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Abstract: Partial differential equations are common models in biology for predicting and explain-
ing complex behaviors. Nevertheless, deriving the equations and estimating the corresponding
parameters remains challenging from data. In particular, the fine description of the interactions
between species requires care for taking into account various regimes such as saturation effects. We
apply a method based on neural networks to discover the underlying PDE systems, which involve
fractional terms and may also contain integration terms based on observed data. Our proposed
framework, called Frac-PDE-Net, adapts the PDE-Net 2.0 by adding layers that are designed to
learn fractional and integration terms. The key technical challenge of this task is the identifiability
issue. More precisely, one needs to identify the main terms and combine similar terms among a huge
number of candidates in fractional form generated by the neural network scheme due to the division
operation. In order to overcome this barrier, we set up certain assumptions according to realistic
biological behavior. Additionally, we use an L2-norm based term selection criterion and the sparse
regression to obtain a parsimonious model. It turns out that the method of Frac-PDE-Net is capable
of recovering the main terms with accurate coefficients, allowing for effective long term prediction.
We demonstrate the interest of the method on a biological PDE model proposed to study the pollen
tube growth problem.

Keywords: neural networks; deep learning; non-linear reaction–diffusion equations; model discovery;
sparse regression; multiple testing

1. Introduction

Two-component reaction–diffusion systems often model the interaction of two chemi-
cals, leading to the formation of non-uniform spatial patterns of chemical concentration or
morphogenesis under certain conditions due to chemical reactions and spreading. Since
Turing’s groundbreaking work [1], reaction–diffusion systems have been extensively used
in developmental biology modeling. For example, let u = u(x, y, t) and v = v(x, y, t)
represent the concentration of two chemical species, which may either enhance or suppress
each other depending on the context. The system of u and v can be modeled as follows:{

∂tu = d0∆u + N1(u, v),
∂tv = d1∆v + N2(u, v),

(1)

where ∆ = ∂2
x + ∂2

y denotes the Laplacian operator, N1 and N2 are interactions between
u and v. The functions N1 and N2 are sums of various reaction terms that can be de-
rived from physical or chemical principles such as mass-action laws, Michaelis–Menten
kinetics, or products that represent some competition, cooperation effects. We refer the
readers to ([2], Section 2.2) for more discussions. Hence, N1 and N2 are sums of meaningful
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functions that represent specific mechanisms: if we are able to identify these terms and
discover the explicit formulas for N1 and N2, then we can learn more about the nature
of the interactions and predict future behaviors well. This situation arises commonly in
biological applications such as chemotaxis, pattern formation in developmental biology,
and also the cell polarity phenomenon [3,4].

Cell polarity plays a vital role in cell growth and function for many cell types, affecting
cell migration, proliferation, and differentiation. A classic example of polar growth is pollen
tube growth, which is controlled by the Rho GTPase (ROP1) molecular switch. Recent
studies have revealed that the localization of active ROP1 is regulated by both positive
and negative feedback loops, and calcium ions play a role in ROP1’s negative feedback
mechanism. Initially, ROP1 is inside the membrane. During positive feedback (rate kp f ),
some of the ROP1 enters the membrane. At the same time, negative feedback (rate kn f )
causes some of it to return inside the membrane while the rest diffuse on the membrane
(rate Dr). Calcium ions follow a similar process with positive rate kac, negative rate kdc,
and diffusion rate Dc. In [5,6], the following 2D reaction–diffusion system (2) is introduced:

Rt = kp f Rα
(

Rtot −
∫ L
−L R(x, t)dx

)
− kn f g(C) R + DrRxx,

Ct = kacR− kdcC + DcCxx,
Rx(−L, t) = Rx(L, t) = 0, Cx(−L, t) = Cx(L, t) = 0,
R(x, 0) = R0(x), C(x, 0) = C0(x).

(2)

with suitable initial and boundary conditions being proposed to quantitatively describe
such spatial and temporal connection between ROP1 and calcium ions, leading to rapid
oscillations in their distributions on the cell membrane. Here, R = R(x, t), C = C(x, t),
and Rt, Ct, Rx, Rxx, Cx and Cxx are abbreviated notations for partial derivatives with
respect to the time t or to the spatial variable x. Moreover, the non-linear function g(C)
characterizes how calcium ions play a role in ROP1’s negative feedback loop. Specifically,
the active ROP1 causes an increase in Ca2+ levels, leading to a reduction in ROP1 activity
and a decrease in its levels. Meanwhile, the flow of Ca2+ slows down as ROP1 drops.
Ref. [6] proposed the equation g(C) = C2

C2+k2
c

to describe such spatial–temporal patterns of
calcium, where kc is a positive constant. Based on this model, ref. [6] developed a modified
gradient matching procedure for parameter estimation, including kn f and kc. However,
it requires that g(C) in (2) is a known function. In this work, we propose to apply neural
network methods to uncover the function g(C) or more broadly, to learn interaction terms
N1 and N2 in general reaction-diffusion PDEs (1), which may contain fractional expressions
(Figure 1).

Figure 1. ROP1 and Ca2+ polarization dynamics. Left: ROP1 dynamics; Right: Ca2+ dynamics.

In the past decade, the artificial intelligence community has focused increasingly on
neural networks, which have become crucial in many applications, especially PDEs. Deep
learning-based approaches to PDEs have made substantial progress and are well-studied,
both for forward and inverse problems. For forward problems with appropriate initial
and boundary conditions in various domains, several methods have been developed to
accurately predict dynamics (e.g., [7–17]). For inverse problems, there are two classes of
approaches. The first class of approaches focuses on inferring coefficients from known data
(e.g., [7,10,12,15,18,19]). An example of this is the widely known PINN (Physics-informed
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Neural Networks) method [10], which uses PDEs in the loss function of neural networks
to incorporate scientific knowledge. Ref. [7] improved the efficiency of PINNs with the
residual-based adaptive refinement (RAR) method and created a library of open-source
codes for solving various PDEs, including those with complex geometry. However, this
method is only capable of estimating coefficients for fixed known terms in PDEs, and may
not work well for discovering hidden PDE models. Although [9] extended the PINN
method to find unknown dynamic systems, the nonlinear learner function remains a black-
box and no explicit expressions of the discovered terms in the predicted PDE are available,
making it difficult to interpret their physical meaning. The second class of approaches not
only estimates coefficients, but also discovers hidden terms (e.g., [16,17,20–26]). An example
is the PDE-Net method [16], which combines numerical approximations of convolutional
differential operators with symbolic neural networks. PDE-Net can learn differential
operators through convolution kernels, a natural method for solving PDEs that has been
well-studied in [27]. This approach is capable of recovering terms in PDE models with
explicit expressions and relatively accurate coefficients, but often produces many noisy
terms that lack interpretation. In order to produce parsimonious models, refs. [25,26]
proposed to create a regression model with the response variable ∂tu, and a matrix Θ with
a collection of spatial and polynomial derivative functions (e.g., u, ∂xu, u∂xu): ∂tu = Θξ.
The estimation of differential equations by modeling the time variations of the solution is
known to produce consistent estimates [28]. In addition, the Ridge regression with hard
thresholding can be used to approximate the coefficient vector ξ. This sparse regression-
based method generally results in a PDE model with accurately predicted terms and high
accuracy coefficients. However, few existing studies have focused on effectively recovering
interaction terms in the fractional form (say one polynomial term divided by another
polynomial term) in hidden partial differential equations, which is the focus of this paper.

Previous methods for identifying the hidden terms in reaction–diffusion partial differ-
ential equation models have mostly focused on polynomial forms. However, as indicated
in Equation (2), the model for ROP1 and calcium ion distribution also involves fractional
and integral forms, which can pose identifiability issues when combined with polynomial
forms. Furthermore, we want to attain a parsimonious model, as the interpretability of the
PDE model is important for biologists to comprehend biological behavior and phenomena
revealed by the model.

In this paper, we utilize a combination of a modified PDE-Net method (which adds
fractional and integration terms to the original PDE-Net approach), an L2 norm term
selection criterion, and an appropriate sparsity regression. This combination proves to
produce meaningful and stable terms with accurate estimation of coefficients. For ease of
reference to this combination, we call it Frac-PDE-Net.

The paper is organized as follows. In Section 2, we explain the main idea and the
framework of our proposed method Frac-PDE-Net. In Section 3, we apply Frac-PDE-Net
to discover some biological PDE models based on simulation data. Then, in Section 4, we
make some predictions to test the effectiveness of the models learned in Section 3. Finally,
we summarize our findings and present some possible future works in Section 5.

2. Methodology

The main idea of the PDE-Net method, as described in [16], is to use a deep convo-
lutional neural network (CNN) to study generic nonlinear evolution partial differential
equations (PDEs) as shown below:

∂tu = F(z, u,∇u,∇2u, . . . ), z ∈ Ω, t ∈ [0, T], (3)

where u = u(z, t) is a function (scalar valued or vector valued) of the space variable z
and the temporal variable t. Its architecture is a feed-forward network that combines the
forward Euler method in time with the second-order finite difference method in space
through the implementation of special filters in the CNN that imitate differential operators.
The network is trained to approximate the solution to the above PDEs and then the network
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is used to make predictions for the subsequent time steps. The authors of [16] show that
this approach is effective for solving a range of PDEs and can achieve satisfactory accuracy
and computational efficiency compared to traditional numerical methods. In this paper,
we follow a similar framework to PDE-Net, but with modifications on a symbolic network
framework (SymNetk

m) to better align with biological models.

2.1. PDE-Net Review

The feed-forward network consists of several ∆t-blocks, all of which use the same
parameters optimized through minimizing a loss function. For simplicity, we will only
show one ∆t-block for two-dimensional PDEs, as repeating it generates multiple ∆t-blocks,
and the concept can easily be extended to higher-dimensional PDEs.

Denote the space variable z in (3) to be z = (x, y) since we are dealing with the
two-dimensional case. Let t0 = 0 and ũ(·, t0) be the given initial data. For i ≥ 0, ũ(·, ti+1)
denotes the predicted value of u at time ti+1 calculated from the predicted (true) value of ũ
at time ti using the following procedure:

ũ(·, ti+1) = ũ(·, ti) + (∆t) SymNet(x, y, D00u, D10u, D01u, D20u, . . . ),

where SymNet is an approximation operator of F. Here, the operators Dij are convolution
operators with the underlying filters qij, i.e., Diju := 1

(∆x)i(∆y)j qij ⊗ u. These operators
approximate differential operators:

Diju ≈
di+ju
dixdjy

.

For a general N × N filter q =
(
q[k1, k2]

)
, where −N−1

2 ≤ k1, k2 ≤ N−1
2 ,

q⊗ u(x, y) := ∑
k1,k2

q[k1, k2] u(x + k1∆x, y + k2∆y). (4)

By Taylor expansion,

q⊗ u(x, y) =
N−1

∑
i,j=0

mij(∆x)i(∆y)j ∂i+ju
∂ix∂jy

∣∣∣∣
(x,y)

+ O
(
|∆x|N

)
+ O

(
|∆y|N

)
,

where
mij :=

1
i!j! ∑

k1,k2

ki
1kj

2q[k1, k2], ∀ 0 ≤ i, j ≤ N − 1.

In particular, if choosing ∆x = ∆y = δ, then

q⊗ u(x, y) =
N−1

∑
i,j=0

mij δi+j ∂i+ju
∂ix∂jy

∣∣∣∣
(x,y)

+ O
(
δN), (5)

As a result, the training of q can be performed through the training of M := (mij) since the
moment matrix M = M(q). It is important to note that the trainable filters M (or q) must
be carefully constrained to match differential operators.

For example, to approximate ∂u
∂x by D10u, or equivalently by 1

∆x q10⊗ u for a 3× 3 filter
q10, we may choose

M1(q10) =

0 0 ∗
1 ∗ ∗
∗ ∗ ∗

 or M2(q10) =

0 0 0
1 0 ∗
0 ∗ ∗

, (6)

where ∗ means no constraint on the corresponding entry. Generally, the fewer instances of
∗ present, the more restrictions are imposed, leading to increased accuracy. In this example
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of (6), the choice of M1 ensures the 1st order accuracy and the choice of M2 guarantees the
2nd order accuracy. More precisely, if we plug M1 into (5) with ∆x = ∆y = δ, then

q10 ⊗ u(x, y) = δ
∂u
∂x

+ O
(
δ2),

which implies 1
∆x q10 ⊗ u(x, y) = ∂u

∂x + O
(
∆x
)
. Similarly, if we plug M2 into (5), then

1
∆x q10 ⊗ u(x, y) = ∂u

∂x + O
(
(∆x)2). In PDE-Net 2.0, all moment matrices are trained as

subject to partial constraints so that the accuracy is at least 2nd order.
The SymNetk

m network, modeled after CNNs, is employed to approximate the multi-
variate nonlinear response function F. It takes a m-dimensional vector as input and consists
of k layers. As depicted in Figure 2, the SymNet2

m network has two hidden layers, where
each fi unit performs a dyadic multiplication and the output is added to the (i + 1)th
hidden layer.

Figure 2. The scheme of one ∆t.

The loss function for this method has three components and is defined as follows:

L = Ldata + λMLmoment + λSLSymNet. (7)

Here, Ldata measures the difference between the true data and the prediction. Consider the
data set {uj(·, ti) ∈ RNs×Ns : 1 ≤ i ≤ n, 1 ≤ j ≤ N}, where n is the number of ∆t blocks, N
is the total number of samples, and Ns is the number of space grids. The index j indicates
the jth solution path with a certain initial condition of the unknown dynamics, and the
index i represents the solution at time ti. Then, we define

Ldata =
1

nN(∆t)2

n

∑
i=1

N

∑
j=1

`ij.

Here, `ij := ||uj(ti, ·) − ũj(ti, ·)||22, where uj represents the real data and ũj denotes the

predicted data. For a given threshold s, recall the Huber’s loss function `
(s)
1 defined as

`
(s)
1 (x) =

{
|x| − s

2 if |x| > s,
x2

2s if |x| ≤ s.
(8)

We then define the following:

Lmoment = ∑
i,j

∑
i1,j1

`
(s)
1
(

M(qij)[i1, j1]
)
,
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where qijs are filters and M(qij) is the moment matrix of qij. Using the same Huber loss
function as in (8), we define

LSymNet = ∑
i,j

`
(s)
1 (wij),

where wijs are the parameters in SymNet. The coefficients λM and λS in Equation (7) serve
as regularization terms to help control the magnitude of the parameters, preventing them
from becoming too large and overfitting to the training data.

2.2. mPDE-Net (Modified PDE-Net)

In mPDE-Net, we do not include multiplications between derivatives of u and v,
as these interactions are not commonly present in biological phenomena. Additionally,
to handle interactions in fractional or integral forms, such as those in Equation (2), mPDE-
Net incorporates integral terms and division operations into SymNetk

m. However, there was
a challenge with identifiability using mPDE-Net. For instance, consider a two-component
input vector u and v. mPDE-Net may produce results such as u2

u+ε or uv
v+ε , where ε is a

small number due to noise. Although both of these terms essentially represent the same
term u, the mPDE-Net is unable to automatically identify them as such. Keeping all similar
terms such as u2

u+ε , uv
v+ε and u at the same time would result in a complex model and the

real fractional term would not be effectively trained.
To address the identifiability issue, restrictions were imposed on the nonlinear interac-

tion term N(u, v) by assuming that N(u, v) = g(u)h(v), where either g or h is linear and the
other one can contain a fractional term with the order of the denominator larger than that
of the numerator. For instance, the terms u2

u+ε and uv
v+ε are further decomposed as follows:

u2

u + ε
= u− ε +

ε2

u + ε
,

uv
v + ε

= u− u
ε

v + ε
.

As seen, the main part of the above two terms is u while the rest, such as ε, ε2

u+ε and u ε
v+ε ,

are considered as perturbations since ε is very small. This allows the mPDE-Net to identify
and combine the main parts of terms, resulting in a compact model.

Figure 3 presents an example of a system involving the derivatives of u and v up to
the second order. The symbolic neural network in this example has five hidden layers,
referred to as SymNet5

10. The operators fi are multiplication functions, i.e., fi(ηi, ξi) = ηiξi,
for i = 1, 4, 5; and f j are division functions, i.e., f j(ηj, ξ j) =

ηj
ξ j

, for j = 2, 3. Addi-
tionally, a term uα is included to incorporate fractional powers, such as the term Rα in
(2). The algorithm corresponding to this example is outlined in Algorithm 1, where
L1 = (u, ux, uxx, v, vx, vxx, u2, v2, uα, I)T , L2 = (LT

1 , f1)
T , L3 = (LT

2 , f2)
T , L4 = (LT

3 , f3)
T ,

L5 = (LT
4 , f4)

T , L6 = (LT
5 , f5)

T .

Algorithm 1 Scheme of mPDE-Net.

Input: u, ux, uxx, v, vx, vxx, u2, v2, uα, I, where I represents
∫

u(x, t) dx,
(η1, ξ1)

T = W(1)L1 + b(1), W(1) ∈ R2×10, L1 ∈ R10, b(1) ∈ R2,
(η2, ξ2)

T = W(2)L2 + b(2), W(2) ∈ R2×11, L2 ∈ R11, b(2) ∈ R2,
(η3, ξ3)

T = W(3)L3 + b(3), W(3) ∈ R2×12, L3 ∈ R12, b(3) ∈ R2,
(η4, ξ4)

T = W(4)L4 + b(4), W(4) ∈ R2×13, L4 ∈ R13, b(4) ∈ R2,
(η5, ξ5)

T = W(5)L5 + b(5), W(5) ∈ R2×14, L5 ∈ R14, b(5) ∈ R2,
Output: F = W(6)L6 + b(6), W(6) ∈ R1×15, L6 ∈ R15, b(6) ∈ R1.
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Figure 3. The scheme of mPDE-Net.

To further demonstrate the mPDE-Net approach, we present a concrete example.
To simplify the notation, we introduce the row vector ei with a 1 in the ith component and
0 in all other components, i.e.,

ei = (0, 0, · · · , 0, 1, 0 · · · , 0),

where the number “1” is on the ith position. Then, we set

W(1) =

(
e1 + e4
e1 + e4

)
, W(2) =

(
e4

4e4 + e8

)
, W(3) =

(
0.5e1

0.2e1 + e7

)
,

W(4) =

(
0.2e1
e12

)
, W(5) =

(
0.2e4
e13

)
, W(6) = 0.1e1 + 0.3e3 + 6e4 + e11 + 2e14 + 3e15,

b(1) =
(

1
0

)
, b(2) =

(
0.5
0.5

)
, b(3) =

(
1
0

)
, b(4) =

(
0
0

)
, b(5) =

(
0
0

)
, b(6) =

(
0
0

)
.

According to Algorithm 1 for 1 ≤ i ≤ 5,

W(1)L1 + b(1) =
(

u + v + 1
u + v

)
, f1 = f1(η1, ξ1) = η1ξ1 = (u + v + 1)(u + v),

W(2)L2 + b(2) =
(

v + 0.5
4v + v2 + 0.5

)
, f2 = f2(η2, ξ2) =

η2

ξ2
=

v + 0.5
v2 + 4v + 0.5

,

W(3)L3 + b(3) =
(

0.5u + 1
0.2u + u2

)
, f3 = f3(η3, ξ3) =

η3

ξ3
=

0.5u + 1
u2 + 0.2u

,

W(4)L4 + b(4) =
(

0.2u
f2

)
, f4 = f4(η4, ξ4) = η4ξ4 = 0.2u f2 = 0.2u

v + 0.5
v2 + 4v + 0.5

,

W(5)L5 + b(5) =
(

0.2v
f3

)
, f5 = f5(η5, ξ5) = η5ξ5 = 0.2v f3 = 0.2v

0.5u + 1
u2 + 0.2u

,
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Therefore,

SymNet5
10 = W6L6 + b(6) = 0.1u + 0.3uxx + 6v + f1 + 2 f4 + 3 f5

= 0.3uxx + u2 + 2uv + v2 + 1.1u + 7v + 0.4u
v + 0.5

v2 + 4v + 0.5
+ 0.6v

0.5u + 1
u2 + 0.2u

.

Let L denote the library for PDE-Net 2.0 and L f denote the library for mPDE-Net. It
is clear that L and L f are distinct. Typically, L only seeks to identify multiplication terms
and has the form:

L =
{

λ(Uxx + Uyy) + f1(U) : λ ∈ R, U = (u, v), f1 ∈ P
}

,

where
P := {Polynomials of U up to a certain degree}.

Conversely, L f is engineered to learn both multiplication terms and fractional terms, subject
to certain constraints. In our paper, we make the choice of

L f =
{

λ(Uxx + Uyy) + f1(U) +
f2(u)
f3(u)

f4(v) + f5(u)
f6(v)
f7(v)

:

λ ∈ R, U = (u, v), { fi}7
i=1 ⊂ P , deg f2 < deg f3, deg f6 < deg f7

}
,

which is much larger than L. Therefore, our framework of neural networks, built upon L f ,
is more challenging to implement than the original framework, which is based on L.

2.3. Optimizing Hyperparameters

In this section, we will explain the process of tuning hyperparameters λM and λS in
the loss function (7). Firstly, the range of spatial and temporal variables in the training set
are defined as [−L, L] and [0, T], respectively. Then, using the finite difference method, we
generate a dataset that acts as the “true data”. Additionally, we consider M initial conditions.
The time interval is determined by dt/d̃t, where d̃t is the time step size for computing
the “true data” and dt represents the time step size for selecting the “observational data”.
Typically, d̃t is chosen to be much smaller than dt. The solution corresponding to the mth
initial condition is denoted as um(·, ·), where the first “·” refers to the spatial variable and
the second “·” represents the temporal variable. If the solution is evaluated at the kth time
step, it is written as um(·, tk), with “·” representing the spatial variable.

The M initial values from M initial conditions are divided into three separate groups,
resulting in M = M1 + M2 + M3, where M1, M2, and M3 represent the sizes of the training
set, validation set, and test set, respectively. The solutions produced by these initial values
are designated as follows:

Training set: u1(·, ·), · · · , uM1(·, ·);
Validation set: uM1+1(·, ·), · · · , uM1+M2(·, ·);
Testing set: uM1+M2+1(·, ·), · · · , uM1+M2+M3(·, ·).
We use the training set to train our models, the validation set to find the best parame-

ters, and the testing set to evaluate the performance of the trained models.
Assume we divide the time range [0, T] into K blocks, with cutting points denoted as

tk for 1 ≤ k ≤ K. Then, for any 1 ≤ m ≤ M and for any 1 ≤ k ≤ K, we define

`km = ||um(·, tk)− ũm(·, tk)||22,

where ‖ · ‖2 denotes the L2 norm with respect to the space variable on [−L, L], um is the
“true solution”, and ũm is the “predicted solution” by a neural network. Based on this,
the training loss, validation loss and the testing loss are defined as follows:
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• Training loss:

Ltrain :=
1

M1K(dt)2

K

∑
k=1

M1

∑
m=1

`km. (9)

• Validation loss:

Lvalid :=
1

M2K(dt)2

K

∑
k=1

M1+M2

∑
m=M1+1

`km. (10)

• Testing loss:

Ltest :=
1

M3K(dt)2

K

∑
k=1

M

∑
m=M1+M2+1

`km. (11)

We choose the hyperparameters λM and λS in the loss function (7) using the validation
sets. Let Bmk = um(·, tk) and Bjk = uj(·, tk), where 1 ≤ m ≤ M1, M1 + 1 ≤ j ≤ M1 + M2
and 1 ≤ k ≤ K. We define the training number by Nt. We then gradually increase the time
points of the training and validation sets. For instance, if K = 15 and Nt = 5, the training
and validation sets can be selected as follows. The performance metric is the same as the
validation loss in (10).

Training Validation Validation Loss
Bm1, · · · , Bm3 Bj1, · · · , Bj3 L(1)

valid
Bm1, · · · , Bm6 Bj1, · · · , Bj6 L(2)

valid
Bm1, · · · , Bm9 Bj1, · · · , Bj9 L(3)

valid
Bm1, · · · , Bm12 Bj1, · · · , Bj12 L(4)

valid
Bm1, · · · , Bm15 B̃j1, · · · , Bj15 L(5)

valid

Furthermore, we tune the hyperparameters using Hyperopt [29], which uses Bayesian
optimization to explore the hyperparameter space more efficiently than a brute-force grid
search. Specifically, the mPDE-Net is nested in the objective function of Hyperopt, which
will optimize the average validation loss Lavl of models.

Lavl =
1
5

5

∑
i=1

L(i)
valid.

The selection procedure is described in Algorithm 2.

Algorithm 2 Optimizing Hyperparameters using Hyperopt

1: Initialize the search spaces for λM and λS;
2: Define the objective function (to be optimized) as the average testing loss obtained from

mPDE-Net, implemented using PyTorch;
3: Set the optimization algorithm, specify the number of trials, and initialize the results

list.
4: for i = 1 to number of trials do
5: Sample a set of hyperparameters from the search spaces, evaluate the objective

function with the sampled hyperparameters, and set a list called the Validation loss.
6: for r = 1 to K

Nt
do

7: Train model of mPDE-Net on Bm1, · · · , Bmr, test it on Bj1, · · · , Bjr to get a valida-
tion loss, and then append the validation loss to the Validation loss.

8: end for
9: Get an average validation loss from the Validation loss, append the hyperparameters

and the average validation loss to the results list, and then update the search space
based on the results so far.

10: end for
11: return the hyperparameters with the minimum objective function value.
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2.4. Frac-PDE-Net

We have noted that mPDE-Net accurately fits data and recovers terms, but it may not
always simplify the learned PDE, making it challenging to interpret. To address this, we
implement sparsity-encouraging methods such as the Lasso approach. However, even with
Lasso and hyperparameters chosen from the validation sets, the predicted equation still had
redundant terms. This is likely due to correlated data and linear dependencies in the data,
which prevent Lasso from fully shrinking the extra coefficients to zero. To overcome this,
we employ two approaches. The first, called the L2 norm-based term selection criterion,
weakens or eliminates linear dependencies in the data. The second, called sequential
threshold ridge regression (STRidge), creates concise models through strong thresholding.
We will discuss these approaches in more detail below.

L2 norm based term selection criterion. Consider the underlying PDE in the form of

∂tu = Θ(u)ξ, (12)

where
Θ(u) =

(
Θ1(u), Θ2(u), . . . , Θp(u)

)
, ξ = (ξ1, ξ2, . . . , ξp)

T .

To address the issue of excessive terms in the learned PDE, we apply the L2 norm based
term selection criterion. This involves normalizing the columns of Θ(u) to obtain Φk(u)

Θ(u)ξ =
p

∑
k=1

Θk(u)ξk =
p

∑
k=1

Φk(u)ηk,

where

Φk(u) =
Θk(u)
‖Θk(u)‖2

, ηk = ξk‖Θk(u)‖2, ∀ 1 ≤ k ≤ p,

and adjusting the coefficients ξ to ξ̃,

ξ̃k =

0, if |ηk| < δ max
j
|ηj|,

ξk, otherwise,
∀ 1 ≤ k ≤ p.

By removing the terms in Θ(u) whose adjusted coefficients ηk are significantly smaller than
the largest one, we shorten the vector ξ̃ to ξ(s). The corresponding columns in Θ(u) form
a new matrix Θ(s)(u) with reduced linear dependency between its columns. This results in
a simplified approximation of the PDE:

∂tu ≈ Θ(s)(u) ξ(s). (13)

Sparse regression: STRidge. After using the L2 norm-based term selection criterion to
select terms, as discussed previously, we move on to consider sparse regression to further
improve the compactness of the representation for the hidden PDE model (13). Here,
a tolerance threshold “tol” is introduced to select coefficients for sparse results. Coefficients
smaller than “tol” will be discarded, and the remaining ones will be utilized until the
number of terms stabilizes. The sparsity regression process is outlined in Algorithm 3.
For further information, see [25].

To summarize, the mPDE-Net approach allows us to achieve relatively accurate
predictions for the function and its derivatives. We then employ an L2 norm-based term
selection criterion and sparse regression to obtain a concise model, which we refer to as
Frac-PDE-Net. Algorithm 4 summarizes this procedure.
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Algorithm 3 : STRidge(Θ(s), Ut, λ, tol, iters)

1: ξ̂(s) = argminξ(s) ||Θ
(s)ξ(s) −Ut||22 + λ||ξ(s)||22 . ridge regression

2: bigcoeffs={j : |ξ̂(s)j | ≥ tol} . select large coefficients

3: ξ̂(s)[∼ bigcoeffs] = 0 . apply hard threshold
4: ξ̂(s)[bigcoeffs] = STRidge(Θ(s)[:, bigcoeffs], Ut, λ, tol, iters-1) . recursive call with

fewer coefficients
5: return ξ̂(s)

Algorithm 4 :L2 Norm selection criterion+ STRidge(Θ̂, ût, λ, tol, iters)

1: Θ̂ξ̂ = ∑
p
k=1 Θ̂k ξ̂k = ∑

p
k=1

Θk(û)
‖Θk(û)‖2

(
ξ̂k‖Θk(û)‖2

)
= ∑

p
k=1 Φk(û)ηk . Adjusted

coefficients
2: bigcoeffs={k : |ηk| ≥ δ max

j
|ηj|} . Select large coefficients

3: ξ̂[∼ bigcoeffs] = 0
4: Θ(s) = Θ̂[:, bigcoeffs] and ξ(s) = ξ̂[bigcoeffs]
5: ξ̂(s) = argminξ(s) ||Θ

(s)ξ(s) − ût||22 + λ||ξ(s)||22 . ridge regression

6: bigcoeffs={j : |ξ̂(s)j | ≥ tol} . select large coefficients

7: ξ̂(s)[∼ bigcoeffs] = 0 . apply hard threshold
8: ξ̂(s)[bigcoeffs] = STRidge(Θ(s)[:, bigcoeffs], ût, λ, tol, iters-1) . recursive call with

fewer non-zero coefficients
9: return ξ̂(s)

2.5. Kolmogorov-Smirnov Test

After applying the Frac-PDE-Net procedure, a simplified, interpretable model has been
created. Our next goal is to determine if this model can be further compressed. We designate
Model 1 as the system learned by Frac-PDE-Net, and Model 2 as the system obtained by
removing the interaction term with the smallest L2 norm from Model 1. To determine if
Model 1 and Model 2 come from the same distribution, we use the Kolmogorov–Smirnov
test (K-S test).

Since our examples involve systems of two PDEs, a two-dimensional K-S test is
appropriate. The time range is [0, T] with time step size dt, giving n := T

dt time grids
denoted as {ti}n

i=1, where ti = i(dt), and 1 ≤ i ≤ n. At a fixed time ti, we aim to test the
proximity of two samples Yti and Ỹti , which are associated with Model 1 and Model 2,
respectively, at time ti. For each ti, we specify:

Hypothesis 1 (Null). The two sets {Yti}n
i=1 and {Ỹti}n

i=1 come from a common distribution.

Hypothesis 2 (Alternative). The two sets {Yti}n
i=1 and {Ỹti}n

i=1 do not come from a com-
mon distribution.

Let Hti ,0 and p̂ti denote null hypotheses and the corresponding p-values, respectively,
for 1 ≤ i ≤ n. In this paper, we employed Bonerroni [30], Holm [31] and Benjamini–
Hochberg (B-H) [32] methods for multiple testing adjustment. Note that the Bonferroni
method is the most conservative one among these three methods. Under the complete null
hypothesis of a common distribution across all time points, no more than 5% of the total
time points can be rejected.

3. Numerical Studies: Convection-Diffusion Equations with the Neumman
Boundary Condition

In this section, we showcase numerical examples to demonstrate the efficacy of Frac-
PDE-Net, our proposed method. The training, validation, and testing data are generated
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based on the underlying governing equation. Our aim is to use Frac-PDE-Net on these
data to obtain a concise and interpretable model for the PDE. The governing PDEs under
consideration in this paper are of the following form:{

∂tu = F1(u, v),
∂tv = F2(u, v),

(14)

where

F1(u, v) = d1∆u + P1(u, v) + R1(u, v), F2(u, v) = d2∆v + P2(u, v) + R2(u, v). (15)

Here, d1 and d2 are positive diffusion coefficients, R1 and R2 represent fractional functions
of (u, v), and P1 and P2 denote combinations of power functions and integration opera-
tors of (u, v) through addition and multiplication. For example, R1(u, v) can be u−2

v2−v+3 ,
and P1(u, v) can be 1 + u1.5 − v2 + u1.5

∫
u dx.

3.1. Example 1: A 2-Dimensional Model

Our first example is taken from (Equation (2.8) in Section 2.2 in [2]). In this example,
we consider (14) under the Neumann boundary condition on a 2-dimensional domain
D1 := [−5, 5]× [−5, 5] with d1 = 0.3, d2 = 0.4, P1(u, v) = 1− u, P2(u, v) = 0.4− 0.2v, and

R1(u, v) = R2(u, v) = −2
uv

1 + u + 4u2 = −1
2

uv
u2 + 0.25u + 0.25

.

Thus, Equation (14) is reduced to
∂tu = F1(u, v),
∂tv = F2(u, v),
∂xu(−5, y, t) = ∂xu(5, y, t) = ∂yu(x,−5, t) = ∂yu(x, 5, t) = 0,

(16)

with (x, y, t) ∈ [−5, 5]× [−5, 5]× [0, 0.15] and
F1(u, v) = 0.3(∂2

xu + ∂2
yu) + 1− u− 1

2
uv

u2 + 0.25u + 0.25
,

F2(u, v) = 0.4(∂2
xv + ∂2

yv) + 0.4− 0.2v− 1
2

uv
u2 + 0.25u + 0.25

(17)

The observations are generated with Equations (16) and (17), and then split into training
data, validation data and testing data. The PDE is solved by applying a finite difference
scheme to a 64× 64 spatial mesh grid with the central difference scheme for ∆ := ∂2

x + ∂2
y,

and with a temporal discretization of second-order Runge–Kutta (see [16]), using a time
step size of 1

1600 .
In addition, the observations are obtained from various initial values: this implies an

extra variability in the datasets, that is necessary if we want to be able to generalize well
to any initial conditions. We assume that we have NInit = 12 different solutions, coming
from different initial values w0. The functions are random, defined through random
parameters ai,j, bi,j, ci,j, di,j, ak,l , bk,l , ck,l and dk,l , which follow from the standard normal
distribution N (0, 1), c1 and c2, which follow from uniform distributions: c1 ∼ U (−0.5, 0.5)
and c2 ∼ U (0.5, 1.5). Then, we generate the 12 initial values (u0, v0) by setting

u0(x, y) =
w0(x, y)
max |w0|

+ c1, v0(x, y) =
w̃0(x, y)
max |w̃0|

+ c2, (18)
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where

w0(x, y) = ∑
|i|,|j|≤13

{
ai,j cos(2ix) cos(2jy) + bi,j sin[(2i + 1)x] sin[(2j + 1)y]

+ ci,j sin[(2i + 1)x] cos(2jy) + di,j cos(2ix) sin[(2j + 1)y]
}

,

w̃0(x, y) = ∑
|k|,|l|≤13

{
ak,l cos(2kx) cos(2ly) + bk,l sin[(2k + 1)x] sin[(2l + 1)y]

+ ck,l sin[(2k + 1)x] cos(2ly) + dk,l cos(2kx) sin[(2l + 1)y]
}

.

For any given initial data (u0, v0), we denote the corresponding solution to be (u∗, v∗).
When noise is allowed, we assume the perturbed data to be

u(x, y, t) = u∗(x, y, t) + nlQ1, v(x, y, t) = v∗(x, y, t) + nlQ2,

where nl is the level of Gaussian noise added, and Q1 and Q2 are random variables, which
follow from the normal distribution: Qi ∼ N (0, σ2

i ) for i = 1, 2, where σ1 (or σ2 resp.) is the
standard deviation of the true data u∗ (or v∗ resp.).

Since the time is from 0 to 0.15, there are 15 time blocks and we denote NTime = 15.
For spatial variables, we have NSpace = 64, where NSpace represents the number of space
grids. Therefore, the dataset is{

(ut,k, vt,k) : 1 ≤ t ≤ NTime, 1 ≤ k ≤ NInit
}

,

where both ut,k and vt,k are matrices in RNSpace×NSpace . The following Tables 1 and 2 show a
summary of parameters for Frac-PDE-Net.

Table 1. Fixed parameters for Frac-PDE-Net.

Parameter Value

t [0, 0.15]
dt 0.01

x & y [−5, 5]
dx & dy 10

64
NInit 12
NTime 15
NSpace 64

Table 2. Hyper-parameters selected by validation procedure Section 2.3 for Frac-PDE-Net.

Parameter Value

λM (5% noise level) 3.28× 10−5

λS (5% noise level) 4.93× 10−5

Our goal is to discover the terms F1(u, v) and F2(u, v) on the right hand side of (16)
and the true expressions are given by (17). For convenience of notation, we denote F̂1
and F̂2 to be our predicted operators for F1 and F2. Based on some existing models (see,
e.g., Section 2.2 in [2]), we adopt some assumptions before discovering F̂1 and F̂2. More
precisely, we assume that

F̂1(u, v) = d̂1∆u + P̂1(u, v) + R̂1(u, v), F̂2(u, v) = d̂2∆v + P̂2(u, v) + R̂2(u, v), (19)

where d̂1 and d̂2 are positive constants, P̂1 and P̂2 are polynomials of (u, v) up to order 2,
and both the fractional terms R̂1 and R̂2 are in the form l(u)r(v) or r(u)l(v), where l means
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a linear function and r denotes a fractional function in which the numerator is linear and
the denominator is quadratic.

Based on these assumptions, we consider the following library {u, uxx, uyy, v, vxx, vyy}
for training our model.

The filters q (as defined in (4)) are selected to be of size 5 × 5. The total number
of parameters in W(i) (as defined in Algorithm 1) for approximating F1 and F2 is 56,
and the number of trainable parameters in the moment matrices M (as defined in (6)) is
52. To optimize the parameters, we use the BFGS algorithm instead of the Adam or SGD
optimizers since the BFGS algorithm is faster and also stable.

In the following, we outline the notation used and summarize the key steps of
our framework.

1. F̂mPDE−Net
i denotes the result of applying the modified PDE-Net on our model.

2. Next, we utilize the L2 norm-based selection criterion and sparse regression on
F̂mPDE−Net

i to obtain a more concise and interpretable model, referred to as F̂smPDE−Net
i .

The “s” in F̂smPDE−Net
i represents the application of sparse regression.

3. Subsequently, we fix the terms in F̂smPDE−Net
i and retrain its coefficients to produce

a final model named F̂rsmPDE−Net
i . This is the end result of our Frac-PDE-Net scheme.

The “r” in F̂rsmPDE−Net
i signifies the process of retraining the coefficients.

4. Finally, to verify that no further terms can be eliminated after Frac-PDE-Net, we
compare two models: Model 1, generated by Frac-PDE-Net; and Model 2, which is
identical to Model 1 but removes the term with the smallest L2 norm from F̂1 and
F̂2. The coefficients in Model 2 are retrained, and the resulting model is referred
to as F̂PHrsmPDE−Net

i . “PH” in F̂PHrsmPDE−Net
i represents the Post-hoc selection in

Model 2. The comparison between Model 1 and Model 2 will be conducted using the
Kolmogorov–Smirnov test as outlined in Section 2.5.

For this case, we added 5% noise to the generated data to form the observational data.
The results are displayed in Table 3. Table 3 shows that F̂mPDE−Net

i (modified PDE-Net
framework) accurately identifies the terms in Example 1 and estimates their corresponding
coefficients. However, it also produces unnecessary terms with low weights after training.
By applying the L2 norm-based selection and sparse regression (L2+SP), we successfully
remove these extra terms in F̂rsmPDE−Net

i . After the terms in F̂1 and F̂2 are identified, we
retrain the model with these fixed terms to obtain the final coefficients in F̂rsmPDE−Net

i .

Table 3. PDE model discovery with 5% noise.

True F∗1 0.3∆u + 1− u− 0.5 uv
u2+0.25u+0.25

F̂mPDE−Net
1 0.305∆u+ 0.992− 0.988u− 0.510 uv

u2+0.259u+0.265
−0.003 v

u2+0.259u+0.265 + 0.003v

F̂smPDE−Net
1 0.305∆u+ 1.00− 0.981u− 0.532 uv

u2+0.259u+0.265
F̂rsmPDE−Net

1 (Frac-PDE-Net) 0.304∆u+ 0.975− 0.982u− 0.501 uv
u2+0.256u+0.260

F̂PHrsmPDE−Net
1 0.278∆u+ 0.969− 0.993u− 0.514 uv

u2+0.301u+0.271

True F∗2 0.4∆v + 0.4− 0.2v− 0.5 uv
u2+0.25u+0.25

F̂mPDE−Net
2 0.398∆v+ 0.412− 0.195v− 0.510 uv

u2+0.254u+0.263
−0.005 v

u2+0.254u+0.263 − 0.010u

F̂smPDE−Net
2 0.398∆v+ 0.424− 0.199v− 0.542 uv

u2+0.254u+0.263
F̂rsmPDE−Net

2 (Frac-PDE-Net) 0.400∆v+ 0.385− 0.202v− 0.490 uv
u2+0.243u+0.256

F̂PHrsmPDE−Net
2 0.344∆v + 2.116− 0.815v
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To test whether Model 1 (F̂rsmPDE−Net
i ) and Model 2 (F̂PHrsmPDE−Net

i ) are similar or
not, we compare their predictions by using the finite difference scheme. Consider the time
range to be [0, 0.5] with time step size dt = 0.01. Hence, there are 50 time grids, which
are denoted to be {ti}50

i=1, where ti = 0.01i, 1 ≤ i ≤ 50. Fix a time ti, we introduce the
residuals Eti := Yti −Y∗ti

and Ẽti := Ỹti −Y∗ti
, where Y∗ti

represents the true solution, and Yti

and Ỹti denote the predicted solutions based on Model 1 and Model 2, respectively, at time
ti. We will test if the residuals {Eti}50

i=1 and {Ẽti}50
i=1 have similar distributions. The null

hypothesis is H(i)
0 : Eti ∼ Ẽti and the alternative hypothesis is H(i)

A : Eti 6∼ Ẽti . Applying
Bonferroni method, Holm method and the B-H’s procedure for multiple testing adjustment,
discussed in Section 2.5, the test results are presented in the following Table 4.

Table 4. Hypothesis tests with 5% observation noise.

H(i)
0 vs. H(i)

A , 1 ≤ i ≤ 50 Number of Rejections

Bonferroni 49

Holm 49

B-H 49

The results in Table 4 show that Model 1 (Frac-PDE-Net) is significantly different from
Model 2, meaning all terms in Model 1 should be kept. Hence, the final discovered terms
for F̂1 and F̂2 are represented by Model 1 (Frac-PDE-Net) in Table 4.

To assess the stability of the results shown above, we repeated the experiments
100 times and the results are presented in Figures 4 and 5. The process of merging similar
terms is outline in Appendix A.1. The plots show that there are some instances where the
three methods fail to eliminate certain redundant terms. However, these instances are rare,
as the median of these terms is 0, indicating that they appear infrequently.

3.2. Example 2: A 1-Dimensional Model

Our second example is taken from [6]. In this example, we consider (14) under
the Neumann boundary condition on a one-dimensional domain D1 := [− 5π

2 , 5π
2 ] with

d1 = 0.1, d2 = 10,

P1(u, v) = 3.6u1.5 − 3.6u− 0.229u1.5
∫ 2.5π

−2.5π
u dx, P2(u, v) = u− 0.4v,

R1(u, v) = 0.081
u

v2 + 0.0215
, R2(u, v) = 0.

Thus, Equation (14) is reduced to
∂tu = F1(u, v),
∂tv = F2(u, v),
∂xu(−2.5π, t) = ∂xu(2.5π, t) = ∂xv(−2.5π, t) = ∂xv(2.5π, t) = 0,

(20)

with (x, t) ∈ [−5, 5]× [0, 0.75] and
F1(u, v) = 0.1∂2

xu + 3.6u1.5 − 3.6u− 0.229u1.5
2.5π∫
−2.5π

u dx + 0.081 u
v2+0.0215 ,

F2(u, v) = 10∂2
xv + u− 0.4v.

(21)
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(a) (b)

Figure 4. Simulation results for true positive discovering with 5% noise. (a) F̂1. (b) F̂2.

(a) (b)

(c) (d)

Figure 5. Simulation results for false positive discovering with 5% noise. (a) F̂1. (b) F̂1. (c) F̂2. (d) F̂2.

The training data, validation data and testing data are generated, based on (20),
by applying a finite difference scheme to a 600 spatial mesh grid and then restricted to a
200 spatial mesh grid with the central difference scheme for ∆ := ∂2

x, and with a temporal
discretization of the implicit Euler scheme, using a time step size of 0.01. Furthermore, we
evaluate 14 different initial values, 10 of which were selected from a set of solutions with
periodic patterns. The remaining initial values were generated by combining elementary
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functions. The reason for using different ways to produce initial values is to test if this
method still works for periodical solutions.

We also add noise to the generated data in the following form:

u(x, y, t) = |u∗(x, y, t) + nlQ1|, v(x, y, t) = |v∗(x, y, t) + nlQ2|

where nl is the level of Gaussian noise added and Q1 and Q2 are random variables that
follow from the normal distribution: Qi ∼ N (0, σ2

i ) for i = 1, 2, where σ1 (or σ2 resp.) is
the standard deviation of u∗ (or v∗ resp.). The reason of imposing the absolute value sign
is to avoid negative values, which may cause trouble to evaluate power functions with
non-integer power, such as u1.5.

We choose 15 blocks for the time on the interval [0, 0.75] and denote NTime = 15.
For spatial variables, we set NSpace = 200, where NSpace represents the number of space
grids. Therefore, the dataset is{

(ut,k, vt,k) : 1 ≤ t ≤ NTime, 1 ≤ k ≤ NInit
}

,

where both ut,k and vt,k are matrices in RNSpace×NSpace . The following Tables 5 and 6 show a
summary of parameters for Frac-PDE-Net.

In [6], some assumptions are made on the model based on existing experimental
knowledge of the biological behavior. For example, it is assumed that the operator F2(u, v)
is linear in both u and v, while F1(u, v) is nonlinear in both u and v. As the form in (15),

F1(u, v) = d1∆u + P1(u, v) + R1(u, v).

In [6], the nonlinear dependence of P1(u, v) on u is via the combination of the power func-
tion uα and the integration operator

∫
u dx, where α is further restricted to the range [1, 2].

On the other hand, R1(u, v) is assumed to be linear in u, but nonlinear in v and the nonlinear
dependence on v is via a fractional function whose denominator is a quadratic polynomial.
Thanks to these a priori constraints, we consider the library {u, ux, uxx, v, vx, vxx, I, uα}
for F̂1(u, v) and the library {u, ux, uxx, v, vx, vxx} for F̂2(u, v), where α takes the form
α = 1.5 + 0.5 sin(η) for η ∈ R to ensure that α ∈ [1, 2].

Table 5. Fixed parameters for Frac-PDE-Net.

Parameter Value

t [0, 0.75]
dt 0.05
x [−2.5π, 2.5π]

dx 5π
200

NInit 14
NTime 15
NSpace 200

Table 6. Hyper-parameters selected for Frac-PDE-Net by the validation procedure as in Section 2.3.

Parameter Value

λM (1% noise level) 1.88× 10−7

λS (1% noise level) 1.62× 10−6

The filters q are of size 1× 19. The total number of parameters for approximating
F1 and F2 is 29, and the number of trainable parameters in the moment matrices M is 32.
To optimize the parameters, we again use the BFGS algorithm.
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For this case, we added 1% noise to the generated data to form the observational data.
The results are displayed in Table 7, in which the notations are consistent with those in
Table 3.

Table 7. PDE model discovery with 1% noise level.

True F∗1 0.1∂2
xu + 3.6u1.5 − 3.6u− 0.229u1.5

2.5π∫
−2.5π

u dx

+0.081 u
v2+0.0215

F̂mPDE−Net
1 0.118∂2

xu + 3.959u1.361 − 3.871u

−0.223u1.361
2.5π∫
−2.5π

u dx + 0.0749 u
(v+0.005)2+0.0211

0.0002 uv
(v+0.005)2+0.0211 − 0.0029v

F̂smPDE−Net
1 0.117∂2

xu + 3.893u1.361 − 3.976u

−0.223u1.361
2.5π∫
−2.5π

u dx + 0.0750 u
(v+0.005)2+0.0211

F̂rsmPDE−Net
1 (Frac-PDE-Net) 0.0899∂2

xu+ 3.441u1.508− 3.363u− 0.244u1.508
2.5π∫
−2.5π

u dx

+0.0714 u
(v+0.0002)2+0.0209

F̂PHrsmPDE−Net
1 −0.026∂2

xu+ 0.628u1.500− 2.333u+ 0.0393 u
(v−0.0479)2+0.0154

True F∗2 10.0∂2
xv + u− 0.4v

F̂mPDE−Net
2 9.388∂2

xv + 0.963u− 0.400v
F̂smPDE−Net

2 9.388∂2
xv + 0.963u− 0.400v

F̂rsmPDE−Net
1 9.588∂2

xv + 0.969u− 0.403 v
F̂PHrsmPDE−Net

1 8.145∂2
xv + 0.937u− 0.387v

Similar to the post hoc selection procedure we performed in Example 1, we also
need to compare Model 1 (F̂rsmPDE−Net

1 ) and Model 2 (F̂PHrsmPDE−Net
1 ), and determine

whether they differ significantly. Consider the time range to be [0, 10] with time step size
dt = 0.05. Hence, there are 200 time grids which are denoted to be {ti}200

i=1, where ti = 0.05i,
1 ≤ i ≤ 200. At each time ti, we introduce the residuals Eti := Yti −Y∗ti

and Ẽti := Ỹti −Y∗ti
,

where Yti and Ỹti are associated to Model 1 and Model 2, respectively. We will test if
the residuals {Eti}200

i=1 and {Ẽti}200
i=1 have similar distributions or not. Analogous to the

previous case, we see from Table 7 that the coefficient in front of the term ∂2
xu in Model

2 (F̂PHrsmPDE−Net
1 ) is a negative number -0.026, which leads to rapid concentration rather

than diffusion effect. With this being said, Model 2 is essentially different from Model 1
and the distributions of {Eti}200

i=1 and {Ẽti}200
i=1 are totally different.

To assess the stability of the results shown above, we repeated the experiments
100 times and the results are presented in Figures 6 and 7. The plots show that there
are some instances where the three methods fail to eliminate certain redundant terms.
However, these instances are rare, as the median of these terms is 0, indicating that they
appear infrequently.
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(a) (b)

(c)

Figure 6. Simulation results for F̂1(u, v) with 1% noise. (a) True positive discovering. (b) True positive
discovering. (c) False positive discovering.

Figure 7. Simulation results for F̂2(u, v) with 1% noise. True positive discovering.

4. Prediction
4.1. Example 1: The 2-Dimensional Model

In this section, we validate the robustness of the model discovered by Frac-PDE-Net
in Example 1 by performing predictions with non-typical initial values u0 and v0,

u0 =
50y2 − y4 + 4

800[1.2− cos(π
5 y)]

+ 4, v0 =
1

800
(50y2 − y4 + 4)

[
2 + cos

(π

5
x
)]

+ 1.

We use the finite difference method to generate the “true data” in the forward direction
using the known coefficients and terms in (16) and (17). The spatial step sizes (dx and dy)
are set to 10

64 and the time step size (dt) is 1
1600 . We then simulate the data using the trained

model from Table 3 up to t = 0.5.
In Figure 8, both the true solution (u, v) and the predicted solution (ũ, ṽ) of the trained

model by Frac-PDE-Net are plotted at different time instances: t ∈ {0.4, 0.6, 0.8, 1}. One
can see from Figure 8 that the predicted solution is very close to the true one.
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Figure 8. The first (second resp.) row shows the true dynamics of u (v resp.) at times
t = 0.4, 0.6, 0.8, and1.0. The third (fourth resp.) row shows the predicted dynamics of u (v resp.)
with 5% noise level using Frac-PDE-Net.

The results of the comparison between Frac-PDE-Net and PDE-Net 2.0 are presented
in both graphical and quantitative form. The model discovered by PDE-Net 2.0 is shown
in Table 8, while the predicted solutions are displayed in Figure 9. Although PDE-Net 2.0
only utilizes polynomials, the predicted images still have a similar shape to the true ones.
To further evaluate the performance, the predicted errors are analyzed quantitatively using
the L∞ norm and L2 norm on the space domain [−5, 5]× [−5, 5], as seen in Table 9. The re-
sults show that Frac-PDE-Net has smaller errors compared to PDE-Net 2.0, highlighting
its advantage.

Table 8. PDE model discovered by PDE-Net 2.0.

Predicted Terms by PDE-Net 2.0 with 5% Noise

F̂1(u, v) 0.0457∆u− 1.765u + 0.0938v + 0.0008
F̂2(u, v) 0.243∆v− 0.604u− 0.277v + 7(10−5)
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Figure 9. Images of the predicted dynamics using PDE-Net 2.0 with 5% noise level.

Table 9. Errors of predicted solutions for u and v by Frac-PDE-Net and PDE-Net 2.0.

Noise Frac-PDE-Net PDE-Net 2.0

|ũ− u| t = 0.4 t = 0.6 t = 0.8 t = 1 t = 0.4 t = 0.6 t = 0.8 t = 1
L∞ 5% 0.007254 0.010806 0.014310 0.017765 0.227365 0.331438 0.429602 0.522157
L2 5% 0.000106 0.000158 0.000209 0.000260 0.002720 0.003986 0.005192 0.006341

|ṽ− v| t = 0.4 t = 0.6 t = 0.8 t = 1 t = 0.4 t = 0.6 t = 0.8 t = 1
L∞ 5% 0.001503 0.002247 0.002988 0.003725 0.200241 0.293939 0.383577 0.469314
L2 5% 0.000022 0.000033 0.000044 0.000054 0.001989 0.002930 0.003836 0.004708

4.2. Example 2: The One-Dimensional Model

In this section, we validate the robustness of the model discovered by Frac-PDE-Net
in Example 2 in Section 3.2 by performing predictions with the following periodic initial
values u0 and v0,

u0(x) = 0.0259 + 0.01 sin(3x), v0(x) = 0.06475 + 0.01 sin(3x).

We use finite difference method to generate the “true” data in the forward direction using
the known coefficients and terms in (20) and (21). The spatial step sizes (dx and dy) are
set to 5π

200 and the time step size (dt) is 5
100 . The time interval considered is t ∈ [0, 10]. We

then simulate the data using the trained model from Table 7 over the time period [0, 10].
In Figure 10, both the true solution and the predicted solution of the trained model by
Frac-PDE-Net are plotted for t ∈ [0, 10]. One can see from Figure 10 that the predicted
solution is very close to the true one.

The results of the comparison between Frac-PDE-Net and PDE-Net 2.0 are presented
in both graphical and quantitative form. The model discovered by PDE-Net 2.0 is shown
in Table 10, while the predicted solutions are displayed in Figure 11. We can clearly see
that the predicted images by PDE-Net 2.0 are far from satisfactory compared to the true
one in Figure 10. To further evaluate the performance, the predicted errors are analyzed
quantitatively using the L∞ norm and L2 norm on the space-time region

[
− 5π

2 , 5π
2
]
× [0, 10]

in Table 11. The results show that Frac-PDE-Net has much smaller errors compared to
PDE-Net 2.0, highlighting its advantage.
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Figure 10. The first row shows the true dynamics of (u, v) for (x, t) ∈
[
− 5π

2 , 5π
2
]
× [0, 10]. The second

row presents the predicted dynamics of (u, v) with 1% noise level by Frac-PDE-Net.

Table 10. PDE model discovered by PDE-Net 2.0.

Predicted Terms by PDE-Net 2.0 with 1% Noise

F̂1(u, v) 0.0001∂2
xu− 3.95(10−5)u− 6.05(10−5)v− 0.0002

F̂2(u, v) 5.22(10−5)∂2
xv + 1.70(10−5)u + 8.19(10−6)v + 4.59(10−5)

Figure 11. Images of the predicted dynamics of (u, v) for (x, t) ∈
[
− 5π

2 , 5π
2
]
× [0, 10] using PDE-Net

2.0 with 1% noise level.

Table 11. Errors of predicted solutions for u and v by Frac-PDE-Net and PDE-Net 2.0.

Noise Frac-PDE-Net PDE-Net 2.0

|ũ− u| t ∈ [0, 10] t ∈ [0, 10]
L∞ 1% 0.062771 0.117773
L2 1% 0.000029 0.000060

|ṽ− v| t ∈ [0, 10] t ∈ [0, 10]
L∞ 1% 0.009434 0.039400
L2 1% 0.000010 0.000056
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5. Conclusions

Our approach, Frac-PDE-Net, builds on the symbolic approach developed in PDE-
Net for addressing the discovery of realistic and interpretable PDE from data. While the
neural network remains very efficient for generating and learning dictionaries of functions,
typically polynomials, we have shown that if we enrich the dictionaries with large families
of functions (typically uncountable), an extra-care is needed for selecting the important
terms by penalization and by evaluating and testing the impact of a reaction term in the
predicted solution. Quite remarkably, we can extract a sparse equation with readable terms
and with good estimates of the associated parameters.

The introduction of rich families of functions, such as fractions (rational functions)
is often necessary because they are well used by modelers, but also they can avoid the
limitations of the approximation capacity of polynomials. Indeed, it might be necessary
to have numerous terms in the expansion in order to have a correct approximation of the
unknown reaction terms. As a matter of fact, we have introduced a very flexible family of
fractions that avoid truncation based on powers up, vq, q, p ∈ N. While we learn then the
numerator and denominator coefficients in R, our approach is incorporated seamlessly in
the symbolic differentiable neural network framework of PDE-Net by the introduction of
extra layers.

Our work is originally motivated by the discovery and estimation of reaction–diffusion
PDEs, with possibly complex terms such as fractions, non-integer powers, or non-local
terms (such as an integral), as it has been introduced for the pollen tube growth problem [6].
Nevertheless, our selection approach could be used to handle other dictionaries, or in
the presence of advection terms as our methodology does exploit the reaction–diffusion
structure only for imposing some constraints on the dictionaries of interest, and because
of the interpretability of each term in that case. As the next steps, the Frac-PDE-Net
methodology can be improved by considering more advanced numerical schemes in time
discretization, say implicit Euler or second-order Runge–Kutta. In that case, we expect to
have a better accuracy and stability for model recovery and prediction. Another possible
improvement would be to enrich the dictionaries of fractionals by replacing the current
form N(u, v) = g(u)h(v) by more rational functions with denominators that depends both
on u and v, say N(u, v) = u−v

u2−v2+1 . Finally, we put an emphasis on the fact that Frac-PDE-
Net reaches a trade-off by discovering the main terms of the PDE, accurately estimating
each coefficient in order to gain interpretability, while it also allows effective long-term
prediction, even for unseen initial conditions.
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Appendix A

Appendix A.1. Term Combination after Simulation

During the process of simulation, if only the addition and the multiplication operators
are involved, then it is not an issue to combine terms as the program can easily identify
same terms and then add their coefficients together. However, combining similar terms
can be difficult when fractional terms are present. To address this issue, we classify the
simulation results into various groups before combining them.

As an example, we consider the scenario where the nonlinear term takes the form
g(u)h(v), and one of the following two structures is assumed.

(i) g is linear and h is a fractional function whose denominator is a second order polynomial:

(u + c1)
α1v + α2

v2 + β1v + β2
.

(ii) h is linear and g is a fractional function whose denominator is a second order polynomial:

α3u + α4

u2 + β3u + β4
(v + c2).

Therefore, the outcomes have 32 possibilities if we only classify terms and signs:

• Numerator (4 possibilities): u, v, uv, 1.
• Denominator (2 possibilities): quadratic function in u or v.
• Signs (4 possibilities): the sign of β1 or β2 can be either positive or negative.

There are now 32 groups. In each of them, all members share the same main terms
and same signs in the denominator while the coefficients are allowed to be different.
For example, in the group with the form

α1uv
v2 + β1v + β2

,

all members share the same term uv in the numerator, same terms v2 and v in the denomi-
nator, and same signs of β1 and β2, while the specific values of α1, β1 and β2 may vary.

Based on the above groups, we will adopt the following general principle to proceed.
If two terms live in distinct groups, then they are considered to be different and will not be
combined. If two terms live in the same group, then we will further quantify how close
their coefficients in the denominator (say β1 and β2) are. If these coefficients are close
enough, then we will regard them as the “same” term and combine them by adding their
coefficients in the numerator (say α1) together. So, the next question is how to quantify the
distance between two members in the same group with possibly different coefficients (say
β1 and β2).

We will illustrate the criterion in the following by studying a specific form uv
v2+β1v+β2

.
More precisely, suppose there are two terms T1 and T2 as below,

T1 =
α
(1)
1 uv

v2 + β
(1)
1 v + β

(1)
2

, T2 =
α
(2)
1 uv

v2 + β
(2)
1 v + β

(2)
2

,

then we define their distance to be

D
[
T1, T2

]
= max

i=1,2

{ |β(2)
i − β

(1)
i |

max{|β(2)
i |, |β

(1)
i |}

}
. (A1)
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According to this concept, we combine T1 and T2 together if and only if D[T1, T2] < 0.2,
that is when the relative difference between the coefficients is less than 0.2. In such a case,
we add the coefficients α

(1)
1 and α

(2)
1 to obtain

T1 + T2 ≈ T∗ := α∗
uv

v2 + β
(∗)
1 v + β

(∗)
2

,

where
α∗ = α

(1)
1 + α

(2)
1 , β

(∗)
1 =

1
2

[
β
(1)
1 + β

(2)
1

]
, β

(∗)
2 =

1
2

[
β
(1)
2 + β

(2)
2

]
.
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