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Abstract: In the last decade, the Fick–Jacobs approximation has been exploited to capture transport
across constrictions. Here, we review the derivation of the Fick–Jacobs equation with particular
emphasis on its linear response regime. We show that, for fore-aft symmetric channels, the flux of
noninteracting systems is fully captured by its linear response regime. For this case, we derive a
very simple formula that captures the correct trends and can be exploited as a simple tool to design
experiments or simulations. Lastly, we show that higher-order corrections in the flux may appear for
nonsymmetric channels.
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1. Introduction

It is common to experience long queues when a constriction occurs on a highway [1,2].
Such an (unlucky) phenomenon is clearly the result of “local” confinement: due to con-
striction, vehicles slow down, hence reducing the local “mass” flux as compared to the
clear part of the highway. Such a local reduction in mass flow causes the onset of annoying
queues that we sometimes experience. This phenomenon does not only occur on highways.
It becomes a major issue close to emergency exits in the case of panic [3]. The very same
dynamics also occurs at smaller scales and for simpler systems. For example, it is a common
experience that it is difficult to extract pills from a container if the opening is too small.
Pills tend to “clog”, i.e., to form stable structures close to the opening of the container that
prevent pills from going out. Very similar dynamics occurs in silos containing crops [4],
erosion [5], suspensions of hard and soft particles [6–8], herds of sheep [9], and in the onset
of panic in ants [10] and even humans [11].

The effect of confinement does not have to be unpleasant, as it is for traffic jams, or
inconvenient, as it is for the clogging of silos. Tuning the shape of the confining media can
also be an intriguing and novel way to control the dynamics of the confined system. For ex-
ample, microfluidic devices exploit variations in the section of the microchannels of which
they are composed to control fluid dynamics and induce the formation of droplets [12–15].
Similarly, tuneable resistive pulse sensing (TRPS) techniques exploit micro- and nanopores
to analyze small particles ranging from a few tens of nanometers up to the micrometric
scale [16]. In particular, TRPS was used to directly detect antibody–antigen binding [17], to
measure the electrophoretic mobility of colloidal particles [18], to perform single-molecule
detection [19], and to measure the zeta potential of nanometric particles [20]. Chromato-
graphic techniques were also developed to separate micro- or nanoparticles depending on
their size and surface properties [21–24]. Lastly, at even smaller scales, nanopores were
designed to sequence DNA molecules [25].

Transport in confinement is not only relevant for particle detection/analysis. Indeed,
the flow of fluids across a porous medium is crucial in diverse scenarios. For example, oil
recovery industries put much effort into developing techniques to maximize the extraction
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of oil from the rock matrix in which it is embedded [26,27]. Similarly, understanding the
dependence of the flow of water on the porosity of the soil is crucial in environmental
sciences [28]. Moreover, diverse technologies related to the energy transition such as blue
energy [29], hydrogen technology [30,31], electrolyzers and fuel cells [32,33], and CO2 segre-
gation [34] rely on the transport of (charged) chemical species across nanoporous materials.

Lastly, several biological systems are controlled by the transport of confined complex
fluids. For example, neuronal transmission relies on the transport of neuroreceptors among
neurons and to their specific binding sites [35]. Moreover, cell regulation relies on the
proper tuning of the concentrations of electrolytes inside the cell. Such a regulation occurs
via dedicated pores and channels whose shape renders them very sensitive to specific
ions [36–40], and RNA is transported across the nuclear membrane [41–43]. Moreover, the
lymphatic and circulatory systems in mammals rely on the transport of quite heteroge-
neous suspensions composed of a variety of components, spanning from the nanometric
size of ions up to the micrometric size of red blood cells across varying-section elastic
pipes [7,44–46]. Lastly, the survival of plants relies, at large scales, on the proper circulation
of liquid (sap) along the trunk [47] and, at short scales, on the cytoplasmic streaming within
the cells [48].

All the above-mentioned systems rely on the dynamics under confinement. Therefore,
understanding the dynamics and transport properties of confined complex systems such as
ions, molecules, polymers, colloidal particles, and suspensions is of primary importance
for the understanding of a wide spectrum of phenomena and for the development of
technological applications. Identifying the relevant parameters controlling key features
such as transport or phase transitions opens a new route for controlling the dynamics of
confined systems upon tuning the geometry of the confining media.

There has been no systematic study of the dependence of the dynamics of confined
systems upon changing the shape of the confining walls. The main reason is the large
effort that such a study requires. Indeed, experimentally tuning the shape of a pore is a
tremendous task since, if possible at all, it requires to synthesize a new item from scratch
every time. On the theoretical side, studying the dynamics and the transport of confined
systems is a tremendous task since it requires to capture several length, time, and energy
scales. In fact, the length scales range from the nanometric, typical for ions and van der
Waals interactions, to the micrometric, of colloids, polymers, and macromolecules up to
the mm/cm scale of microfluidic devices. Concerning time scales, the spectrum spans the
diffusion time of small particles and ions over their size ∼ µs up to the long time scales
typical of transport ∼ s. Concerning energy scales, they range from thermal energy kBT
(∼ 10−21 J) up to van der Waals and electrostatic interactions whose magnitude can be of
several kBT. On the top of these “direct” interactions, the effective interactions induced
by the confinement should also be accounted for. For example, squeezing a deformable
object such as a polymer or a vesicle through a constriction can require quite an amount
of energy that can easily reach the order of 100–1000 kBT. Given such complexity, one
typically relies on numerical techniques such as molecular dynamics. However, the wide
range of interactions (van der Walls, electrostatic, etc.)and the wide range of time and
length scales impose advancing numerical approaches capable of properly resolving the
smallest length, time, and energy scales. At the same time, such an approach should also
resolve the large length, time, and energy scales. Accordingly, the numerical route becomes
quite demanding from the perspective of computational time.

Since the experimental and the numerical route are quite expensive, an approximated
analytical route based on some controllable expansions may become appealing. Intriguingly,
it is possible to obtain simple analytical models that capture some features of the dynamics
of confined systems. The key idea is to “project” the dynamics of the system onto some
relevant coordinate (in chemistry, sometimes called a “reaction coordinate”) and then to
study the dynamics of these few (typically one) degrees of freedom. For example, in the
case of polymer translocation across pores, the most important observable aspect is the
time that the polymer takes to cross from one side of the pore to the other. Therefore, the
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relevant degree of freedom is the position of the center of mass of the polymer, whereas the
degrees of freedom associated with the position of the monomers can be integrated out.

In this contribution, we briefly review the derivation of the Fick–Jacobs approxima-
tion [49–56] and its use in studying transport across corrugated pores and channels. The
Fick–Jacobs approximation is applicable to the transport of ions [57–61], colloids [62–66],
rods [67], polymers [68–70], and, more recently, even chemical reactors [71] and pattern-
forming systems [72]. The validity of the Fick–Jacobs approximation was numerically
assessed in the case of polymers [68], for infinitely diluted [73] and denser [66,74] (up
to 40% volume fraction) colloidal suspensions, and detailed simulations of electrolytes
in varying-section channels [60] qualitatively reproduced the analytical predictions [57].
Lastly, the role of hydrodynamic interactions was addressed in the case of rods diffusing
across a varying-section channel [75]. However, these experimental results are quite com-
patible with a simple model that does indeed disregard hydrodynamic interactions [69].
So, for the above-mentioned case, hydrodynamic interactions seem to mildly affect the
Fick–Jacobs approximation. In contrast, the dynamics of confined active systems is very
sensitive to their effective hydrodynamic interactions with the channel walls [76–79].

In the following, we rederive the Fick–Jacobs approximation with particular emphasis
on the regime in which the current is proportional to the applied force. In such a regime, it
is possible to derive a closed formula that accounts for the dependence of the flux on the
geometry of the channel. Interestingly, our derivation naturally highlights a few relations
between the underlying Smoluchowski equation and the linear response theory. Even
though this work was motivated by the transport in confined pores and channels, the
results we derived are valid for all 1D systems (independently of the physical origin of the
effective potential) in the dilute regime (for which mutual interactions can be neglected)
and whose dynamics is governed by the Smoluchowski equation (i.e., in the overdamped
regime).

2. Model

In the following, we are interested in the transport of a single colloidal particle confined
in an axially symmetric channel characterized by its half section (see Figure 1 for a sketch
of the system):

h(x) = h0 + h1 cos
(

2π
x
L

)
. (1)

and period L. In the case of axis-symmetric channels, in cylindrical coordinates, the time
evolution of probability density ρ is governed by the Smoluchowski equation:

ρ̇(x, r, t) = ∇ · [D∇ρ(x, r, t) + Dβρ(x, r, t)∇W(x, r)] , (2)

where D is the diffusion coefficient, β−1 = kBT is the inverse thermal energy, kB the
Boltzmann constant, T the absolute temperature and

W(x, r) =

{
φ(r) r < h(x)
∞ else

(3)

is the effective potential responsible for both confining the particle within the channel and
for additional soft interactions, φ(r) with the channel walls. For smoothly varying channel
cross-sections ∂xh(x)� 1, it is possible to factorize the probability density [49,50,53–56]

ρ(x, r, t) = p(x, t)
e−βW(x,r)

e−βA(x)
, (4)
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where

A(x) = −kBT ln

[
1

πh2
0

∫ ∞

0
e−βW(x,r)rdr

]
(5)

is the local free energy [59]. Moreover, integrating along the radial direction leads to

ṗ(x, t) = ∂x[D∂x p(x, t) + Dβp(x, t)∂x A(x)] . (6)

Figure 1. Sketch of a channel with varying-section h(x). The minimal hmin and maximal hmax

amplitudes are marked. The channel was periodic along the x direction with period L.

Such a procedure is called Fick–Jacobs approximation [49,50,56]. Its regime of valid-
ity was assessed by several groups [51,52,54,62,73,80–84]. In particular, the quantitative
reliability of the Fick–Jacobs approximation can be enhanced by introducing a position-
dependent diffusion coefficient [51,52,54,62,73,80–84], D(x), hence leading to the following
set of equations:

ṗ(x, t) = −∂x J(x, t) (7)
J

D(x)
= −∂x p(x)− βp(x)∂x A(x) . (8)

Equation (8) is completed with the following boundary conditions:

p(−L) = p(L) (9)∫ L

−L
p(x)dx = 1. (10)

We decomposed effective force −∂x A(x) as the net force:

f = − 1
2L

∫ L

−L
∂x A(x)dx = −∆A

2L
(11)

and

Aeq(x) = A(x) + f x. (12)

where f is the net force responsible of the flux, and Aeq(x) is all the other conservative
forces that do not give rise to any flux. In the following, we expand both flux J and density
p in the equilibrium case:

J =J0 + J1 + J2 + . . . (13)

p(x) =p0(x) + p1(x) + p2(x) + . . . (14)

Due to Equation (10), at the zero-th order, we have∫ L

−L
p0(x)dx = 1 . (15)
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This implies ∫ L

−L
pn(x)dx = 0 ∀n 6= 0 (16)

Accordingly, at order zero, we have

p0(x) = p̃e−βAeq(x) (17)

J0 = 0 (18)

p̃ =
1∫ L

−L e−βAeq(x)dx
. (19)

At the generic n-th order, we have

Jn

D(x)
= −∂x pn(x)− βpn(x)∂x Aeq(x) + βpn−1(x) f , (20)

the solution of which reads

pn(x) = e−βAeq(x)

 x∫
−L

[
βpn−1(y) f − Jn

D(y)

]
eβAeq(y)dy + Πn

 . (21)

Here, Jn and Πn are integration constants. Imposing periodic boundary conditions
pn(−L) = pn(L) and recalling that Aeq(−L) = Aeq(L) leads to

∫ L

−L

(
Jn

D(y)
− βpn−1(y) f

)
eβAeq(y)dy = 0 , (22)

with

Jn = β f

∫ L
−L pn−1(y)eβAeq(y)dy∫ L

−L
eβAeq(y)

D(y)
dy

= β f p̃

∫ L
−L

pn−1(y)
p0(y)

dy∫ L
−L

eβAeq(y)

D(y)
dy

. (23)

In the last step, we used Equation (17). Lastly, Πn is determined by imposing
Equations (15) and (16):

Πn = − p̃
∫ L

−L
e−βAeq(x)

x∫
−L

[
βpn−1(y) f − Jn

D(y)

]
eβAeq(y)dydx . (24)

At the leading order in the force, Equations (21) and (23) read:

p1(x) = e−βAeq(x)

[
β f p̃(x + L)− J1

∫ x

−L

eβAeq(y)

D(y)
dy

]
, (25)

J1 =
2β f L∫ L

−L e−βAeq(x)dx
∫ L
−L

eβAeq(x)

D(x) dx
. (26)

Interestingly, from Equation (26), it is possible to identify a force-independent
channel permeability:

χ =
2βL∫ L

−L e−βAeq(x)dx
∫ L
−L

eβAeq(x)

D(x) dx
. (27)
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As expected, Equation (27) agreed with the derivation of the effective diffusion coefficient
for a particle at equilibrium and in the presence of entropic barriers [85,86]. This is in
agreement with the linear response theory, within which the transport coefficients that
determine the flux under external forces can be determined from equilibrium properties.
In the case in which the density at the ends of the channel differs (instead of the periodic
boundary conditions considered here), the Fick–Jacobs approximation agrees with closed
formulas that do not rely on the smooth variation of the channel [58,87].

Some general remarks can be derived in the case of fore-aft symmetric channels, for
which Aeq(x) = Aeq(−x), and diffusivities, D(x) = D(−x). For such cases, the magnitude
of the flux should depend solely on the magnitude of the force and not on its sign. This
implies that

J2n = 0, ∀n > 0 . (28)

In order to proceed, for fore-aft symmetric f (x) and g(x), the following equality holds:∫ L

−L
g(x)

∫ x

−L
f (y)dydx =

1
2

∫ L

−L
f (x)dx

∫ L

−L
g(x)dx (29)

Enforcing the condition in Equation (28) into Equation (23), and using the last expression
leads to

Πn = 0, ∀n > 0 . (30)

Substituting again into Equation (23) eventually leads to

Jn = 0, ∀n ≥ 1 . (31)

Even though Πn>0 = 0 and Jn>1 = 0, the density profile was still sensitive to higher-order
corrections in the force, i.e., in general, pn 6= 0. According to this analysis, Equation (26)
was not just the linear contributions to the flux; rather, it also provided the exact expressions
at every order in the external force. The outcome of this analysis is intuitive since it states
that, for noninteracting systems confined within fore-aft symmetric channels, nonlinear
effects are absent. The same results are valid for any 1D problem with such a symmetry.

In contrast, if neither potential A(x) nor diffusion profile D(x) have a defined parity,
then the left-right symmetry is broken, Equation (28) does not hold anymore, and a diode
effect may set for sufficiently large external forces. We could assess the dependence of the
diode effect on the geometry of the channel by calculating the following:

J2 = β f

L∫
−L

x∫
−L

β p̃ f − J1
D(y) eβAeq(y)dy + Π1dx

∫ L
−L

eβAeq(y)

D(y)
dy

. (32)

Using

Γ(x) =
∫ x

−L

eβAeq(y)

D(y)
dy (33)

and the definition of J1, we obtain

J2 =
β f

Γ(L)

L∫
−L

β p̃ f (x + L)− 2β p̃ f L
Γ(x)
Γ(L)

+ Π1dx . (34)



Entropy 2023, 25, 470 7 of 13

Lastly, using the definition of Π1, we obtain

J2 =
(β f L)2 p̃

Γ(L)
1
L

L∫
−L

[( x
L
+ 1
)
− 2

Γ(x)
Γ(L)

][
1− e−βAeq(x)

]
dx . (35)

2.1. Transport across Free Energy Barriers

In the case of the transport of pointlike particles across 3D varying-section channels
with axial symmetry, the effective potential reads:

A(id)
eq (x) = −2kBT ln

[
h(x)
h0

]
, (36)

where h(x) is the local half-section of the channel, and h0 its average value (see Figure 1).
Accordingly, Equation (26) reads

Jid =
2β f L∫ L

−L
h2(x)

h2
0

dx
∫ L
−L

h2
0

h2(x)D(x)dx
. (37)

In the case of micro- or nanoparticles that undergo solely excluded volume interactions
with the channel walls, the effective channel half-section becomes h(x)− R, where R is the
particle size, and we obtain

A(pcl)
eq (x) = −2kBT ln

[
h(x)− R

h0

]
, (38)

which leads to

Jpcl =
2β f L∫ L

−L
(h(x)−R)2

h2
0

dx
∫ L
−L

h2
0

(h(x)−R)2D(x)dx
. (39)

R < h0 − h1 for the particle to be able to cross the channel. Lastly, several groups showed
that the Fick–Jacobs approximation can be improved by assuming a position-dependent
diffusion coefficient [49,50,53,54,81–84]. There is general agreement that the approximated
formula for the diffusion coefficient reads [50] (or is, in practice, equivalent to):

D(x) =
D0√

1 + (∂xh(x))2
. (40)

2.2. Piecewise Linear Potential and Homogeneous Diffusion Coefficient

For analytical insight, it can be useful to approximate effective potential A(x) with

Aeq(x) = −∆Aeq

L
|x| , (41)

where

∆Aeq = Amax
eq − Amin

eq (42)

is the piecewise linear difference between the maximal and minimal values of Aeq. More-
over, if we assumed that the diffusion coefficient was homogeneous:

D(x) = D0 (43)
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we obtained ∫ L

−L
eβAeq(x)dx =

2L
β∆Aeq

(
1− e−β∆Aeq

)
(44)∫ L

−L
e−βAeq(x)dx =

2L
β∆Aeq

(
eβ∆Aeq − 1

)
(45)

Lastly, by substituting the last expressions into Equation (27), we obtained an approximated
expression for the following permeability:

χ̃ =
Dβ

4L

(
β∆Aeq

)2

cosh(β∆Aeq)− 1
. (46)

Interestingly, Equation (46) shows that χ was an even function of ∆Aeq. This implies that
the transport was insensitive upon flipping the sign of free energy barrier ∆A. Lastly,
Equation (46) shows that χ decayed exponentially with β∆Aeq.

3. Discussion

The reliability of the Fick–Jacobs approximation, namely, Equation (26), was addressed
for pointlike particles and showed good quantitative agreement for forces up to β f L '
10 [73]. However, Equation (26) still required to numerically compute integrals, whereas
Equation (46) provided a direct (yet approximated) dependence of χ̃ on ∆A. Therefore,
it is important to address the reliability of Equation (46) as compared to the full solution
of Equation (26). Indeed, all the panels of Figure 2 show that, the permeability calculated
with the piecewise linear model, Equation (46), showed some discrepancies as compared
to the full expression in Equation (26). In particular, as shown in Figure 2 for the case
under consideration (h0/L = 0.1), the corrections due to the inhomogeneous diffusion
(dashed-dotted lines) were indistinguishable from those with a constant diffusion coefficient
(dashed lies), and hence did not improve the approximation. On the other hand, Figure 2
shows that the simple formula in Equation (46) was sufficient to properly capture the
trends and could be used to estimate the transport of colloidal particle across porous media.
Interestingly, concerning the magnitude of χ, the bottom panels of Figure 2 show that the
channel permeability decreased upon increasing the particle size. Interestingly, the decrease
was almost linear for larger corrugations of the channel (larger values of ∆S), whereas for
smaller values of the corrugation, it plateaued at smaller values of R. Lastly, we discuss the
dependence of χ̃ in β∆A as per Equation (46). As shown in Figure 3, χ̃ had a maximum
for β∆A = 0 and then it decayed exponentially for larger values of β∆A. Interestingly, χ̃
attained values close to unity up to β∆A ' 5, i.e., for a free energy barrier much larger than
the thermal energy.

The fact that Equation (46) depended solely on ∆A also allowed for estimating the
transport in situations in which the particles may have had some soft interactions with
the walls, such as electrostatic interactions. In that case, the free energy barrier depended
not only on the size of the particle and the geometry of the channel, but also on the
charge of both the particle and the walls of the channels [58,59]. Moreover, Equation (46)
allowed for predicting the transport of soft or deformable objects, such as proteins or
polymers [68,69,88].
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Figure 2. Transport across porous media. (upper left) Permeability χ as obtained form Equation (46)
(solid lines), Equation (26) with constant diffusion coefficient (dashed lines), and Equation (26)
with a diffusion coefficient as given by Equation (40) (dashed-dotted lines) normalized by the
one across a constant-section channel χo = Dβ/4L, as a function of the geometry of the channel
∆S = ln h0+h1

h0−h1
= ln hmax

hmin
for different values of the particle radius. (upper right) Ratio of χ̃ over χ

normalized by χ for the datasets shown in the left panel. (bottom left) Permeability χ normalized
by the one across a constant-section channel χo = Dβ/4L as a function of the radius of the particle,
R, normalized by the average channel width, h0, for different channel geometries captured by ∆S.
(bottom right) Ratio of χ̃ over χ normalized by χ for the datasets shown in the left panel.

0 5 10 15 20
β∆A

0.0

0.2

0.4

0.6

0.8

1.0

χ̃
/χ̃

o

Figure 3. Dependence of approximated channel permeability χ̃ (as defined in Equation (46)) normal-
ized by that of a constant section channel χo as function of the amplitude of the dimensionless free
energy barrier β∆A that encodes the physical properties of the confined system.

4. Conclusions

We derived closed formulas for transport within linear response theory and for higher-
order corrections. In particular, we showed that, for the case of noninteracting systems
confined in fore-aft symmetric channels, the higher-order corrections in the flux and the
density were both zero. Hence, for fore-aft symmetric channels, the full expression for
the flux was indeed the one obtained within the linear response regime. Accordingly, the
channel permeability derived within the linear response, as shown in Equation (27), was
related to the well-known expression of the effective diffusion coefficient reported in the
literature [85,86]. Moreover, we showed that, within the linear response, the formula for
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permeability χ, as shown in Equation (27), could be further simplified by approximating
the local free energy with piecewise linear potential (Equation (41)) to obtain Equation (46)
whose overall drop was determined with the values of the free energy at the bottleneck and
at the waist of the channel. We showed that such an approximation provided the correct
trends and was reliable within ' ±50%, as shown in the right-hand panels of Figure 2.
This feature is crucial, since Equation (46) can be easily computed and it is valid for all soft
interactions between the particle and the channel walls.
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