Article

Learning Interactions in Reaction Diffusion Equations by
Neural Networks

Sichen Chen !, Nicolas J-B. Brunel 23{, Xin Yang *

check for
updates

Citation: Chen, S.; Brunel, N.J-B.;
Yang, X.; Cui, X. Learning
Interactions in Reaction Diffusion
Equations by Neural Networks.
Entropy 2023, 25, 489. https://
doi.org/10.3390/e25030489

Academic Editors: Nicolas Bousquet
and Patrick Gallinari

Received: 6 February 2023
Revised: 7 March 2023
Accepted: 8 March 2023
Published: 11 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Xinping Cui *

1 Department of Statistics, University of California, Riverside, CA 92521, USA

ENGSIIE & Laboratoire de Mathématiques et Modélisation d’Evry, Université Paris Saclay,
91025 Evry, France

Quantmetry, 75008 Paris, France

4 Department of Mathematics, University of California, Riverside, CA 92521, USA
Correspondence: xinping.cui@ucr.edu

Abstract: Partial differential equations are common models in biology for predicting and explain-
ing complex behaviors. Nevertheless, deriving the equations and estimating the corresponding
parameters remains challenging from data. In particular, the fine description of the interactions
between species requires care for taking into account various regimes such as saturation effects. We
apply a method based on neural networks to discover the underlying PDE systems, which involve
fractional terms and may also contain integration terms based on observed data. Our proposed
framework, called Frac-PDE-Net, adapts the PDE-Net 2.0 by adding layers that are designed to
learn fractional and integration terms. The key technical challenge of this task is the identifiability
issue. More precisely, one needs to identify the main terms and combine similar terms among a huge
number of candidates in fractional form generated by the neural network scheme due to the division
operation. In order to overcome this barrier, we set up certain assumptions according to realistic
biological behavior. Additionally, we use an L?-norm based term selection criterion and the sparse
regression to obtain a parsimonious model. It turns out that the method of Frac-PDE-Net is capable
of recovering the main terms with accurate coefficients, allowing for effective long term prediction.
We demonstrate the interest of the method on a biological PDE model proposed to study the pollen
tube growth problem.

Keywords: neural networks; deep learning; non-linear reaction—-diffusion equations; model discovery;
sparse regression; multiple testing

1. Introduction

Two-component reaction—diffusion systems often model the interaction of two chemi-
cals, leading to the formation of non-uniform spatial patterns of chemical concentration or
morphogenesis under certain conditions due to chemical reactions and spreading. Since
Turing’s groundbreaking work [1], reaction-diffusion systems have been extensively used
in developmental biology modeling. For example, let u = u(x,y,t) and v = v(x,y,t)
represent the concentration of two chemical species, which may either enhance or suppress
each other depending on the context. The system of # and v can be modeled as follows:

atu =
atU =
where A = 92 + 85 denotes the Laplacian operator, N; and N; are interactions between
u and v. The functions N; and N, are sums of various reaction terms that can be de-
rived from physical or chemical principles such as mass-action laws, Michaelis—-Menten

kinetics, or products that represent some competition, cooperation effects. We refer the
readers to ([2], Section 2.2) for more discussions. Hence, N; and N; are sums of meaningful

doAu + Ni(u,v), 1)
d1Av + Np(u,v),

Entropy 2023, 25, 489. https:/ /doi.org/10.3390/¢25030489

https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030489
https://doi.org/10.3390/e25030489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2840-8484
https://orcid.org/0000-0001-9278-2553
https://orcid.org/0000-0002-1420-2696
https://doi.org/10.3390/e25030489
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030489?type=check_update&version=3

Entropy 2023, 25, 489

2 of 26

functions that represent specific mechanisms: if we are able to identify these terms and
discover the explicit formulas for N; and N, then we can learn more about the nature
of the interactions and predict future behaviors well. This situation arises commonly in
biological applications such as chemotaxis, pattern formation in developmental biology,
and also the cell polarity phenomenon [3,4].

Cell polarity plays a vital role in cell growth and function for many cell types, affecting
cell migration, proliferation, and differentiation. A classic example of polar growth is pollen
tube growth, which is controlled by the Rho GTPase (ROP1) molecular switch. Recent
studies have revealed that the localization of active ROP1 is regulated by both positive
and negative feedback loops, and calcium ions play a role in ROP1’s negative feedback
mechanism. Initially, ROP1 is inside the membrane. During positive feedback (rate k),
some of the ROP1 enters the membrane. At the same time, negative feedback (rate k;;f)
causes some of it to return inside the membrane while the rest diffuse on the membrane
(rate Dy). Calcium ions follow a similar process with positive rate k,, negative rate ky,
and diffusion rate D,. In [5,6], the following 2D reaction—diffusion system (2) is introduced:

Rt = kyfR*(Reot — [R(x,£)dx) — kyr g(C) R+ DyRyy,
Ct = kacR — kdcc + DcCxx,

Ry(—L,t) = Ry(L,t) =0, Cyx(—L,t) =Cy(L,t) =0,
R(x,0) = Ro(x), C(x,0) = Cp(x).

@

with suitable initial and boundary conditions being proposed to quantitatively describe
such spatial and temporal connection between ROP1 and calcium ions, leading to rapid
oscillations in their distributions on the cell membrane. Here, R = R(x,t), C = C(x,t),
and Ry, C¢, Ry, Ryx, Cx and Cyy are abbreviated notations for partial derivatives with
respect to the time f or to the spatial variable x. Moreover, the non-linear function g(C)
characterizes how calcium ions play a role in ROP1’s negative feedback loop. Specifically,
the active ROP1 causes an increase in Ca?* levels, leading to a reduction in ROP1 activity
and a decrease in its levels. Meanwhile, the flow of Ca?>* slows down as ROP1 drops.
= C2C7+2k% to describe such spatial-temporal patterns of
calcium, where k. is a positive constant. Based on this model, ref. [6] developed a modified
gradient matching procedure for parameter estimation, including k, f and k.. However,
it requires that g(C) in (2) is a known function. In this work, we propose to apply neural
network methods to uncover the function ¢(C) or more broadly, to learn interaction terms
Nj and N in general reaction-diffusion PDEs (1), which may contain fractional expressions
(Figure 1).

Ref. [6] proposed the equation g(C)

membrane

di =
vy
.,’- ||,“T|i”\.t£ negative
o feedback
kg
’ cytoplasm

"'M
Figure 1. ROP1 and Ca?t polarization dynamics. Left: ROP1 dynamics; Right: Ca?t dynamics.

Extracellular

In the past decade, the artificial intelligence community has focused increasingly on
neural networks, which have become crucial in many applications, especially PDEs. Deep
learning-based approaches to PDEs have made substantial progress and are well-studied,
both for forward and inverse problems. For forward problems with appropriate initial
and boundary conditions in various domains, several methods have been developed to
accurately predict dynamics (e.g., [7-17]). For inverse problems, there are two classes of
approaches. The first class of approaches focuses on inferring coefficients from known data
(e.g., [7,10,12,15,18,19]). An example of this is the widely known PINN (Physics-informed

Entropy 2023, 25, 489

30f26

Neural Networks) method [10], which uses PDEs in the loss function of neural networks
to incorporate scientific knowledge. Ref. [7] improved the efficiency of PINNs with the
residual-based adaptive refinement (RAR) method and created a library of open-source
codes for solving various PDEs, including those with complex geometry. However, this
method is only capable of estimating coefficients for fixed known terms in PDEs, and may
not work well for discovering hidden PDE models. Although [9] extended the PINN
method to find unknown dynamic systems, the nonlinear learner function remains a black-
box and no explicit expressions of the discovered terms in the predicted PDE are available,
making it difficult to interpret their physical meaning. The second class of approaches not
only estimates coefficients, but also discovers hidden terms (e.g., [16,17,20-26]). An example
is the PDE-Net method [16], which combines numerical approximations of convolutional
differential operators with symbolic neural networks. PDE-Net can learn differential
operators through convolution kernels, a natural method for solving PDEs that has been
well-studied in [27]. This approach is capable of recovering terms in PDE models with
explicit expressions and relatively accurate coefficients, but often produces many noisy
terms that lack interpretation. In order to produce parsimonious models, refs. [25,26]
proposed to create a regression model with the response variable d;u, and a matrix ® with
a collection of spatial and polynomial derivative functions (e.g., u, 0y, udyu): oyu = OC.
The estimation of differential equations by modeling the time variations of the solution is
known to produce consistent estimates [28]. In addition, the Ridge regression with hard
thresholding can be used to approximate the coefficient vector ¢. This sparse regression-
based method generally results in a PDE model with accurately predicted terms and high
accuracy coefficients. However, few existing studies have focused on effectively recovering
interaction terms in the fractional form (say one polynomial term divided by another
polynomial term) in hidden partial differential equations, which is the focus of this paper.

Previous methods for identifying the hidden terms in reaction—diffusion partial differ-
ential equation models have mostly focused on polynomial forms. However, as indicated
in Equation (2), the model for ROP1 and calcium ion distribution also involves fractional
and integral forms, which can pose identifiability issues when combined with polynomial
forms. Furthermore, we want to attain a parsimonious model, as the interpretability of the
PDE model is important for biologists to comprehend biological behavior and phenomena
revealed by the model.

In this paper, we utilize a combination of a modified PDE-Net method (which adds
fractional and integration terms to the original PDE-Net approach), an L? norm term
selection criterion, and an appropriate sparsity regression. This combination proves to
produce meaningful and stable terms with accurate estimation of coefficients. For ease of
reference to this combination, we call it Frac-PDE-Net.

The paper is organized as follows. In Section 2, we explain the main idea and the
framework of our proposed method Frac-PDE-Net. In Section 3, we apply Frac-PDE-Net
to discover some biological PDE models based on simulation data. Then, in Section 4, we
make some predictions to test the effectiveness of the models learned in Section 3. Finally,
we summarize our findings and present some possible future works in Section 5.

2. Methodology

The main idea of the PDE-Net method, as described in [16], is to use a deep convo-
lutional neural network (CNN) to study generic nonlinear evolution partial differential
equations (PDEs) as shown below:

ot = F(z,u,Vu,V?u,...), z€Q, te0,T], ®3)

where u = u(z, t) is a function (scalar valued or vector valued) of the space variable z
and the temporal variable ¢. Its architecture is a feed-forward network that combines the
forward Euler method in time with the second-order finite difference method in space
through the implementation of special filters in the CNN that imitate differential operators.
The network is trained to approximate the solution to the above PDEs and then the network

Entropy 2023, 25, 489

4 0f 26

is used to make predictions for the subsequent time steps. The authors of [16] show that
this approach is effective for solving a range of PDEs and can achieve satisfactory accuracy
and computational efficiency compared to traditional numerical methods. In this paper,
we follow a similar framework to PDE-Net, but with modifications on a symbolic network
framework (SymNetk,) to better align with biological models.

2.1. PDE-Net Review

The feed-forward network consists of several At-blocks, all of which use the same
parameters optimized through minimizing a loss function. For simplicity, we will only
show one At-block for two-dimensional PDEs, as repeating it generates multiple At-blocks,
and the concept can easily be extended to higher—dimensional PDEs.

Denote the space variable z in (3) to be z = (x,y) since we are dealing with the
two-dimensional case. Let ty = 0 and ii(-, f) be the given initial data. Fori > 0, (-, t;11)
denotes the predicted value of u at time t; 1 calculated from the predicted (true) value of 7
at time ¢; using the following procedure:

(-, 1) = (-,) + (At) SymNet(x Y, Doou, D1gu, Do1u, Do, .),

where SymNet is an approximation operator of F. Here, the operators D;; are convolution

operators with the underlying filters g;;, i.e., Djju := qij ® u. These operators

1
(Ax)'(Ay)!
approximate differential operators:

ditiy
Pijt ™ Gy

For a general N x N filter g = (q[ky, k]), where —% <k, kp < %

qu(x,y):= Y qlky, ko] u(x + ki Ax,y + ko Ay).)
k k2

By Taylor expansion,

R 9ty N N
q©u(x,y) Z mi(Ax)'(Ay) 5— O(lax|™) +0O(lay™),
i,j=0 XY (xy)
where
ml‘]': l']' Zkl 2‘7 kl,kz} VOSi,jSN—l.

ki ko
In particular, if choosing Ax = Ay = J, then

N-1 ai

LY) = 0 ——
q@u(x,y) i’];ml, oy |

iy

o(sN), (5)

xY)

As a result, the training of g can be performed through the training of M := (m;;) since the
moment matrix M = M(q). It is important to note that the trainable filters M (or g) must
be carefully constrained to match differential operators.

For example, to approximate a” by Dygu, or equivalently by - Ay 910 ® u for a 3 x 3 filter
410, we may choose

0 0 =x 0 0 0
Ml(qu) = 1 k% or M2<t]10) = 1 0 =x , (6)
* kX 0 *x =

where * means no constraint on the corresponding entry. Generally, the fewer instances of
* present, the more restrictions are imposed, leading to increased accuracy. In this example

Entropy 2023, 25, 489 5 of 26

of (6), the choice of M; ensures the 1st order accuracy and the choice of M, guarantees the

2" order accuracy. More precisely, if we plug M; into (5) with Ax = Ay = ¢, then
ou
q10 @ u(x,y) _‘SETJFO(),

which implies L-q10 ® u(x,y) = 9 + O(Ax). Similarly, if we plug M, into (5), then
g0 ®u(x,y) = % +0((Ax)?). In PDE-Net 2.0, all moment matrices are trained as
subject to partial constraints so that the accuracy is at least 2nd order.

The SymNetk, network, modeled after CNNs, is employed to approximate the multi-
variate nonlinear response function F. It takes a m-dimensional vector as input and consists
of k layers. As depicted in Figure 2, the SymNet2, network has two hidden layers, where
each f; unit performs a dyadic multiplication and the output is added to the (i + 1)th
hidden layer.

Symbolic Neural Network

At +1,-)

Figure 2. The scheme of one At.
The loss function for this method has three components and is defined as follows:
[— [data + /\MLmoment + /\SLSymNet. 7)

Here, L% measures the difference between the true data and the prediction. Consider the
data set {uj(-, t) € RNsXNs .1 <j<n1< j < N}, where n is the number of At blocks, N
is the total number of samples, and N; is the number of space grids. The index j indicates
the jth solution path with a certain initial condition of the unknown dynamics, and the
index i represents the solution at time t;. Then, we define

data 1 i %

L = ———— ij.

nN(AH? 5o 4
Here, (;; = ||u;(t;,) — u;(t;,)] |3, where u; represents the real data and ; denotes the

predicted data. For a given threshold s, recall the Huber’s loss function égs) defined as
-5 if |x|>s

E(S) — ‘X| 2 1 ’ 8
1) Jz‘—z if |x| <s. ®)

We then define the following;:

moment _ ZZK (M(q” 11;]1])

iLj 1,1

Entropy 2023, 25, 489

6 of 26

where g;;s are filters and M(q;;) is the moment matrix of g;;. Using the same Huber loss
function as in (8), we define

LS]/mNEt 2 é wl]

where w;;s are the parameters in SymNet. The coefficients Aj1 and Ag in Equation (7) serve
as regularization terms to help control the magnitude of the parameters, preventing them
from becoming too large and overfitting to the training data.

2.2. mPDE-Net (Modified PDE-Net)

In mPDE-Net, we do not include multiplications between derivatives of u# and v,
as these interactions are not commonly present in biological phenomena. Additionally,
to handle interactions in fractional or integral forms, such as those in Equation (2), mPDE-
Net incorporates integral terms and division operations into SymNet¥,. However, there was

a challenge with identifiability using mPDE-Net. For instance, consider a two-component

or 22 where € is a

input vector u and v. mPDE-Net may produce results such as ;" or 1%,
small number due to noise. Although both of these terms essentially represent the same

term u, the mPDE Net is unable to automatically identify them as such. Keeping all similar

terms such as /-, ;7= and u at the same time would result in a complex model and the
real fractional term would not be effectively trained.

To address the identifiability issue, restrictions were imposed on the nonlinear interac-
tion term N (u, v) by assuming that N (u,v) = g(u)h(v), where either g or h is linear and the
other one can contain a fractional term with the order of the denominator larger than that

of the numerator. For instance, the terms and 2% are further decomposed as follows:

u+e v+€

u? €2 uv
=u—c+ , =u—u .
u-+e u-+e€ v+e€ v+€

As seen, the main part of the above two terms is u while the rest, such as ¢, + - and um,
are considered as perturbations since € is very small. This allows the mPDE-Net to identify
and combine the main parts of terms, resulting in a compact model.

Figure 3 presents an example of a system involving the derivatives of u and v up to
the second order. The symbolic neural network in this example has five hidden layers,
referred to as SymN et?o. The operators f; are multiplication functions, i.e., f;(#;,&;) = 1;Ci,
for i = 1,4,5; and f; are division functions, i.e., fj(;yj, (;‘j) = %/ for j = 2,3. Addi-
tionally, a term u” is included to incorporate fractional powers, such as the term R* in
(2). The algorithm corresponding to this example is outlined in Algorithm 1, where
Ly = (u, iy, Uy, 0,05, 0xx, u2, 0%, u*,)T, Ly = (LT, /)T, Ly = (LT,)T, Ly = (LT, f3)7,

Ls = (L{, fa)", Le = (LI, f5)".

Algorithm 1 Scheme of mPDE-Net.

Input: u, Uy, Uxx, U, Ux, Uxx, u?,v2,u*, I, where represents [u(x,t)dx,

(1,)T = WL 460, Wb e R2X10, 1, e R10, p() € R2,

(172, gz)T WAL, +50, W2 cR21 [, c R, b2 R,

(13, &) T = WO L+, WO ¢ RZ“Z, Ly € R12, b ¢ R?,

(11, &)T = WL + 6@, W e R2X13 [, € RS, p) € R,

(15,85)T = WO Ls +b0), WO e R4 5 e RY, p0® e R?,
. ((

0, WO e RIXIS L € RS, b6 ¢ R1,

Entropy 2023, 25, 489 7 of 26

SymNet of mPDE-Net

Figure 3. The scheme of mPDE-Net.

To further demonstrate the mPDE-Net approach, we present a concrete example.
To simplify the notation, we introduce the row vector ¢; with a 1 in the ith component and
0 in all other components, i.e.,

€ = (0/0/' te /0/1/0"° /0)/

where the number “1” is on the ith position. Then, we set

wd = (& tey W@ — ey W@ — 0.5¢;
e1+es)’ dey +eg)’ 0.2e1 +e¢7)’

W@ — (0361), w® = (o‘;ze4>l W) = 0.1e; + 0.3e3 + 6e4 + 17 + 2e14 + 315,
12 13

1 _ (1 @ _ (05 @ _ (1 @ _ (0 6)_ (0 6 _ (0
b _(o>’ b _(0.5>’ b _<0’ =) o) BT o)

According to Algorithm 1 for1 <i <5,

WL+ = (u+v+1)/ fi=filn,&1) =mé = (u+o+1)(u+0),

u+o
WO Ly +b® = <0025;j;2> f3 = fa(3,83) = g = 5254?7;21“
WWL, +b® = (Oéu), fa= fa(n4,8s) = 1484 = 0.2u f = 0.2u %
WO L+ b0 = (Oﬁv>, fs = f5(115,G5) = 11565 = 0.20 f3 = 0.20 %

Entropy 2023, 25, 489

8 of 26

Therefore,

SymNet3y = WOLg + b(®) = 0.1u + 0.3uyx + 60+ f1 +2f4 +3f5
0405 0.5u 41

= 0.3uxx+u +2uv+v +11M+7U+04um + 0.6v m

Let £ denote the library for PDE-Net 2.0 and L denote the library for mPDE-Net. It
is clear that £ and L are distinct. Typically, £ only seeks to identify multiplication terms
and has the form:

L= {/\(uxx + uyy) +AU): AeR U= (u0), fi € 7)}'

where
P := {Polynomials of U up to a certain degree}.

Conversely, L is engineered to learn both multiplication terms and fractional terms, subject
to certain constraints. In our paper, we make the choice of

- fz(u) fé(v) .
Ly _{/\(Uxx +Uyy) + f1(U) + fa(u)f4(v) +f5(u)f7(v) '

AER, U= (u,0), {fi}_, CP,degf < deg f3, deg fs < degfy},

which is much larger than £. Therefore, our framework of neural networks, built upon £ fr
is more challenging to implement than the original framework, which is based on L.

2.3. Optimizing Hyperparameters

In this section, we will explain the process of tuning hyperparameters Ay and Ag in
the loss function (7). Firstly, the range of spatial and temporal variables in the training set
are defined as [—L, L] and [0, T|, respectively. Then, using the finite difference method, we
generate a dataset that acts as the “true data”. Additionally, we consider M initial conditions.
The time interval is determined by dt/dt, where dt is the time step size for computing
the “true data” and dt represents the time step size for selecting the “observational data”.
Typically, dt is chosen to be much smaller than dt. The solution corresponding to the mth
initial condition is denoted as 1y, (-, -), where the first “-” refers to the spatial variable and
the second “-” represents the temporal variable. If the solution is evaluated at the kth time
step, it is written as u, (-, t), with “-” representing the spatial variable.

The M initial values from M initial conditions are divided into three separate groups,
resulting in M = M; + Mj + M3, where M1, Mj, and M3 represent the sizes of the training
set, validation set, and test set, respectively. The solutions produced by these initial values
are designated as follows:

Training set: u1(-,-), -, upm, (-,);

Validation set: upg, 41(+,+), -+, Unty+Mm, (4 *);

Testing set: tp1, 4+ My+1(+), UMy +My+-M; (7))

We use the training set to train our models, the validation set to find the best parame-
ters, and the testing set to evaluate the performance of the trained models.

Assume we divide the time range [0, T] into K blocks, with cutting points denoted as
tr for 1 <k < K. Then, forany 1 < m < M and for any 1 < k < K, we define

U = [(- 1) — i (-, 1) |13,

where || - ||, denotes the L2 norm with respect to the space variable on [—L, L], uy, is the
“true solution”, and i, is the “predicted solution” by a neural network. Based on this,
the training loss, validation loss and the testing loss are defined as follows:

Entropy 2023, 25, 489

9 of 26

Training loss:

1 K M
Ltrain = W k; mX::1 Cim-)
Validation loss:
M;+M,
Loatia == YA K MoK Zm %H Lym- (10)
Testing loss:
1 K M

Liest := Z Ek . (11)
M K(dt) k=1m=M;+Mp+1 "

We choose the hyperparameters Ajs and Ag in the loss function (7) using the validation

sets. Let B, = um(', tk) and Bjk = u]'(-, tk), wherel <m < M;, M1 +1 <j < M+ M,
and 1 < k < K. We define the training number by N;. We then gradually increase the time
points of the training and validation sets. For instance, if K = 15 and N; = 5, the training
and validation sets can be selected as follows. The performance metric is the same as the
validation loss in (10).

Training Validation Validation Loss
But, -+ Bua Byi,w++ By Ligtia
B, -+ Bume Bj1,--- . Bje Ll(zigid
Bt /Buo B+ By Lo
Byt , Bmin Bj1,+++,Bjna Li()agid
Bty /Buns B+ Bys Lo

Furthermore, we tune the hyperparameters using Hyperopt [29], which uses Bayesian

optimization to explore the hyperparameter space more efficiently than a brute-force grid
search. Specifically, the mPDE-Net is nested in the objective function of Hyperopt, which
will optimize the average validation loss L,,; of models.

avl - Z Lvulzd

The selection procedure is described in Algorithm 2.

Algorithm 2 Optimizing Hyperparameters using Hyperopt

1: Initialize the search spaces for Ap; and Ag;

10:
11:

: Define the objective function (to be optimized) as the average testing loss obtained from

mPDE-Net, implemented using PyTorch;

: Set the optimization algorithm, specify the number of trials, and initialize the results

list.

: for i = 1 to number of trials do

Sample a set of hyperparameters from the search spaces, evaluate the objective
function with the sampled hyperparameters, and set a list called the Validation loss.

forr =1to %t do

Train model of mPDE-Net on B, - - - , By, test it on Bj1,---,Bj togeta valida-

tion loss, and then append the validation loss to the Validation loss.

end for

Get an average validation loss from the Validation loss, append the hyperparameters
and the average validation loss to the results list, and then update the search space
based on the results so far.
end for
return the hyperparameters with the minimum objective function value.

Entropy 2023, 25, 489

10 of 26

2.4. Frac-PDE-Net

We have noted that mPDE-Net accurately fits data and recovers terms, but it may not
always simplify the learned PDE, making it challenging to interpret. To address this, we
implement sparsity-encouraging methods such as the Lasso approach. However, even with
Lasso and hyperparameters chosen from the validation sets, the predicted equation still had
redundant terms. This is likely due to correlated data and linear dependencies in the data,
which prevent Lasso from fully shrinking the extra coefficients to zero. To overcome this,
we employ two approaches. The first, called the L2 norm-based term selection criterion,
weakens or eliminates linear dependencies in the data. The second, called sequential
threshold ridge regression (STRidge), creates concise models through strong thresholding.
We will discuss these approaches in more detail below.

L? norm based term selection criterion. Consider the underlying PDE in the form of
o = O(u)g, (12)

where
O(u) = (O1(u),®a(u),...,Op(w), &= (E1,80...,)"

To address the issue of excessive terms in the learned PDE, we apply the L2 norm based
term selection criterion. This involves normalizing the columns of ®(u) to obtain Dy (1)

p p
Ou)E =Y Op(u)g =Y Pr(u)n,
k=1 k=1

where
O (u)

~ o)’

and adjusting the coefficients & to ¢,

Dy (u) e = Crll@(u)ll2, Y1I<k<p,

0, if || <dmax]y|,
=]

= V1<k<p.

Cx, otherwise,

By removing the terms in ®(u) whose adjusted coefficients ;. are significantly smaller than
the largest one, we shorten the vector & to). The corresponding columns in ©(u) form
anew matrix) (1) with reduced linear dependency between its columns. This results in
a simplified approximation of the PDE:

o~ O (1) g, (13)

Sparse regression: STRidge. After using the L? norm-based term selection criterion to
select terms, as discussed previously, we move on to consider sparse regression to further
improve the compactness of the representation for the hidden PDE model (13). Here,
a tolerance threshold “tol” is introduced to select coefficients for sparse results. Coefficients
smaller than “tol” will be discarded, and the remaining ones will be utilized until the
number of terms stabilizes. The sparsity regression process is outlined in Algorithm 3.
For further information, see [25].

To summarize, the mPDE-Net approach allows us to achieve relatively accurate
predictions for the function and its derivatives. We then employ an L2 norm-based term
selection criterion and sparse regression to obtain a concise model, which we refer to as
Frac-PDE-Net. Algorithm 4 summarizes this procedure.

Entropy 2023, 25, 489

11 of 26

Algorithm 3 : STRidge(®(S), Ui, A, tol, iters)

1. {6 = argmin(s) [[@E)EE) — 1|3+ Al|E9)||3 > ridge regression
2: bigcoeffs={; : |rf](s>| > tol} > select large coefficients
3: £ [~ bigcoeffs] = 0 > apply hard threshold

4:) bigeoeffs] = STRidge(@O)[:, bigcoeffs], U;, A, tol, iters-1) > recursive call with
fewer coefficients
5: return §<S)

Algorithm 4 :L2 Norm selection criterion+ STRidge(@, iy, A, tol, iters)

L: 96 Zk 1 ®k§k = Zk 1 ek @], ®k u D)2 (ng@k()HZ) = Z}F{J:l q)k(ﬁ)nk > Adjusted
coefficients
2: bigcoeffs={k : |7x| > d max |y;|} > Select large coefficients
)

3: ¢~ bigcoeffs] = 0
4 O0) = OF;, bigcoeffs] and ¢) = ¢[bigcoeffs]

5 &) = argmin(s)| @) &) — 4|3 4 A1) 3 > ridge regression
6: bigcoeffs={; : |6](S)| > tol} > select large coefficients
7. &) [~ bigcoeffs] = 0 > apply hard threshold

8: £ [bigcoeffs] = STRidge(®)[:, bigcoeffs], iy, A, tol, iters-1) > recursive call with
fewer non-zero coefficients
9: return &)

2.5. Kolmogorov-Smirnov Test

After applying the Frac-PDE-Net procedure, a simplified, interpretable model has been
created. Our next goal is to determine if this model can be further compressed. We designate
Model 1 as the system learned by Frac-PDE-Net, and Model 2 as the system obtained by
removing the interaction term with the smallest L?> norm from Model 1. To determine if
Model 1 and Model 2 come from the same distribution, we use the Kolmogorov-Smirnov
test (K-S test).

Since our examples involve systems of two PDEs, a two-dimensional K-S test is
appropriate. The time range is [0, T] with time step size dt, giving n := % time grids
denoted as {t;}} ;, where t; = i(dt),and 1 < i < n. At a fixed time t;, we aim to test the
proximity of two samples Y;, and ?tl., which are associated with Model 1 and Model 2,
respectively, at time ¢;. For each t;, we specify:

Hypothesis 1 (Null). The two sets { Y3} | and {Yt }t, come from a common distribution.

Hypothesis 2 (Alternative). The two sets {Y;,}! , and {Yt 1 do not come from a com-
mon distribution.

Let Hy, o and py; denote null hypotheses and the corresponding p-values, respectively,
for1 < i < n. In this paper, we employed Bonerroni [30], Holm [31] and Benjamini—
Hochberg (B-H) [32] methods for multiple testing adjustment. Note that the Bonferroni
method is the most conservative one among these three methods. Under the complete null
hypothesis of a common distribution across all time points, no more than 5% of the total
time points can be rejected.

3. Numerical Studies: Convection-Diffusion Equations with the Neumman
Boundary Condition

In this section, we showcase numerical examples to demonstrate the efficacy of Frac-
PDE-Net, our proposed method. The training, validation, and testing data are generated

Entropy 2023, 25, 489

12 of 26

based on the underlying governing equation. Our aim is to use Frac-PDE-Net on these
data to obtain a concise and interpretable model for the PDE. The governing PDEs under
consideration in this paper are of the following form:

oru = F(u,v),
{ o0 = F(u,v), (14)

where
Fi(u,v) =diAu+ Py(u,v) + Ry(u,v), FE(u,v)=dyAv+ Py(u,v) + Ro(u,v). (15)

Here, d; and d are positive diffusion coefficients, Ry and R; represent fractional functions
of (u,v), and P; and P, denote combinations of power functions and integration opera-
tors of (u,v) through addition and multiplication. For example, R;(u,v) can be 2

v+37
and Pj(u,v) canbe 1+ u'® — v + u'® [udx.

3.1. Example 1: A 2-Dimensional Model

Our first example is taken from (Equation (2.8) in Section 2.2 in [2]). In this example,
we consider (14) under the Neumann boundary condition on a 2-dimensional domain
Dy :=[-5,5] x [-5,5] withd; = 0.3,d, =04, Py (u,v) =1 —u, P,(u,v) = 0.4 — 0.2v, and

uv 1 uv

R :R :—27:_7 :
1(1,0) = Ry (u,0) Ttuta2 242402501025

Thus, Equation (14) is reduced to

atu = Fl()
atv = K(u,v), (16)
«U(—=5,y,t) = 0xu(5,y,t) = dyu(x, =5,t) = dyu(x,5t) =0,

with (x,y,t) € [-5,5] x [-5,5] x [0,0.15] and

1 uv
F _ . 82 82 1—u—Z=
1 (1,) 0.3(0xu +oyu) +1—u 2 u2 +0.25u + 0.25" a7)
1 uov
_ 2 2 _ I
B(wo) = 04(030+0y0) +04 =020 =5 oo 05

The observations are generated with Equations (16) and (17), and then split into training
data, validation data and testing data. The PDE is solved by applying a finite difference
scheme to a 64 x 64 spatial mesh grid with the central difference scheme for A := 9% + 8;,
and with a temporal discretization of second-order Runge—Kutta (see [16]), using a time
step size of ﬁ.

In addition, the observations are obtained from various initial values: this implies an
extra variability in the datasets, that is necessary if we want to be able to generalize well
to any initial conditions. We assume that we have Ny,;; = 12 different solutions, coming
from different initial values wy. The functions are random, defined through random
parameters a;, b; j, ¢; j, d;j, a1, by, cx; and dy ;, which follow from the standard normal
distribution N/ (0,1), ¢; and ¢, which follow from uniform distributions: ¢; ~ U(—0.5,0.5)
and ¢y ~ U(0.5,1.5). Then, we generate the 12 initial values (1, v) by setting

+c1, vo(x,y) = M +c, (18)

max ||

wo (¥,)

max |wo|

uo(x,y) =

Entropy 2023, 25, 489

13 of 26

where
wo(x,y) =) {ai/]- cos(2ix) cos(2jy) + b; ;sin[(2i + 1)x] sin[(2] + 1)y]
lil]jl<13
+ ¢; jsin[(2i + 1)x] cos(2jy) + d; j cos(2ix) sin[(2] + 1)y] },
Wo(x,y) = Y, {ﬂk,l cos(2kx) cos(2ly) + by sin[(2k + 1)x] sin[(2] +1)y]
Ik|.|1]<13

+ cg sin[(2k + 1) x] cos(2ly) + dy ; cos(2kx) sin[(2] + 1)y] }

For any given initial data (ug, vp), we denote the corresponding solution to be (u*,v*).
When noise is allowed, we assume the perturbed data to be

u(x,y, t) =u*(x,y,t) +mQq, v(x,yt)=0"(x,y,t)+nQy,

where n; is the level of Gaussian noise added, and Q; and Q; are random variables, which
follow from the normal distribution: Q; ~ A/ (0, O'iz) fori = 1,2, where 0y (or o7 resp.) is the
standard deviation of the true data u* (or v* resp.).

Since the time is from 0 to 0.15, there are 15 time blocks and we denote Ny;,,, = 15.
For spatial variables, we have Ngy,, = 64, where Ns . represents the number of space
grids. Therefore, the dataset is

{(uip,vex) 11 <t < Nrige, 1 <k < Npir },

where both u; ; and v; ; are matrices in RNspace *Nspace | The following Tables 1 and 2 show a
summary of parameters for Frac-PDE-Net.

Table 1. Fixed parameters for Frac-PDE-Net.

Parameter Value
t [0, 0.15]
dt 0.01
x&y [-5, 5]
10
dx & dy ot
Nnit 12
NTime 15
NSpuce 64

Table 2. Hyper-parameters selected by validation procedure Section 2.3 for Frac-PDE-Net.

Parameter Value
A (5% noise level) 3.28 x 107°
As (5% noise level) 493 x107°

Our goal is to discover the terms F; (4, v) and F,(u,v) on the right hand side of (16)
and the true expressions are given by (17). For convenience of notation, we denote F;
and 1?2 to be our predicted operators for F; and F,. Based on some existing models (see,
e.g., Section 2.2 in [2]), we adopt some assumptions before discovering fl and 1?2. More
precisely, we assume that

l?l(u,v) = dAlAu + ﬁl(u, v) + ﬁl(u, v), l?z(u,v) = dAzAv + ﬁz(u, v) + §2(u,), (19)

where dA1 and dAz are positive constants, 131 and 132 are polynomials of (u#,v) up to order 2,
and both the fractional terms Ry and R, are in the form [(u)r(v) or (1)l (v), where | means

Entropy 2023, 25, 489

14 of 26

a linear function and r denotes a fractional function in which the numerator is linear and
the denominator is quadratic.

Based on these assumptions, we consider the following library {u, uyy, Uyy, U, Uxx, vyy}
for training our model.

The filters g (as defined in (4)) are selected to be of size 5 x 5. The total number
of parameters in w) (as defined in Algorithm 1) for approximating F; and F, is 56,
and the number of trainable parameters in the moment matrices M (as defined in (6)) is
52. To optimize the parameters, we use the BFGS algorithm instead of the Adam or SGD
optimizers since the BFGS algorithm is faster and also stable.

In the following, we outline the notation used and summarize the key steps of
our framework.

1. E.’"P DE=Net denotes the result of applying the modified PDE-Net on our model.

2. Next, we utilize the L2 norm-based selection criterion and sparse regression on
FmPPE=Net 46 obtain a more concise and interpretable model, referred to as Fs"PPE-Net,
The “s” in F"PPE=Net represents the application of sparse regression.

3. Subsequently, we fix the terms in I-A“Z-S’”P DE=Net and retrain its coefficients to produce
a final model named F/*"PPE=Net This is the end result of our Frac-PDE-Net scheme.
The “r” in F/*"PPE=Net gionifies the process of retraining the coefficients.

4. Fmally, to verify that no further terms can be eliminated after Frac-PDE-Net, we
compare two models: Model 1, generated by Frac-PDE-Net; and Model 2, which is
identical to Model 1 but removes the term with the smallest L? norm from 1?1 and
1%. The coefficients in Model 2 are retrained, and the resulting model is referred
to as FPHrsmPDE=Net - uppyr jn pPHrsmPDE=Net represents the Post-hoc selection in
Model 2. The comparison between Model 1 and Model 2 will be conducted using the
Kolmogorov-Smirnov test as outlined in Section 2.5.

For this case, we added 5% noise to the generated data to form the observational data.
The results are displayed in Table 3. Table 3 shows that fimp DE=Net (modified PDE-Net
framework) accurately identifies the terms in Example 1 and estimates their corresponding
coefficients. However, it also produces unnecessary terms with low weights after training.
By applying the L? norm-based selection and sparse regression (L2+SP) we successfully
remove these extra terms in Frsmp DE=Net _ After the terms in F; and F, are identified, we

retrain the model with these ﬁxed terms to obtain the final coefficients in F[S’”P DE—Net

Table 3. PDE model discovery with 5% noise.

True F 03Au+1—-u—05 m
FlmPDE—Net 0.305Au +0.992 — 0.988u — 0.510 m
—0.003 WZM + 0.003v
rsmPDE—Net _ _ __uwv
B 0.305Au +1.00 — 0.981u — 0.532 27025910065
ErsmPDE-Net (Erac-PDE-Net) 0.304A1 +0.975 — 0.982u — 0.501 10—
EPHTSWPDE*N” 0.278Au+0.969 — 0.993u — 0.514 m
True F 0.4Av+04—-020—-05 m
FytPDE-Net 0.398A0 +0.412 — 0.1950 — 0.510 L7552 50
BymPDE-Net 0.398A0 +0.424 — 01990 — 0542 10
I:\ermPDE—Net (FraC—PDE-Net) 0.400Av +0.385 — 0.202v — 0.490 m

FPHrsmPDE=Net 0.344Av +2.116 — 0.815v

Entropy 2023, 25, 489

15 of 26

To test whether Model 1 (I?Z.rsmp DE=Nety and Model 2 (I?ip HrsmPDE=Nety qre similar or
not, we compare their predictions by using the finite difference scheme. Consider the time
range to be [0,0.5] with time step size dt = 0.01. Hence, there are 50 time grids, which
are denoted to be {ti}?gl, where t; = 0.01i, 1 < i < 50. Fix a time t;, we introduce the
residuals Ey, := Y}, — Yt’: and Et,- = Yt,. - th, where Yt’l‘, represents the true solution, and Y3,
and Y} ; denote the predicted solutions based on Model 1 and Model 2, respectively, at time
t;. We will test if the residuals {E;, }?%, and {E, 120 have similar distributions. The null
hypothesis is Hél) : Et, ~ Ey, and the alternative hypothesis is Hg) : Ei, # Ey,. Applying
Bonferroni method, Holm method and the B-H’s procedure for multiple testing adjustment,
discussed in Section 2.5, the test results are presented in the following Table 4.

Table 4. Hypothesis tests with 5% observation noise.

Héi) VS. Hg), 1<i<50 Number of Rejections
Bonferroni 49
Holm 49
B-H 49

The results in Table 4 show that Model 1 (Frac-PDE-Net) is significantly different from
Model 2, meaning all terms in Model 1 should be kept. Hence, the final discovered terms
for F; and F, are represented by Model 1 (Frac-PDE-Net) in Table 4.

To assess the stability of the results shown above, we repeated the experiments
100 times and the results are presented in Figures 4 and 5. The process of merging similar
terms is outline in Appendix A.1. The plots show that there are some instances where the
three methods fail to eliminate certain redundant terms. However, these instances are rare,
as the median of these terms is 0, indicating that they appear infrequently.

3.2. Example 2: A 1-Dimensional Model

Our second example is taken from [6]. In this example, we consider (14) under
the Neumann boundary condition on a one-dimensional domain D; := [— 57", 57"} with

dy =0.1,d, = 10,

OTT
Py (u,0) = 3.6u5 — 3.6u — 022941