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Abstract: Due to the equivalent keys revealed by a chosen-plaintext attack or a chosen-ciphertext
attack, most of the existing chaotic image encryption schemes are demonstrated to be insecure. In
order to improve security performance, some scholars have recently proposed the plaintext-related
chaotic image encryption scheme. Although the equivalent effect of a one-time pad is achieved, an
additional secure channel is required to transmit the hash values or other parameters related to the
plaintext before the ciphertext can be decrypted at the receiving end. Its main drawback is that an
absolutely secure channel is needed to transmit the information related to the plaintext, which is not
feasible in practical applications. To further solve this problem, this paper proposes a chaotic image
encryption scheme based on global dynamic selection of a multi-parallel structure. First, a chaotic
sequence is employed to dynamically select DNA encoding rules. Secondly, the permutation with a
multi-parallel structure is performed on the DNA-encoded matrix, and the DNA decoding rules are
dynamically selected according to another chaotic sequence. Finally, the diffusion rules obtained by
the ciphertext feedback mechanism are introduced to determine the dynamic diffusion. Compared
with the existing local dynamic encryption schemes, the main advantage of this scheme is that it can
realize global dynamic selection, so as to ensure that there is no equivalent key, and it can resist the
chosen-ciphertext attack or chosen-plaintext attack and does not need an additional secure channel
to transmit parameters related to plaintext, which is practical. A theoretical analysis and numerical
experiments demonstrate the feasibility of the method.

Keywords: chaotic encryption; equivalent key; ciphertext feedback; dynamic selection

1. Introduction

With the development of today’s science and technology, all aspects of people’s lives
have undergone informatization [1,2]. As a medium in the information age, images can
directly convey the message that people want to express [3]. Information technology
has an increasing impact on personal privacy, medicine, and social interaction. Once
the important information in the image is intercepted or tampered with by the attackers,
the damage caused cannot be ignored [4,5]. Therefore, it is very important to protect the
safe transmission and reception of image data. In order to ensure the security of digital
images, researchers have proposed many image encryption methods based on different
technologies [6–8].

Generally speaking, image encryption algorithms are mainly divided into two opera-
tions: permutation and diffusion [9]. Permutation changes the position of pixels, and its
main purpose is to break the correlation between the adjacent pixels of an image. Diffusion
changes the pixel value of each pixel in a specific way to achieve the purpose of protecting
image information. In essence, diffusion is the operation of changing the pixel value [10,11].
Chaotic systems have the characteristics of pseudo-randomness, initial value sensitivity,
parameter sensitivity, and unpredictability [12], which can be applied in the field of image
encryption [13,14]. The chaotic sequence generated by the chaotic system iteratively partic-
ipates in the permutation and diffusion, so as to improve the security of the cryptographic
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system. Due to the characteristics of chaotic systems and the high adaptability of image
encryption technology, chaotic image encryption technology has gradually attracted the
attention of researchers [15,16].

With the deepening of research on chaotic image encryption technology, chaotic image
encryption algorithms are mainly divided into three categories [17,18]. The first type is
encryption by a self-synchronous stream cipher, which does not require an additional secure
channel and is practical [19–23]. The second type is encryption related to plaintext; this
scheme has no equivalent key, and it is difficult to crack, but the premise is that additional
parameters, such as the hash value, need to be assumed to be transmitted through an
additional secure channel, which is not practical. Although Chai et al. improved on this
basis by embedding key parameters into the cipher image and transmitting it together with
the latter cipher image, it can not resist cropping attacks well [24]. The third type is a hybrid
encryption that combines other technologies, such as local dynamic encryption, which does
not consider the equivalent key and other situations and has difficulty resisting chosen-
plaintext or chosen-ciphertext attacks. For example, Xian proposed a fractal sorting matrix
and its application in chaotic image encryption [25]. The pixel positions in each round of
permutation are the same, and the diffusion is orderly, which reduces the dynamics and
randomness of the scheme. These make the scheme less secure [26–28].

In order to make the chaotic image encryption scheme dynamic and flexible, some en-
cryption links with parallel structures are considered in permutation and diffusion [29–32].
In 2018, Yin proposed a chaotic image encryption scheme based on a breadth-first search
and dynamic diffusion [33]. In 2019, Li proposed a chaotic image encryption method with
orbit perturbation and dynamic state variable selection mechanisms [34]. In the same year,
Meysam proposed a chaotic image encryption scheme based on a polynomial combination
of chaotic maps and dynamic function generation [35]. In 2021, Wu proposed a plaintext-
related dynamic key chaotic image encryption method [36]. These schemes use local
dynamic selection to improve flexibility and multi-selectivity in the encryption [37–39].

In order to further improve the flexibility of a chaotic image encryption scheme, this
paper proposes a chaotic image encryption scheme based on global dynamic selection
to realize the dynamic selection of bit-level, pixel-level, and image-level encryption by
designing a multi-parallel structure. First, DNA encoding rules are dynamically selected ac-
cording to the chaotic sequence. Then, the DNA-encoded matrix is dynamically permuted.
Next, the DNA decoding rules are dynamically selected according to the chaotic sequence.
Finally, dynamic diffusion is performed by the diffusion rules obtained by different loca-
tions. The main feature of this scheme is that it can realize global dynamic selection, so as
to ensure that this scheme cannot crack the equivalent key and can resist chosen-plaintext
attacks and chosen-ciphertext attacks. Our scheme does not need to use an additional
secure channel to transmit parameters related to plaintext, so it is practical. The simulation
results and the performance analysis show that the designed scheme has high security and
good performance indicators.

The remainder of this research work is organized as follows. The overall framework
of the scheme and the basic theory of 2D-LSM, DNA coding, dynamic permutation, and
dynamic diffusion are given in Section 2, while the security of the scheme is analyzed
theoretically in Section 3. Simulation experiments and performance analysis are detailed in
the Section 4. This article ends with a Conclusion section in which the contributions are
summarized (Section 5).

2. Chaotic Image Encryption Scheme

This paper proposes a chaotic image encryption scheme based on global dynamic
selection. Its design idea is to build a multi-parallel structure, and its main feature is to
realize dynamic selection through the multi-parallel structure design in encryption. First of
all, all encryption processes in this scheme are called “global”. Secondly, for an image to be
encrypted, the orders of magnitude of each encryption process are the bit level, pixel level,
and image level, respectively, i.e., processing an image at the bit level, pixel level, and image
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level can also be called global. Dynamic means that when encrypting the same order of
magnitude, the encryption rules executed on the same process will change instead of being
fixed. Specifically, at the bit level, it is realized through the DNA encoding process and the
DNA decoding process. For every two adjacent bits, their rules of DNA encoding and DNA
decoding are different. The pixel level is completed by dynamic diffusion, and the diffusion
equation performed by every two adjacent pixels is different. The image level is realized
by dynamic permutation; for the same image, the first round and the second round of the
permutation are determined by the calculated permutation rule value. The permutation
rule value is not fixed, and each number corresponds to a rule. The so-called parallel
structure means that within the same encryption process, there are multiple available
encryption rules. For example, in dynamic diffusion, each pixel will have two diffusion
methods, but the specific implementation of the diffusion method can only be known after
the diffusion rules are determined. However, encryption with a non-parallel structure
often has only one rule to perform encryption, and the encryption method has been fixed.
By designing a parallel structure, each encryption process has multiple parallel encryption
rules, and the specific process rules in encryption are selected by the chaotic sequence,
permutation rule value, and diffusion rule value.

Different from the existing schemes, the main feature of this scheme is that, even if
it is not related to the plaintext, the equivalent key cannot be cracked within a limited
number of years. The existing dynamic encryption is mainly local dynamic encryption.
Local dynamic encryption realizes dynamic selection in some processes of encryption. We
propose an encryption scheme with global dynamic selection to achieve dynamic selection
in all processes of encryption. At the same time, it also realizes dynamic selection from the
three aspects of the bit level, pixel level and image level for the first time. In the process
of DNA encoding and DNA decoding, DNA encoding and decoding rules are selected
according to the chaotic sequence to realize dynamic selection at the bit level. In the
dynamic permutation, according to the permutation rule value, the permutation method is
dynamically selected to realize the dynamic permutation at the image level. In dynamic
diffusion, the diffusion equation of each pixel is selected through the diffusion rule value
to achieve dynamic selection at the pixel level.

As the number of encryption rounds increases, the permutation method and diffusion
equation performed by the first round and the second round of encryption will change due
to the permutation rule value and the diffusion rule value. The encryption rules executed
in different rounds are different. This reflects the characteristics of dynamic selection.
The global dynamic selection feature of the scheme is reflected in two aspects:

1. All elements of an image can be classified into bit level, pixel level, and image level.
This scheme dynamically selects a specific encryption from these three levels to
encrypt the image.

2. Using the chaotic sequence and the designed multi-parallel structure, the design
concept of dynamic selection is reflected in the encryption rules that need to be
selected and executed for each process.

2.1. Scheme Description

The block diagram of the proposed image encryption scheme is shown in Figure 1.
Without loss of generality, an encrypted object can be reduced to an image P of size L = M× N,
represented by a two-dimensional (2D) eight-bit integer matrix P = {p(i, j)}M,N

i=1,j=1; the final

cipher image obtained after encryption through this scheme is C = {c(i, j)}M,N
i=1,j=1. Each

piece of two-dimensional image data can also be written as a one-dimensional (1D) array
scanned in raster order (left to right, top to bottom). For example, P = {p(i)}L

i=1. In Figure 1,
the single-throw switch K1 is turned on first, and, after entering the plain image P, K1 is
disconnected, and the double-throw switch K2 is connected to position one. The image, after
the first round of encryption, is fed back to the input for the second round of encryption. Then,
connecting K2 to position two outputs the cipher image. In Figure 1, I, S, E, D, RS, and RD
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are the DNA-encoded matrix, permutation matrix, DNA-decoded matrix, diffusion matrix,
permutation rule value, and diffusion rule value of the encrypted image.

Figure 1. Block diagram of global dynamic encryption.

In this scheme, the sub-block diagram of “2D-LSM” is a two-dimensional chaotic
system proposed by Hua et al. [17], and the mathematical expression of the iteration
function is: {

h(i + 1) = cos(4αh(i)(1− h(i)) + β sin(πw(i)) + 1),
w(i + 1) = cos(4αw(i)(1− w(i)) + β sin(πh(i)) + 1),

(1)

where h(i), w(i) ∈ [0, 1]. The system is in a chaotic state when α,β ∈ [1, 100]. This chaotic
system has a total of four key parameters {h(0), w(0), α, β}, The system is iterated by the
first set of initial key parameters {h1(0),w1(0), α1, β1} to obtain the chaotic sequences A and
B. The system is iterated by the second set of initial key parameters {h2(0),w2(0), α2, β2} to
obtain X and Y.

This scheme realizes bit-level dynamic selection through sub-block diagrams of “Dy-
namic DNA encoding I” and “Dynamic DNA decoding E”. The process of DNA encoding
is to divide each eight-bit binary pixel of image P into four two-bit binary bit pairs, accord-
ing to the corresponding value in A. The DNA encoding rule to be executed is dynamically
selected to realize the DNA encoding from the number matrix to the symbol matrix.
The DNA-encoded matrix I is obtained. The process of DNA decoding is the opposite
of that of DNA encoding. According to the corresponding value in B, the decoding rule
is dynamically selected to decode each of the four symbols into an eight-bit binary pixel,
and the DNA decoding matrix E is obtained.

The sub-block diagram of “Dynamic permutation S” realizes the dynamic selection
of different permutation methods for the DNA-encoded matrix I and introduces the per-
mutation rule value RS to select and execute four different permutation methods. RS is
determined by the symbol values of the four corners of the matrix I, and the matrix after
dynamic permutation is denoted as S.

Through the sub-block diagram “Dynamic diffusion D”, the dynamic diffusion of
pixels in different positions of the DNA-decoded matrix E is realized. According to the
diffusion rule value RD, select the specific execution rule from two different diffusion rules,
and the image after diffusion is D. RD is obtained by feedback from the DNA-decoded
matrix E, chaotic matrix X and diffusion matrix D. D is obtained by substituting the
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feedback of the DNA-decoded matrix E, the chaotic matrix Y, and the diffusion matrix D
into the diffusion equation determined by RD.

K1 is a single-throw switch, which is used to cut off or connect the plaintext input
encryption system; K2 is a double-throw switch, which is used to connect the feedback
loop when K2 is at one and to connect the ciphertext output branch when K2 is at two.
The ciphertext output branch is used to output the final encrypted cipher image.

2.2. The Encryption Process

This section will introduce the encryption process of this scheme, and the detailed
process is as follows:

(1) Initialization: Iterate the 2D-LSM chaotic system 800 times from the initial con-
ditions h1(0), w1(0) with the control parameters {α1, β1} to avoid the transient effect in
the initial iteration, and then iterate it 4L more times to obtain the two state sequences
{h1(i)}4L

i=1 and {w1(i)}4L
i=1. Quantize them to two eight-bit integer sequences A = {a(i)}4L

i=1
and B = {b(i)}4L

i=1 via {
a(i) = mod

(
f ix
(
h1(i)× 1010), 8

)
+ 1,

b(i) = mod
(

f ix
(
w1(i)× 1010), 8

)
+ 1,

(2)

where f ix(·) is the rounding down function, mod(·) is the modulo operation, and i = 1,
2, · · · , 4L.

Iterate the 2D-LSM chaotic system 800 times from the initial conditions h2(0), w2(0)
with the control parameters {α2, β2} to avoid the transient effect in the initial iteration,
and then iterate it L more times to obtain two state sequences {h2(i)}L

i=1 and {w2(i)}L
i=1.

The one-dimensional arrays {h2(i)}L
i=1 and {w2(i)}L

i=1 can also be written as
two-dimensional eight-bit integer matrices, {h2(i, j)}M,N

i=1,j=1 and {w2(i, j)}M,N
i=1,j=1, by scan-

ning them in raster order. Quantize them to two eight-bit integer sequences X = {x(i, j)}M,N
i=1,j=1

and Y = {y(i, j)}M,N
i=1,j=1 via x(i, j) = mod

(
f ix
(

h2(i, j)× 1010
)

, 255
)
+ 1,

y(i, j) = mod
(

f ix
(

w2(i, j)× 1010
)

, 255
)
+ 1,

(3)

where f ix(·) is the rounding down function, mod(·) is the modulo operation, and i = 1,
2, . . . , M; j = 1, 2, . . . , N.

(2) DNA encoding: The switch K1 is closed, so that each pixel p(i)(i = 1, 2, . . . , L) in P
corresponds to four two-bit binary pairs. Then, use the a(4i− 3), a(4i− 2), a(4i− 1), a(4i)
column encoding rules in Table 1 to transform them into DNA symbols. Because one
pixel corresponds to four symbols, the matrix P will be reshaped into a symbol matrix
I = {i(j, k)}M,4N

j=1,k=1 with M rows and 4N columns, consisting only of “ATCG”.

Table 1. Eight kinds of DNA coding rules.

1 2 3 4 5 6 7 8

00-A 00-A 00-C 00-C 00-G 00-G 00-T 00-T
01-C 01-G 01-A 01-T 01-A 01-T 01-C 01-G
10-G 10-C 10-T 10-A 10-T 10-A 10-G 10-C
11-T 11-T 11-G 11-G 11-C 11-C 11-A 11-A

(3) Dynamic permutation: Calculate the permutation rule value RS according to
the pixel position value of the DNA-encoded matrix and perform the corresponding
permutation to obtain the permutation image S. The expression of RS is

RS = mod(i(1, 1) + i(1, 4N) + i(M, 1) + i(M, 4N), 4), (4)
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where the DNA symbol is converted into binary according to “A = 00, G = 01, C = 10,
T = 11”. Then, the addition operation of Equation (4) is performed, and mod(·) is the
modulo operation.

Since the Modulo 4 operation is performed when calculating RS, RS satisfies RS ∈ 0, 1, 2, 3.
The matrix of M× N(M = 4, N = 4) illustrates the permutation according to RS.

When RS = 0, transpose the symbol matrix I, as shown in Figure 2.

Figure 2. Illustration of the permutation for RS = 0.

When RS = 1, from i = 1 to f ix(M/2), the i-th and M + 1− i-th of the symbol matrix
I exchange the entire row, as shown in Figure 3.

Figure 3. Illustration of the permutation for RS = 1.

When RS = 2, from i = 2 to f ix(N/2), the i-th and f ix(N/2) + i− 1-th of the symbol
matrix I exchange the entire column, as shown in Figure 4.

Figure 4. Illustration of the permutation for RS = 2.

When RS = 3, from i = 2 to f ix(M/2), the i-th and f ix(M/2) + i− 1-th of the symbol
matrix I exchange the entire row, as shown in Figure 5.

(4) DNA decoding: Select the rules in Table 1 for dynamic DNA decoding of the
permutation image S according to the corresponding values in sequence B, decode S in the
raster scanning order, combine the four symbols into one pixel, and obtain a DNA-decoded
matrix E = {e(i, j)}M,N

i=1.j=1 with M rows and N columns.
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Figure 5. Illustration of the permutation for RS = 3.

(5) Dynamic diffusion: According to the DNA-decoded matrix E, the chaotic matrix
X, and the diffusion matrix D, dynamically calculate the diffusion rule value RD = r(i, j)
(i = 1, 2, . . . , M; j = 1, 2, . . . , N) at different positions of E, where the mathematical expres-
sion of r(i, j) is

r(i, j) =


mod(e(M, N)⊕ x(1, 1), 2) if i = 1, j = 1,
mod(d(i− 1, N)⊕ x(i, 1), 2) if i 6= 1, j = 1,
mod(d(i, j− 1)⊕ x(i, j), 2) if j 6= 1,

(5)

where r(i, j) ∈ {0, 1}, mod(·) is the modulo operation, and ⊕ is the exclusive OR operation.
The diffusion rule value RD determines the diffusion rule performed by the pixel at

different positions of E, and the diffusion image is D = {d(i, j)}M,N
i=1,j=1.

Figure 6 shows how to obtain the diffusion rule value RD = r(i, j)(i = 1, 2, . . . , M;
j = 1, 2, . . . , N) for an image of 3× 3.

Figure 6. A schematic diagram of acquisition of diffusion rules.

The diffusion image D = {d(i, j)}M,N
i=1,j=1 is obtained as follows:

d(i, j) =


Fr(i,j)(e(M, N), e(1, 1), y(1, 1)) if i = 1, j = 1,

Fr(i,j)(e(i, 1), d(i− 1, N), y(i, 1)) if i 6= 1, j = 1,

Fr(i,j)(e(i, j), d(i, j− 1), y(i, j)) if j 6= 1,
(6)

where Fr(i,j)(a, b, c) =
{

a⊕ b⊕ c if r(i, j) = 0,
mod(a + b + c, 256) if r(i, j) = 1

, and a, b, c ∈ {0, 1, 2 . . . , 255}.

Figure 7 shows how to obtain the diffusion image D = {d(i, j)}3,3
i=1,j=1.
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Figure 7. A schematic diagram of acquisition of D.

(6) Disconnect K1, connect K2 to position one, and use the diffusion image D as the
input image for the next round of encryption.

(7) The second round of encryption: Repeat steps (3)–(6) to make K2 connect to position
two. Then, the final cipher image C can be obtained.

The decryption process is the inverse process of encryption, and decryption can be
completed by operating the above steps in reverse order. The main steps of decryption are
given here.

(1) Inverse dynamic diffusion: Record the inverse diffusion rule value as R−1
D =

r−1(i, j)(i = 1, 2, . . . , M; j = 1, 2, . . . , N). According to the inverse diffusion rule value R−1
D ,

choose the inverse diffusion equation at different positions to obtain E,

r−1(i, j) =


mod(d(i, j− 1)⊕ x(i, j), 2) if j 6= 1,
mod(d(i− 1, N)⊕ x(i, 1), 2) if i 6= 1, j = 1,
mod(e(M, N)⊕ x(1, 1), 2) if i = 1, j = 1.

(7)

The matrix E = {e(i, j)}M,N
i=1.j=1, before diffusion, is obtained as shown in Equation (7).

e(i, j) =


F−1

r(i,j)(d(i, j), d(i, j− 1), y(i, j)) if j 6= 1,

F−1
r(i,j)(d(i, 1), d(i− 1, N), y(i, 1)) if i 6= 1, j = 1,

F−1
r(i,j)(d(M, N), e(1, 1), y(1, 1)) if i = 1, j = 1,

(8)

where F−1
r(i,j)(a, b, c) =

{
a⊕ b⊕ c if r(i, j) = 0,
mod(a + b + c, 256) if r(i, j) = 1,

and a, b, c ∈ {0, 1, 2 . . . , 255}.

(2) Inverse DNA diffusion: The pixels in E are dynamically decoded according to the
corresponding values in sequence B in the raster scanning order, and the corresponding four bi-
nary pairs are converted into the DNA symbol matrix S by the b(4i−3), b(4i−2), b(4i−1), b(4i)
column coding rules in Table 1.

(3) Inverse permutation: R−1
S is obtained to select the inverse permutation rule, and

R−1
S = mod(s(1, 1)+̇s(1, 4N)+̇s(M, 1)+̇s(M, 4N), 4).

(4) Inverse DNA encoding: According to the corresponding value in sequence A,
the DNA coding rule in Table 1 is dynamically selected to reverse encode I to obtain the
DNA-decoded matrix P.

During encryption, both the permutation rule value RS and the diffusion rule value RD
will change with the number of rounds to achieve the purpose of dynamic rule selection,
so as to flexibly use different permutation rules and diffusion rules. When the image
is encrypted, different permutation rules will be implemented for different encryption
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rounds, so as to realize dynamic permutation at the image level. In dynamic diffusion,
the diffusion rule value of each pixel will also change dynamically with the pixel position,
and the diffusion rule value of each round will also change dynamically with the number of
encryption rounds, achieving dynamic diffusion from the pixel level. For different images to
be encrypted, RS depends on the special location pixels of the input image to be encrypted
after DNA encoding and the different images to be encrypted by different permutation rule
values. The diffusion rule value RD is mainly determined by the image before diffusion E.
The permutation image S and the chaotic matrix X, and the diffusion rule value RD will
also change as the number of rounds of encryption changes the DNA-decoded matrix E
and the permutation image S.

Setting the number of feedback rounds to one can not only reflect the characteristics of
dynamic diffusion rules changing with the number of rounds but also reflect the dynamic
selection and the multi-parallel structure. Too many rounds will definitely affect the
encryption efficiency. In this scheme, as the number of rounds changes, fewer rounds
can be used to achieve the core advantages of the scheme, namely the dynamic, parallel
structure and the dynamic diffusion rule matrix RD. Through the global dynamic selection
feature, the combination of encryption methods for any one-bit pair change is 29, and the
combination of encryption methods for any pixel change is 227. This is the main difference
between the parallel structure proposed in this paper and the existing non-parallel structure.

3. Security Analysis
3.1. Equivalent Key Analysis

The core of the scheme’s security lies in the ciphertext feedback mechanism and dy-
namic selection characteristics. Through these two characteristics, the cost of finding special
plaintext pairs that are conducive to cracking is significantly higher. This section theoreti-
cally analyzes the ciphertext feedback mechanism and dynamic selection characteristics in
this encryption scheme to illustrate the effect of the ciphertext feedback mechanism and
the dynamic selection feature on the security of the scheme.

3.1.1. Analysis of Ciphertext Feedback Mechanism in Diffusion

The expression of the ciphertext feedback mechanism reflected in the diffusion is
shown in Equation (6). In order to better study the effect of the ciphertext feedback mecha-
nism, let the image before diffusion be E ={e(i, j)}M,N

i=1,j=1, and the image after diffusion be

D ={d(i, j)}M,N
i=1,j=1.

Transform Equation (6) into

d(i, j) =


Or(i,j)(H(i, j), e(M, N)) if i = 1, j = 1,

Or(i,j)(H(i, j), d(i− 1, N)) if i 6= 1, j = 1,

Or(i,j)(H(i, j), d(i, j− 1)) if j 6= 1,
(9)

where H(i, j) =
{

e(i, j)⊕ y(i, j) if r(i, j) = 0,
mod(e(i, j) + y(i, j), 256) if r(i, j) = 1,

is the diffusion-related factor,

Or(i,j)(a, b) =
{

a⊕ b if r(i, j) = 0,
mod(a + b, 256) if r(i, j) = 1,

and a, b, c ∈ {0, 1, 2 . . . , 255}.

Proposition 1. If different images before diffusion E′ ={e′(i, j)}M,N
i=1,j=1 and E′′ ={e′′(i, j)}M,N

i=1,j=1
have e′(q,l) 6= e′′(q,l) at (q, l), then ∆H(q, l)=H′(q, l)⊕ H′′(q, l) 6= 0.

Proof. For different images E′ ={e′(i, j)}M,N
i=1,j=1 and E′′ ={e′′(i, j)}M,N

i=1,j=1, there are the
diffusion-related factors

H′(i, j) =

{
e′(i, j)⊕ y(i, j) if r(i, j) = 0,
mod(e′(i, j) + y(i, j), 256) if r(i, j) = 1,
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and

H′′(i, j) =

{
e′′(i, j)⊕ y(i, j) if r(i, j) = 0,
mod(e′′(i, j) + y(i, j), 256) if r(i, j) = 1.

Respectively, the corresponding images are D′ ={d′(i, j)}M,N
i=1,j=1 and D′′ = {d′′(i, j)}M,N

i=1,j=1.
The diffusion-related factor at (q, l) is expressed as H′(q, l) = e′(q, l) ⊕ y(q, l) and

H′′(q, l) = e′′(q, l)⊕ y(q, l). Then, ∆H(q, l) = H′(q, l)⊕ H′′(q, l) = e′(q, l)⊕ e′′(q, l) 6= 0.
Proposition 1 is proved.

From Proposition 1, ∆H(q, l) = H′(q, l)⊕ H′′(q, l) 6= 0, where q ∈ {i = 1,2, . . . ,M}
and l ∈ {j=1, 2, . . . , N}. According to Equation (9), it is found that the difference ∆H(q, l)
will be passed to the next pixel after the ciphertext feedback mechanism, making the value
of ∆d(i, j) = d′(i, j)⊕ d′′(i, j)(i = q, q + 1, . . . , M; j = l, l + 1, . . . , N) unpredictable.

Supposing that the diffusion images in the first round are D′1 = d′1(i, j) and D′′1 = d′′1 (i, j),
the diffusion images in the second round are D′2 = d′2(i, j) and D′′2 = d′′2 (i, j), and the final
cipher images are C′ = c′(i, j) = D′2 and C′′ = c′′(i, j) = D′′2 , respectively.

For the first round of encryption, ∆d1(i, j) = d′1(i, j) ⊕ d′′1 (i, j) is unpredictable at
(i = q, q + 1, . . . , M; j = l, l + 1, . . . , N), but in the second round of encryption, d′1(i, j)
and d′′1 (i, j) are used as the input images, and the unpredictability of d′1(i, j) and d′′1 (i, j)
is transmitted to other positions of the image by DNA encoding, dynamic permutation,
and DNA decoding, applying the unpredictability of a single pixel to all pixels in the image.
In addition, the input images D′1 and D′′1 in the second round are uncontrollable for the
attacker, and it is difficult to directly select a special plaintext pair to obtain a partially
controllable ∆d(q, l) = c′(q, l)⊕ c′′(q, l) = d′2(q, l)⊕ d′′2 (q, l) 6= 0 by chosen-plaintext attack,
so that the equivalent key Y = {y(i, j)}M,N

i=1,j=1 cannot be cracked.

3.1.2. Diffusion Rule Value Difference Analysis ∆RD = r(i, j)(i = 1, 2, . . . , M; j = 1, 2, . . . , N)

The image after the first round of DNA decoding is E1 = {e1(i, j)}M,N
i=1,j=1. The image

after the second round of DNA decoding is E2 = {e2(i, j)}M,N
i=1,j=1. The image after the first

round of dynamic diffusion is D1 = {d1(i, j)}M,N
i=1,j=1, and the image after the second round

of dynamic diffusion is the final cipher image C = {c(i, j)}M,N
i=1,j=1 = D2 = {d2(i, j)}M,N

i=1,j=1.
For the ciphertext feedback mechanism of the first round of the diffusion rule

∆RD1 = r(i, j)(i = 1, 2, . . . , M; j = 1, 2, . . . , N), the expression is as follows:

r1(i, j) =


mod(e1(M, N)⊕ x(1, 1), 2) if i = 1, j = 1,
mod(d1(i− 1, N)⊕ x(i, 1), 2) if i 6= 1, j = 1,
mod(d1(i, j− 1)⊕ x(i, j), 2) if j 6= 1.

(10)

The diffusion rule value difference ∆RD1 = r1(i, j)(i = 1, 2, . . . , M; j = 1, 2, . . . , N) can
be simplified to r1(i, j) = mod(G1(i, j)⊕ x(i, j), 2), where

G(i, j) =


e(M, N) if i = 1, j = 1,
d(i− 1, N) if i 6= 1, j = 1,
d(i, j− 1) if j 6= 1,

is the extracted ciphertext-related factor.
To better study the effect of ciphertext feedback mechanisms in this process, it is

assumed that there are different

G′1(i, j) =


e′1(M, N) if i = 1, j = 1,
d′(i− 1, N) if i 6= 1, j = 1,
d′(i, j− 1) if j 6= 1,
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and

G′′1 (i, j) =


e′′1 (M, N) if i = 1, j = 1,
d′′(i− 1, N) if i 6= 1, j = 1,
d′′(i, j− 1) if j 6= 1,

where the subscript 1 represents the first round of encryption, i.e., ∆G1 = G′1 ⊕ G′′1 6= 0.
G′1(i, j). The diffusion rules corresponding to G′1(i, j) and G′′1 (i, j) are R′D1 = r′1(i, j) = mod(
G′1(i, j)⊕ x(i, j), 2

)
and R′′D1 = r′′1 (i, j) = mod

(
G′′1 (i, j)⊕ x(i, j), 2

)
, respectively, where

there must be G′1(i, j)⊕ x(i, j) 6= G′′1 (i, j)⊕ x(i, j).
Specifically, suppose G′1(i, j) and G′′1 (i, j) exist, and ∆G1(q, l) = G′1(q, l)⊕G′′1 (q, l) 6= 0,

where q ∈ {0, 1, 2, . . . , M} and l ∈ {0, 1, 2, . . . , N}. After the ciphertext feedback mecha-
nism, the unpredictability of (q, l) is passed to the next pixel of (q, l), and so on, eventually
making the value of ∆G1(i, j)(M ≥ i ≥ q, N ≥ j ≥ l) unpredictable, meaning that
G′1(i, j)⊕ x(i, j) and G′′1 (i, j)⊕ x(i, j)(M ≥ i ≥ q, N ≥ j ≥ l) in the first round of diffusion
rule expressions are unpredictable at (M ≥ i ≥ q, N ≥ j ≥ l). For R′D1 = r′1(i, j) =
mod

(
G′1(i, j)⊕ x(i, j), 2

)
and R′D1 = r′1(i, j) = mod

(
G′1(i, j)⊕ x(i, j), 2

)
, since R′D1 and

R′′D1 in G′1(i, j)⊕ x(i, j) and G′′1 (i, j)⊕ x(i, j) are unmeasurable at (M ≥ i ≥ q, N ≥ j ≥ l),
the number of diffusion rules that need to be exhausted are in the range of (M ≥ i ≥ q,
N ≥ j ≥ l) is 2(M−q)(M−l).

In the second round of encryption, the ciphertext-related factors in the corresponding
diffusion rules of C′ and C′′ are

G′2(i, j) =


e′2(M, N) if i = 1, j = 1,
c′(i− 1, N) if i 6= 1, j = 1,
c′(i, j− 1) if j 6= 1,

and

G′′2 (i, j) =


e′′2 (M, N) if i = 1, j = 1,
c′′(i− 1, N) if i 6= 1, j = 1,
c′′(i, j− 1) if j 6= 1,

respectively. Since the unpredictability of C′ and C′′ also makes G′2(i, j) and G′′2 (i, j) unpre-
dictable, this makes the second round of the permutation rule RD2 = r(i, j)
(i = 1, 2, . . . , M; j = 1, 2, . . . , N) more unpredictable. Based on this, and because of the
dynamic nature of r(i, j), r(i, j) in each location is unpredictable, the attacker needs to
exhaust all cases. For a M× N-size image, the second round of the diffusion rule value
RD2 needs to be exhausted 2M×N , and the total number of exhaustive times for RD1 and
RD2 in the case of two rounds of encryption is 2M×N + 2(M−q)(M−l) ≥ 2M×N .

According to the development of the limit of exhaustive attacks based on Moore’s
Law, the limit of exhaustive attacks in 2022 is 287, and the limit of exhaustive attacks in
2050 will be 2109 [39]. For the existing effective image size, it is easy to satisfy that 2M×N is
larger than 2109, and there are 256× 256, 512× 512, and 1024× 1024, which are far greater
than the 2109 required for the key space.

3.2. Key Space Analysis

Any chaotic image encryption scheme has a key space larger than 2100 to ensure that it
can withstand brute force attacks. The key space mentioned here means that the chaotic
digital image system uses a key with a specified length.

In this scheme, the 2D-LSM system is in a chaotic state within the parameter range
from h(i), w(i) ∈ [0, 1] to α, β ∈ [1, 100]. With a finite precision of 10−15, there are Sh = 1015,
Sw = 1015, Sα = 9.9× 1016, and Sβ = 9.9× 1016, and the calculation formula for a set of
parameter key spaces is as follows:

Sh × Sw × Sα × Sβ = 9.801× 1063. (11)
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Because two sets of key parameters are set, the overall key space of this scheme is
S =

(
9.801× 1063)2

= 9.61× 10129 ≈ 2421, which is much larger than 2100, which meets the
key space requirements of the encryption scheme.

4. Simulation Experiments and Performance Analysis

The experimental hardware platform is a PC, and the processor is Ryzen 5 5600 G
AMD, The benchmark frequency is 3.90 GHz, the memory size is 16 G, the hard disk is a
128G SSD, and the HDD is 1 T. The software environment is the Windows 10 operating
system and Matlab R2019a.

In this section, to demonstrate the security of our scheme, a grayscale image of the
size 256× 256 is used as the plain image. The initial keys are

h1(0) = 0.2333, w1(0) = 0.25, α1 = 3, β1 = 4, h2(0) = 0.28, w2(0) = 0.289, α2 = 4,
β2 = 3.

The original plain image encrypted with the number of feedback rounds is one to
illutrate the encryption performance indicators. The relevant experimental results are
shown in Figure 8, where (a), (d), and (g) are the plain images of Lena, Peppers, and
Cameraman, respectively; (b), (e), and (h) are the cipher images of Lena, Peppers, and
Cameraman, respectively; and (c), (f), and (i) are the decrypted images of Lena, Peppers,
and Cameraman, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 8. Experimental results: (a) Lena original image, (b) Lena encrypted image, (c) Lena decrypted
image, (d) Peppers original image, (e) Peppers encrypted image, (f) Peppers decrypted image,
(g) Cameraman original image, (h) Cameraman encrypted image, (i) Cameraman decrypted image.
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4.1. Histogram Analysis

An image histogram is a frequency statistic for each grayscale level in an image.
The histogram shows the distribution of grayscale in the image. For the distribution
of pixel intensity in the image, the histogram of the cipher image obtained by a secure
encryption scheme should be as flat and uniform as possible. A more evenly distributed
histogram means a better ability to resist statistical attacks, as shown in Figure 9. The plain
images of Lena, Cameraman, and Peppers with their histograms and the ciphertexts with
their corresponding histograms are shown in Figure 9. It can be seen that the grayscale
distribution of their original image has many peaks and valleys, but, in the encrypted
grayscale image, the grayscale distribution is very uniform. Therefore, it can be confirmed
that the scheme we designed has the performance of resisting statistical attacks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 9. Experimental result: (a) plain image of Lena, (b) plain image of Peppers, (c) plain image
of Cameraman, (d) histogram of Lena plain image, (e) histogram of a Peppers plain image, (f) his-
togram of Cameraman plain image, (g) cipher image of Lena, (h) cipher image of Peppers, (i) cipher
image of Cameraman, (j) histogram of Lena’s cipher image, (k) histogram of Peppers’ cipher image,
(l) histogram of Cameraman’s cipher image.
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4.2. Correlation Analysis

Since adjacent pixels of common images are highly correlated in horizontal, vertical,
and diagonal directions, this indicates that adjacent pixels often have similar and predictable
features. An ideal image encryption scheme should have sufficiently low correlation
coefficients in the horizontal, vertical, and diagonal directions to resist statistical attacks.

To highlight the influence of the encryption scheme proposed in this paper on elimi-
nating the high correlation of planar images, their correlation in the horizontal, vertical and
diagonal directions was calculated by

ru,v =
cov(u, v)√
D(u)D(v)

. (12)

where 
cov(u, v) =

1
N ∑N

i=1(ui − E(u))(vi − E(v)),

D(u) =
1
N ∑N

i=1(ui − E(u))2,

E(u) =
1
N ∑N

i=1 ui.

(13)

and N is the number of randomly chosen adjacent pixel pairs along the horizontal direction,
vertical direction, and diagonal direction in both the plain image and its cipher image. ui
and vi are the i-th items of the two adjacent pixel sequences u and v.

Figure 10 demonstrates the adjacent pixel correlation plots of the arbitrarily chosen
2000 sets of nearby pixels in Lena, Cameraman, and Peppers along the horizontal, vertical,
and diagonal orders. It can be observed that, in each figure, the X-axis indicates the three
images, while the Y-Z plane plots the values of the adjacent pixels. The adjacent pixel
pairs of the plain images are mostly on or close to the diagonal lines, indicating that these
adjacent pixels exhibit strong correlations. However, the adjacent pixel pairs for all cipher
images are distributed quite randomly across the Y-Z phase plane, demonstrating that
they exhibit weak correlations. This indicates that our proposed scheme can efficiently
decorrelate the high correlations of the plain images.

(a) (b) (c)

(d) (e) (f)
Figure 10. Histograms of Lena, Cameraman, and Peppers: (a) horizontal adjacent pixel pairs of three
plain images, (b) vertical adjacent pixel pairs of three plain images, (c) diagonal adjacent pixel pairs
of three plain images, (d) horizontal adjacent pixel pairs of three cipher images, (e) vertical adjacent
pixel pairs of three cipher images, (f) diagonal adjacent pixel pairs of three cipher images. In each
figure, the X-axis denotes the index of the three images, while the Y-Z plane plots the pixel pairs.

The correlation distribution results are shown in Table 2, where we calculate the
correlation coefficients of adjacent pixels in the horizontal, vertical, and diagonal directions
of Lena, Cameraman, and Peppers and images 4.2.05, 4.2.06, and 4.2.07 with 512× 512,
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and it can be clearly seen that the correlation coefficient of the original image is close to 1,
while the correlation coefficient of the encrypted image is close to 0 in all directions.

Table 2. Correlation coefficients of adjacent pixel pairs in the original images and their encrypted images.

Image Size Name
Plain Image Cipher Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

256× 256
Lena 0.9428 0.9143 0.9027 0.0016 −0.0034 −0.0032

Cameraman 0.9660 0.9357 0.9074 −0.0008 −0.0027 −0.0027
Peppers 0.9657 0.9410 0.9202 0.0024 0.0019 −0.0016

512× 512
4.2.05 0.9689 0.9599 0.9301 0.0027 −0.0011 −0.0011
4.2.06 0.9724 0.9681 0.9576 −0.0013 −0.0114 −0.0029
4.2.07 0.9646 0.9615 0.9547 0.0032 0.0018 −0.0011

4.3. NPCR and UACI Tests

A differential attack is a common security attack model. In the broadest sense, it
refers to an attack for tracing how differences in information input can affect the resultant
difference at the output and exploiting such properties to recover the secret key (cryptogra-
phy key). An image encryption scheme exhibits high performance in resisting differential
attacks if it possesses the characteristics of diffusion and the avalanche effect. The above
characteristics indicate that a slight change in the plaintexts can spread over all of the data
in the ciphertexts.

Therefore, the number of pixel change rates (NPCR) and a unified average changing
intensity (UACI) are proposed to better measure the diffusion and avalanche effect charac-
teristics in an encryption scheme. Security (resistance to differential attacks) is associated
with high UACI/NPCR values. The calculation formula is as follows

NPCR(T1, T2) =
1

M× N

M

∑
i=1

N

∑
j=1
|Sign(t1(i, j)− t2(i, j))| × 100%, (14)

UACI(T1, T2) =
1

M× N

M

∑
i=1

N

∑
j=1

|t1(i, j)− t2(i, j)|
255− 0

× 100%, (15)

where two images of the same size are denoted as T1 and T2, the size of the image is
L = M× N, T1(i, j) and T2(i, j) are the pixel values of the corresponding coordinates (i, j)
in the images, and Sign(·) is the sign function as

Sign(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

(16)

Given the significance level λ, the critical NPCR score N∗λ is obtained as

N∗λ =
G− φ−1(λ)

√
G/L

G + 1
. (17)

where G indicates the largest allowed pixel value, and φ−1(λ) is the inverse cumulative
density function of the standard normal distribution N(0, 1). The critical UACI scores
(U∗−λ , U∗+λ ) with the given λ can be obtained using{

U∗−λ = µu − φ−1(λ/2)× σu,
U∗+λ = µu + φ−1(λ/2)× σu,

(18)

where µu =
G + 2

3G + 3
and σ2

u =
(G + 2)

(
G2 + 2G + 3

)
18L× G(G + 1)2 .



Entropy 2023, 25, 476 16 of 22

An encryption algorithm can pass the test if the calculated UACI value is within the
range (U∗−λ , U∗+λ ).

Using Equation (19) to calculate the median value of the confidence interval, compare
the average value of UACI calculated by different images of the the same size. The closer to
Ū∗λ, the more stable the UACI is

Ū∗λ =

(
U∗−λ + U∗+λ

)
2

. (19)

In Table 3, the NPCR and UACI values of multiple encrypted images of different sizes
in our scheme are compared with those in other schemes. The numbers in bold indicate
the best indicators in the comparison scheme, and the numbers with underlines indicate
that they failed the test. We find that the average NPCR and UACI values of our encrypted
256× 256 images are 99.6084 and 33.4645, respectively. The NPCR value of reference [38] is
99.5818, which is the closest to the theoretical value, but its pass rate in the NPCR index is
only 5/6. By giving priority to the pass rate, our NPCR value is closest to the theoretical
value 99.5693 of the 256× 256 image in Table 3, and the corresponding UACI value is also
closest to the median value of the confidence interval Ū∗λ = 33.46355.

Table 3. NPCR and UACI values of cipher images.

Image Size Name
NPCR UACI

Ref. [5] Ref. [25] Ref. [38] Ours Ref. [5] Ref. [25] Ref. [38] Ours

256× 256
N∗0.05 ≥ 99.5693 U∗−0.05 = 33.2824, U∗+0.05 = 33.6447, Ū∗λ = 33.46355

5.1.09 99.603 99.6093 99.5124 99.5712 33.552 33.4723 33.5214 33.4249
5.1.10 99.636 99.6095 99.6121 99.6094 33.453 33.4663 33.4215 33.5303
5.1.11 99.942 99.6133 99.5943 99.6262 33.586 33.4554 33.4014 33.4093
5.1.12 99.792 99.6123 99.5811 99.6109 33.453 33.4604 33.4158 33.4529
5.1.13 99.792 99.6050 99.5963 99.6292 33.520 33.4601 33.4236 33.5056
5.1.14 99.6221 99.6110 99.5945 99.6032 33.440 33.4604 33.3951 33.4642

Mean value 99.731 99.6102 99.5818 99.6084 33.501 33.4625 33.4298 33.4645
Pass/All 6/6 6/6 5/6 6/6 6/6 6/6 6/6 6/6

512× 512
N∗0.05 ≥ 99.5893 U∗−0.05 = 33.3730, U∗+0.05 = 33.5541, Ū∗λ = 33.46355

5.2.08 99.960 99.6070 99.5858 99.6014 33.692 33.4734 33.3978 33.3901
5.2.09 99.876 99.6106 99.5812 99.6307 33.548 33.4572 33.4182 33.5037
5.2.10 99.654 99.6096 99.6100 99.6067 33.454 33.4574 33.4263 33.4822
7.1.01 99.957 99.6095 99.6028 99.5991 33.648 33.4726 33.4474 33.4482
7.1.02 99.918 99.6117 99.6078 99.6197 33.465 33.4563 33.4326 33.5738
7.1.03 99.849 99.6123 99.5811 99.6109 33.273 33.4535 33.4836 33.4847
7.1.04 99.991 99.6114 99.5946 99.6037 33.202 33.4475 33.4782 33.5274
7.1.05 99.942 99.6099 99.5937 99.6048 33.830 33.4559 33.4716 33.4679
7.1.06 99.670 99.6064 99.5912 99.6193 33.627 33.4515 33.4365 33.4049
7.1.07 99.983 99.6068 99.6014 99.6263 33.609 33.4638 33.4313 33.4707
7.1.08 99.818 99.6097 99.6013 99.6025 33.375 33.4536 33.4460 33.4628
7.1.09 99.874 99.6112 99.6148 99.5979 33.530 33.4729 33.3856 33.4370
7.1.10 99.697 99.6096 99.6097 99.6037 33.438 33.4605 33.3941 33.5011

boat.512 99.715 99.6084 99.6101 99.5972 33.374 33.4434 33.3973 33.4173
elaubine.512 99.746 99.6095 99.6185 99.6223 33.379 33.4746 33.4104 33.4945
gray21.512 99.643 99.6074 99.6034 99.6021 33.507 33.4588 33.4089 33.4351

numbers.512 99.653 99.6102 99.5941 99.6028 33.388 33.4477 33.4561 33.4904
ruler.512 99.637 99.6092 99.5945 99.59991 33.415 33.4637 33.4635 33.3932

Mean value 99.91 99.6095 99.5998 99.6083 33.486 33.4691 33.4325 33.4653
Pass/All 18/18 18/18 16/18 18/18 12/18 18/18 18/18 18/18
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Table 3. Cont.

Image Size Name
NPCR UACI

Ref. [5] Ref. [25] Ref. [38] Ours Ref. [5] Ref. [25] Ref. [38] Ours

1024× 1024
N∗0.05 ≥ 99.5994 U∗−0.05 = 33.4183, U∗+0.05 = 33.5088, Ū∗λ = 33.46355

5.3.01 99.950 99.6095 99.6032 99.6024 33.508 33.4511 33.4392 33.4401
5.3.02 99.982 99.6095 99.6108 99.6057 33.514 33.4536 33.4547 33.4601
7.2.01 99.980 99.6092 99.6036 99.6109 33.487 33.4606 33.4301 33.4766

Testpat.1k 99.887 99.6098 99.5971 99.6060 33.453 33.4632 33.4146 33.4638
Mean value 99.95 99.6095 99.6037 99.6063 33.491 33.4571 33.4347 33.4602

Pass/All 4/4 4/4 3/4 4/4 4/4 4/4 3/4 4/4

The average values of NPCR and UACI calculated by different images of 512× 512 are
99.6063 and 33.4653. Although the NPCR value in reference [38] is 99.5818, which is closest
to the theoretical value, its pass rate in the NPCR index is only 16/18. By giving priority
to the pass rate, our test value is closer to the theoretical NPCR value of 99.5893 for this
size, and the corresponding UACI is also closest to the median of the confidence interval
Ū∗λ = 33.46355.

The average values of NPCR and UACI calculated by different images of 1024× 1024
are 99.6063 and 33.4602. Although the NPCR value in reference [38] is 99.6037, which the
closest to the theoretical value, its pass rate in the NPCR index is only 3/4. By giving
priority to the pass rate, our test value is closer to the theoretical NPCR value of 99.5994
for this size, and the corresponding UACI is also closest to the median of the confidence
interval Ū∗λ = 33.46355.

In summary, our scheme has a high pass rate for NPCR and UACI indicators when
encrypting images of different sizes, and the average values of NPCR and UACI obtained
under different sizes of images are closer to the theoretical values. It shows that our scheme
has a strong ability to resist differential attacks. Therefore, it can be verified that this scheme
can resist differential attacks, and it also has certain advantages compared to other schemes.

4.4. Global Shannon Entropy and Local Local Shannon Entropy

Global Shannon entropy is an important indicator that reflects the random charac-
teristics of image information. It is generally believed that the larger the global Shannon
entropy, the stronger the uncertainty of the image (the greater the amount of information)
and the less visible information. It is used to measure the distribution of image pixels. Their
global Shannon entropy can be calculated as

H = −
G

∑
i=1

p(i) log2 p(i), (20)

where G indicates the largest allowed pixel value, and p(i) represents the probability of the
occurrence of the pixel value i.

The theoretical value of the global Shannon entropy H intended for an eight-bit
grayscale random image is nearer to eight. Here, the images with sizes of 256 × 256,
512× 512, and 1024× 1024 are selected, and the results are shown in Table 4.
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Table 4. Global Shannon entropy of plain images and cipher images.

Image Size Name Plain Images
Cipher Images

Ref. [14] Ref. [25] Ours

256× 256 5.1.09 6.7093 7.9966 7.9971 7.9973
5.1.10 7.3118 7.9971 7.9974 7.9973
5.1.11 6.4523 7.9975 7.9969 7.9973
5.1.12 6.6057 7.9972 7.9972 7.9974
5.1.13 1.5483 7.9965 7.9969 7.9970
5.1.14 7.3424 7.9977 7.9974 7.9969

Best/All 2/6 1/6 3/6
512× 512 5.2.08 7.5237 7.9991 7.9993 7.9993

5.2.09 6.9940 7.9992 7.9993 7.9993
5.2.10 5.7056 7.9991 7.9993 7.9993
7.1.01 6.0274 7.9990 7.9991 7.9993
7.1.02 4.0045 7.9991 7.9992 7.9993
7.1.03 5.4957 7.9990 7.9993 7.9993
7.1.04 6.1074 7.9992 7.9993 7.9992
7.1.05 6.5632 7.9992 7.9992 7.9993
7.1.06 6.6953 7.9992 7.9993 7.9992
7.1.07 5.9916 7.9991 7.9993 7.9993
7.1.08 5.0534 7.9990 7.9973 7.9993
7.1.09 6.1898 7.9991 7.9992 7.9994
7.1.10 5.9088 7.9990 7.9973 7.9994

boat.512 7.1914 7.9992 7.9994 7.9993
elaubine.512 7.5060 7.9992 7.9974 7.9993
gray21.512 4.3923 7.9993 7.9994 7.9994

numbers.512 7.7292 7.9994 7.9991 7.9993
ruler.512 0.5000 7.9987 7.9992 7.9993
Best/All 1/18 11/18 13/18

1024× 1024 5.3.01 7.5237 7.9998 7.9998 7.9998
5.3.02 6.8303 7.9996 7.9998 7.9998
7.2.01 5.6412 7.9996 7.9998 7.9998

Testpat.1k 4.4077 7.9998 7.9998 7.9998
Best/All 2/4 4/4 4/4

Total Best/All 5/28 16/28 20/28

For an image of the size 256× 256, the best rates of [14,25] are 2/6 and 1/6; the best rate
of our proposed scheme is 3/6. For an image of the size 512× 512, the best rates of [14,25]
are 1/18 and 11/18; the best rate of our proposed scheme is 13/18. For an image of the
size 1024× 1024, the best rates of [14,25] are 2/4 and 4/4; the best rate of our proposed
scheme is 4/4. In total, [14] has a best rate of 5/28, [25] has a best rate of 16/28, and our
scheme has a best rate of 21/28. The test results show that our proposed scheme has a
better performance in the global Shannon entropy test, and the best rate is relatively good.

Local Shannon entropy is an important indicator to reflect the randomness of local
regions [13]. It is generally believed that the confidence interval of a local Shannon entropy
is [7.9019014, 7.9030373]. The local Shannon entropy in this interval indicates that the image
shows strong randomness in the local area.

Here, we define the local Shannon entropy measure for 30 local image blocks with
1936 pixels as

H30,1936(S) =
30

∑
i=1

H(Si)

30
, (21)

where Si is one of the randomly select non-overlapping image blocks with 1936 pixels within
the image S. H(Si)(i = 1, 2, · · · , 30) is computed by Shannon entropy via Equation (20).

The image sizes images are 256× 256, 512× 512, and 1024× 1024, respectively, and the
results are shown in Table 5.
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Table 5. Comparison of local Shannon entropy.

Image Size Name
Cipher Images

Ref. [5] Ref. [25] Ours

256× 256 5.1.09 7.903369 7.903154 7.902536
5.1.10 7.903520 7.901680 7.901376
5.1.11 7.902291 7.902725 7.902147
5.1.12 7.902721 7.901605 7.902854
5.1.13 7.902620 7.901269 7.902928
5.1.14 7.902837 7.902341 7.902519

Pass/All 4/6 2/6 5/6
512× 512 5.2.08 7.902793 7.902012 7.902181

5.2.09 7.902972 7.902484 7.902475
5.2.10 7.902464 7.902833 7.902317
7.1.01 7.903339 7.902047 7.902209
7.1.02 7.902649 7.902568 7.902591
7.1.03 7.902493 7.902022 7.902006
7.1.04 7.903261 7.902398 7.902412
7.1.05 7.902714 7.902568 7.902623
7.1.06 7.902563 7.902022 7.902171
7.1.07 7.903185 7.902398 7.902364
7.1.08 7.902805 7.902137 7.901936
7.1.09 7.903070 7.902142 7.902964
7.1.10 7.902929 7.902171 7.902373

boat.512 7.902697 7.902046 7.902267
elaubine.512 7.902755 7.902632 7.903213
gray21.512 7.903661 7.902718 7.901961

numbers.512 7.902545 7.902067 7.901972
ruler.512 7.902896 7.902004 7.902361
Past/All 13/18 18/18 17/18

1024× 1024 5.3.01 7.902934 7.902057 7.902480
5.3.02 7.902843 7.902396 7.902249
7.2.01 7.903238 7.902330 7.902438

Testpat.1k 7.902715 7.9998 7.9998
Past/All 3/4 4/4 4/4

Total Past/All 20/28 24/28 26/28

It can be seen that the pass rates of [5,25] are both 2/6, and the pass rate of our proposed
scheme is 5/6 for an image of the size 256× 256. The pass rates of [5,25] are 13/18 and
18/18, and the pass rate of our proposed scheme is 17/18 for an image of the size 512× 512.
The pass rates of [5,25] are 3/4 and 4/4, and the pass rate of our proposed scheme is 4/4
for an image of the size 256× 256. In total, ref. [5] has a pass rate of 20/28, ref. [25] has a
pass rate of 24/28, and our scheme has a pass rate of 26/28.The comparison results show
that our proposed scheme has a better overall performance in the local information entropy
test, a relatively better pass rate, higher randomness, less visible information, and a better
encryption performance.

4.5. Sensitivity Analysis

A cryptographic system with a good security performance must be key-sensitive,
that is, a small change in the key will cause significant differences between the encrypted
images and the decrypted images. Modify only minor changes to β1 = 4 + 10−15 for key
susceptibility testing.

During the encryption, the Lena image is encrypted using the original key and a
slightly changed key, respectively. The original Lena image is shown in Figure 11a, the ci-
pher image with the original key is shown in Figure 11b, the cipher image with a slightly
changed key is shown in Figure 11c, and the difference between the two cipher images is
shown in Figure 11d. It indicates that a slight change in the plain image can spread over all
of the data in the cipher images.
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(a) (b)

(c) (d)
Figure 11. Key sensitivity test for image encryption: (a) plain image of Lena, (b) encrypted image with
the original key, (c) encrypted image with a slightly changed key, (d) cipher image with horizontal
adjacent pixel distribution.

During the decryption, the same cipher image of Lena is decrypted with the correct key
and with a slightly changed key, respectively. The original image is featured in Figure 12a,
the encrypted image with the original key is featured in Figure 12b, the decrypted image
with a slightly changed key is featured in Figure 12c, and the image decrypted by the
original key is featured in Figure 12d.

(a) (b)

(c) (d)
Figure 12. Key sensitivity test for image decryption: (a) plain image of Lena, (b) encrypted image
with original key, (c) decrypted image with a slightly changed key, (d) decrypted image with the
correct key.



Entropy 2023, 25, 476 21 of 22

5. Conclusions

We propose an image chaos encryption scheme based on global dynamic selection,
the main work of which includes the following aspects:

1. Design a multi-parallel structure to achieve dynamic selection.
2. Dynamic selection of DNA encoding rules using chaotic sequences.
3. Calculate the permutation rule according to the pixel position value of the DNA-

encoded matrix and perform the corresponding permutation to obtain the permuta-
tion image.

4. The diffusion rule obtained by the ciphertext feedback mechanism is introduced
to determine the dynamic diffusion performed, and the image after the diffusion
is obtained.

Compared with the existing local dynamic selection, the main advantage of this scheme
is that it can realize global dynamic selection. According to the results of Lenstra et al.,
under the condition of limited years, if the cracking difficulty of this scheme is greater than
that of an exhaustive attack, it has no attack value, so the equivalent key cannot be cracked.
A theoretical analysis and a numerical analysis verify the feasibility of the scheme.
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