ3 = −ρ10. Therefore, Theorem 4.7 by Khalil in [59] allows us to
conclude the next additional result to Theorem 2:

Corollary 1. Local stability. The equilibrium point (x∗0 , y∗0 , z∗0) = (0, 0, 0) of the KM mechanis-
tic model (1)–(3) is locally asymptotically stable in R3

+,0.

4. Discussion

The KM mechanistic model (1)–(3) was formulated by considering the biological rela-
tionships between each variable in a controlled batch fermentation where concentrations
in g/L were measured for biomass [x(t)], glucose [y(t)], and ethanol [z(t)] over 13 con-
secutive hours. Then, by means of the lsqcurvefit function, an algorithm was developed in
Matlab to approximate the experimental data from the 17 K. marxianus strains discussed at
Section 2; both qualitative (see Figures 2–6) and quantitative (see Tables 3 and 4) results
were shown in Section 3. The in silico experimentation illustrates the capabilities of the
system to approximate the experimental data of each strain, whilst both the R2 and the
AIC provide a value for the goodness of fit of the model to each set of data. In Table 4, one
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can see that R2 values range from 0.955 to 0.994, and AIC from −43.478 to 33.184, these
values are for strains 7 and 9, respectively.

Now, it should be noted that the dynamics between biomass growth, substrate con-
sumption and product generation have been modeled before by means of the logistic
growth law [62], the Pirt Equation [63], and Luedeking–Piret Equation [64] as indicated
below in Equations (17)–(19), respectively:

Ẋ = µmaxX
(

1− X
Xmax

)
, (17)

Ṡ = − 1
YX/S

Ẋ−mX, (18)

Ṗ = αẊ + βX, (19)

where µmax is the biomass maximum growth rate, this parameter is equivalent to ρ1 in our
mathematical model; Xmax the maximum concentration value of biomass in the experimen-
tal data set for the time-interval of the process being observed; YX/S the biomass/substrate
yield; m is the maintenance coefficient; α is the growth-associated coefficient for the product;
and β is the non-growth-associated coefficient for the product. Our algorithm was applied
to approximate the experimental data of the 17 K. marxianus strains with overall results
shown in Table 5.

Table 5. The logistic, Pir, and Luedeking–Piret Equations (17)–(19) provides valuable information
concerning biomass growth [µmax], biomass/substrate yield [YX/S], and product generation [α];
estimated numerical values are given in their respective columns. Concerning the goodness of fit,
results regarding the RSS, AIC, and R2 are provided in the following columns.

Strain µmax
[
×10−3] YX/S

[
×10−3] α RSS AIC R2

1 442.669 159.066 2.648 35.905 +7.815 0.970

2 451.284 150.295 2.551 19.641 −17.523 0.984

3 437.516 158.265 1.903 23.501 −9.987 0.982

4 428.145 164.594 2.185 25.859 −5.971 0.979

5 417.879 166.067 2.296 50.863 +22.441 0.960

6 434.735 169.347 2.253 48.715 +20.629 0.959

7 482.158 168.159 2.248 21.992 −12.774 0.982

8 463.808 165.934 2.505 47.813 +19.844 0.959

9 455.745 163.157 2.530 40.974 +13.362 0.961

10 544.441 175.477 2.344 55.484 +26.094 0.950

11 422.190 158.260 2.120 23.199 −10.530 0.981

12 394.033 151.888 2.241 34.084 +5.629 0.974

13 433.945 165.334 2.562 83.294 +43.158 0.935

14 437.632 161.878 2.422 52.732 +23.957 0.956

15 394.825 151.920 2.692 42.685 +15.079 0.966

16 523.096 162.308 2.643 41.717 +14.116 0.962

17 421.708 150.435 2.352 28.825 −1.411 0.978

The main comparison between the KM system (1)–(3) and Equations (17)–(19) is
performed with respect to the biomass maximum growth rate, given by ρ1 and µmax, respec-
tively. Tables 2 and 5 show that estimated values of ρ1 are on average ∼0.717 smaller than
those estimated for µmax. The latter is a direct consequence of the biological assumptions
on which each mechanistic model was formulated. The KM system (1)–(3) was constructed



Entropy 2023, 25, 497 21 of 36

by considering interactions between the three variables as illustrated in the flow diagram of
Figure 1, whilst the logistic, Pirt, and Luedeking–Piret Equations (17)–(19) are constructed
by only assuming a logistic growth for biomass without taking into account the overall
effect of ethanol production over the entire system as well as the death rate of biomass
[x(t)], decomposition rate of glucose [y(t)], and degradation of ethanol [z(t)]. Further, the
in silico experimentation concerning Equations (17)–(19) illustrated in Figures A1–A5 at
Appendix B shows that approximated values for substrate [S(t)], i.e., glucose, becomes
negative as time increases, which is not biologically possible for this variable. Further,
one can see from the experimental data that ethanol production does not follow a smooth
sigmoidal growth, the data even illustrates degradation among some strains, which is
better approximated by our model as it is shown in the lower panels of Figures 2–6.

When comparing the goodness of fit by computing the AIC and R2, it is evident that
the KM system (1)–(3) had overall better results than the logistic, Pirt, and Luedeking–Piret
Equations (17)–(19). Although the latter has fewer parameters than ours (six and ten,
respectively) and the AIC penalizes a model with more parameters to be fitted, results for
the RSS were lower for the KM system which ultimately worked in our favor. Further, the
capabilities of the KM mechanistic model may extend beyond its ability to approximate
experimental data and estimate the biomass maximum growth rate, in Appendix C the in
silico experimentation illustrates the dynamics for t ∈ [0, 39], i.e., three times the period for
the experimental data. Figures A6–A10 show that as time increases and the substrate is no
longer added into the system, then the death of biomass and degradation of ethanol begins
to take over the system. The latter was expected from the asymptotic stability results of
Section 3, particularly Theorem 2 and Corollary 1, as these state that the concentration of all
variables will eventually be zero, i.e., both biomass [x(t)] and ethanol [z(t)] concentrations
are going to be depleted. Additionally, it is important to note that all solutions of the KM
system are bounded from above, which is consistent with the localizing domain results of
Theorem 1.

Regarding the values of parameters m and β, our algorithm yielded results in the
magnitude of 10−14 for m in all strains; in fact, setting m to zero does not affect the
ultimate results for the other parameters [µmax, YX/S, α, and β] which may allow us to
completely disregard this term [−mX] from Equations (17)–(19). Concerning β, values for
12 strains were in the same order of magnitude

[
10−14], however, the following results

were determined for strains 3, 4, 11, 12, and 17: 87.633× 10−3, 38.660× 10−3, 51.050× 10−3,
53.813× 10−3, 37.702× 10−3, respectively. Hence, the non-growth-associated coefficient for
the product may influence the dynamics in some karyotypes of K. marxianus.

5. Conclusions

Mechanistic modeling has proven to be a powerful tool capable of describing the
relationships between different variables in the dynamics of biological systems when
considering assumptions based on scientific principles underlying the phenomenon being
modeled. In this work, a set of three coupled first-order ODEs was formulated which can
approximate experimental changes over time of alcoholic fermentation in batch culture by
17 different strains of K. marxianus.

The KM mechanistic model (1)–(3) describes biomass growth [x(t)], glucose consump-
tion [y(t)], and ethanol production [z(t)] in concentrations of g/L per hour. The parameter
values of the system were estimated through a nonlinear curve-fitting algorithm in Matlab
with the experimental data of each batch culture fermentation described in Section 2. The
latter allowed us to conclude that seven parameters have the same numerical value for the
dynamics observed in the 17 strains, particularly the affinity with substrate constant [ρ2],
inhibition rate of biomass growth due to product accumulation [ρ3], biomass death rate
[ρ4], consumption rates for biomass growth and ethanol production [ρ5 and ρ6], glucose
spontaneous decomposition rate [ρ7], and ethanol degradation rate [ρ10]; these values are
shown in Table 1. However, the biomass maximum growth rate [ρ1], ethanol production
associated with biomass growth [ρ8], and glucose converted in ethanol [ρ9] parameters
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have specific values for each strain, results are shown in Table 2 with a 95% confidence
interval that gives us the margin of error for each parameter value estimation.

As predictive microbiology establishes, mathematical models must be simplified until
measurable parameters can be obtained, the KM mechanistic model successfully achieves
this with ρ1, ρ8, and ρ9 as the main parameters that describe the overall dynamics of the
batch fermentation process under study in this research. The biomass growth rate is a
very specific value for each strain that must be as high as possible. Ethanol production
with respect to biomass growth represents the fermentative capacity of each strain, and the
concentration of glucose converted to ethanol is directly related to these rates. It should be
noted that in batch culture the latter requires high sugar concentrations to achieve alcoholic
fermentation.

Further, the in silico experimentation illustrates that our model may be able to accu-
rately predict the concentration of each variable as it is shown in Appendix C; nonetheless,
further experimental data are needed to properly validate this assessment. One can see in
Figures A6–A10 that when no more substrate is added to the culture, then biomass growth
goes into the death phase, and ethanol degradation begins to happen in the system. This
behavior is to be expected as the nonlinear analysis of the system allowed us to conclude
that all concentrations will eventually go to zero in the absence of glucose, i.e., the asymp-
totic stability of the equilibrium (5) [(x∗0 , y∗0 , z∗0) = (0, 0, 0)] by Theorem 2 and Corollary 1;
further, concentrations over time of all variables are bounded by the Localizing Domain
Theorem 1. The latter is illustrated in all panels for the predictions of biomass growth [x(t)],
glucose consumption [y(t)], and ethanol production [z(t)].

Finally, the KM mechanistic model may be useful in the field of predictive microbiology,
particularly in alcoholic fermentation through yeast and sugar, such as K. marxianus and
glucose as only three parameters of our system needs to be fitted for different strains.
Furthermore, when comparing the results of the biomass maximum growth rate of our
model with the classic logistic, Pirt, and Luedeking–Piret Equations (17)–(19), our values
are on average 71.7% smaller as the KM system (1)–(3) takes into account the effect of both
substrate and product concentrations in the batch culture over the biomass growth phases.
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Appendix A. Equilibria

In order to further discuss the nonlinear mathematical analysis of Section 3, all equilib-
rium points of the system are calculated and it becomes evident that the origin is the only
biologically meaningful result. The set of equilibria of the KM system (1)–(3) is determined
by solving the next system of equations

f1(t, x, y, z) = x
(

ρ1y
ρ2 + y

− ρ3z− ρ4

)
= 0,

f2(t, x, y, z) = −y(ρ5x + ρ6z + ρ7) = 0,

f3(t, x, y, z) = z(ρ8x + ρ9y− ρ10) = 0,

from which one can compute the following

(x∗0 , y∗0 , z∗0) = (0, 0, 0),

(x∗1 , y∗1 , z∗1) =

(
0,

ρ10

ρ9
,−ρ7

ρ6

)
,

(x∗2 , y∗2 , z∗2) =

(
ρ10

ρ8
, 0,−ρ4

ρ3

)
,

(x∗3 , y∗3 , z∗3) =

(
−ρ7

ρ5
,

ρ2ρ4

ρ1 − ρ4
, 0
)

,

and

(x∗4 , y∗4 , z∗4),

(x∗5 , y∗5 , z∗5),

where

x∗4 =
−ρ1ρ6ρ8 + ρ3ρ5ρ10 − ρ3ρ7ρ8 + ρ4ρ6ρ8 + ρ2ρ3ρ5ρ9 −

√
ρ

2ρ3ρ5ρ8
,

y∗4 =
ρ1ρ6ρ8 + ρ3ρ5ρ10 + ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ5ρ9
,

z∗4 =
ρ1ρ6ρ8 − ρ3ρ5ρ10 − ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ6ρ8
,
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x∗5 =
−ρ1ρ6ρ8 + ρ3ρ5ρ10 − ρ3ρ7ρ8 + ρ4ρ6ρ8 + ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ5ρ8
,

y∗5 =
ρ1ρ6ρ8 + ρ3ρ5ρ10 + ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 −

√
ρ

2ρ3ρ5ρ9
,

z∗5 =
ρ1ρ6ρ8 − ρ3ρ5ρ10 − ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 −

√
ρ

2ρ3ρ6ρ8
,

with

ρ = (ρ3ρ7ρ8 + ρ1ρ6ρ8 − ρ4ρ6ρ8 − ρ3ρ5ρ10 − ρ2ρ3ρ5ρ9)
2 + 4ρ3ρ5ρ8(ρ1ρ6ρ10 + (ρ10 + ρ2ρ9)(ρ3ρ7 − ρ4ρ6)).

Now, it is evident that the equilibrium points
(
x∗i , y∗i , z∗i

)
, i = 1, 2, 3; have at least one

negative term. However, although is not straightforward, the same can be concluded
regarding equilibriums

(
x∗4 , y∗4 , z∗4

)
and (x∗5 , y∗5 , z∗5), as these are computed by disregarding

the common term in each equation as follows

ρ1y
ρ2 + y

− ρ3z− ρ4 = 0,

ρ5x + ρ6z + ρ7 = 0,

ρ8x + ρ9y− ρ10 = 0,

and equality ρ5x + ρ6z + ρ7 = 0 can only be fulfilled when either x∗j or z∗j , j = 4, 5; are
negative. Therefore, the KM mechanistic model (1)–(3) has unique biologically meaningful
equilibrium given by

(x∗0 , y∗0 , z∗0) = (0, 0, 0).

Appendix B. Logistic, Pirt, and Luedeking–Piret Equations

This appendix presents results concerning the in silico experimentation when fit-
ting the experimental data to the logistic, Pirt, and Luedeking–Piret Equations (17)–(19).
Figures A1–A5 are aiming to qualitative compare the proposed mathematical model with
the classic model of biomass-substrate-product. Further, a quantitative comparison is
carried out through the coefficient of determination and the Akaike Information Criterion
at Section 4, see Tables 2, 4, and 5.
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Figure A1. Observed data (×green marker), and approximated values (continuous red line) for strains 1–4 with the Logistic, Pirt, and Luedeking–Piret Equa-
tions (17)–(19).
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Figure A2. Observed data (×green marker), and approximated values (continuous red line) for strains 5–8 with the Logistic, Pirt, and Luedeking–Piret Equa-
tions (17)–(19).
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Figure A3. Observed data (×green marker), and approximated values (continuous red line) for strains 9–12 with the Logistic, Pirt, and Luedeking–Piret Equa-
tions (17)–(19).
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Figure A4. Observed data (×green marker), and approximated values (continuous red line) for strains 13–16 with the Logistic, Pirt, and Luedeking–Piret
Equations (17)–(19).
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Figure A5. Observed data (×green marker), and approximated values (continuous red line) for
strain 17 with the Logistic, Pirt, and Luedeking–Piret Equations (17)–(19).

Appendix C. Predictive Ability of the KM Mechanistic Model

This appendix presents results concerning the in silico experimentation when solving
the KM mechanistic model (1)–(3) for a time interval of t ∈ [0, 39] in order to illustrate its
ability to predict the dynamics of the three variables, i.e., the concentration in g/L over time
between biomass [x(t)], glucose [y(t)], and ethanol [z(t)], after the last experimental data
point without further substrate addition into the batch. It should be noted that at this stage
of the research there is not available data to validate if the model is be able to accurately
predict the evolution of both biomass and ethanol in the system, further experimental
data points could be helpful to better fit the values of biomass death rate [ρ4], and ethanol
degradation rate [ρ10]. However, Figures A6–A10 allow us to illustrate results concerning
Theorem 2 and Corollary 1 from the asymptotic stability analysis.
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Figure A6. Dynamics prediction for strains 1–4 with the KM system (1)–(3). Observed data are given by the × green marker, and approximated values by the
continuous blue line.
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Figure A7. Dynamics prediction for strains 5–8 with the KM system (1)–(3). Observed data are given by the × green marker, and approximated values by the
continuous blue line.
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Figure A8. Dynamics prediction for strains 9–12 with the KM system (1)–(3). Observed data are given by the × green marker, and approximated values by the
continuous blue line.
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Figure A9. Dynamics prediction for strains 13–16 with the KM system (1)–(3). Observed data are given by the × green marker, and approximated values by the
continuous blue line.
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Figure A10. Dynamics prediction for strain 17 with the KM system (1)–(3). Observed data are given
by the × green marker, and approximated values by the continuous blue line.
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