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Abstract: Quantum dynamical localization occurs when quantum interference stops the diffusion of
wave packets in momentum space. The expectation is that dynamical localization will occur when the
typical transport time of the momentum diffusion is greater than the Heisenberg time. The transport
time is typically computed from the corresponding classical dynamics. In this paper, we present an
alternative approach based purely on the study of spectral fluctuations of the quantum system. The
information about the transport times is encoded in the spectral form factor, which is the Fourier
transform of the two-point spectral autocorrelation function. We compute large samples of the energy
spectra (of the order of 106 levels) and spectral form factors of 22 stadium billiards with parameter
values across the transition between the localized and extended eigenstate regimes. The transport
time is obtained from the point when the spectral form factor transitions from the non-universal to
the universal regime predicted by random matrix theory. We study the dependence of the transport
time on the parameter value and show the level repulsion exponents, which are known to be a good
measure of dynamical localization, depend linearly on the transport times obtained in this way.
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1. Introduction

One of the central areas of study in quantum chaos is that of the spectral statistics of
quantum chaotic systems and how they relate to classical chaos and random matrix theory
(RMT) [1,2]. The spectral form factor (SFF) is one of the most widely used spectral statistics
due to the stark contrast in behaviour between the chaotic and integrable regimes. However,
the SFF is not a self-averaging quantity [3], meaning that the typical value may be far from
the average value. Because of this, its numerical computation remains challenging, and
its practical evaluation requires some sort of smoothing procedure, either by computing
disorder averages (only possible when considering systems with disorder) or local time
averages. Nevertheless, the SFF has been used as the fundamental indicator of quantum
chaos in many of the central rigorous results. A heuristic proof of the quantum chaos
(Bohigas—Giannoni-Schmit) conjecture [4,5], which was initiated by Berry [6], developed by
Sieber and Richter [7], and later completed by Haake’s group [8-10], clearly relates random
matrix spectral correlations to correlations among classical unstable (hyperbolic) orbits by
computing the orbit contributions to the SFF. Recently, much attention has been given to
the SFF in many-body settings [11-16]. Rigorous proofs of quantum chaos by computing
the SFF have been preformed in kicked spin chains [17,18] and more generally in dual-
unitary circuits [19,20]. In the high-energy physics context, for example, studies of the SFF
have been performed in Sachdev-Ye-Kitaev-type models [21-24] and using hydrodynamic
theories [25]. Pioneering experimental studies of the SFF were carried out on excitation
spectra of molecules [26] and microwave billiards [27]. The SFF has recently been used to
probe the many-body localization (MBL) transition [28,29]. In this paper, we will adapt a
similar methodology to that in Ref. [28] to study the dynamical localization transition in
single-body systems on the example of stadium billiards. Even though quantum billiards
are ubiquitous in the field of quantum chaos, not many theoretical studies of the SFF in
chaotic billiards are to be found in the literature. Previous studies focus mainly on the
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(pseudo)integrable and closely related regime, such as rectangular billiards [30], including
perturbations [31], barrier billiards [32-34] and Veech triangular [35] billiards. Recently, the
SFF has also been computed in the case of generic triangular billiards [36], where it was
demonstrated that the spectral statistics follow RMT, thereby extending the quantum chaos
conjecture to strongly mixing systems without classical Lyapunov chaos.

The origin of the study of dynamical localization in the stadium billiards can be traced
to the pioneering work of Borgonovi, Casati and Li [37], later continued by Casati and
Prosen [38,39]. Quantum dynamical localization (DL) occurs when quantum interference
stops the diffusion of wave packets. The phenomenon is analogous to the famous An-
derson localization, but occurring in momentum space instead of the configuration space.
The two can be explicitly related in the example of the quantum kicked rotor system [40].
The following heuristic argument explains when dynamical localization may be expected.
The transition is governed by the ratio of two typical time scales, namely the transport
time {7, controlling the typical rate of diffusion, and the Heisenberg time ty, which is the
inverse of the mean level spacing. The discreetness of the quantum spectrum may only
be resolved on time scales greater than the Heisenberg time. If tt > ty, we expect the
interference will localize the wave packets in only part of the momentum space. On the
other hand, if t7 < ty, we expect the wave packet to encompass the full extent of the mo-
mentum space before any interference effects might stop the diffusion. The transition from
the dynamically localized regime to the fully delocalized ergodic regime has been exten-
sively studied in the quantum kicked rotor system (see the review articles [41,42]), billiard
systems [37-39,43—48], Dicke model [49], etc. In particular, our previous studies of DL in
the stadium billiard [45] show the functional dependence of the localization measures and
level repulsion exponents on the ratio &« = ty /t1. However, to ascertain the transport times,
a separate classical computation of the transport times was necessary. This also introduces
some ambiguity in defining the transport time because of the complex inhomogeneous
diffusion that occurs (see Ref. [50] for details). Furthermore, in generic billiards with
divided regular/chaotic phase space the diffusion process is even more complex because
of the hierarchical structures of islands of stability in the phase space and the stickiness
phenomenon (see Refs. [48,51-53] and references therein). In the present paper, we present
an alternative definition of the transport time based on the timescale of the onset of RMT
spectral statistics in the SFE. The definition is inspired by the methodology used to extract
the Thouless time of spin chains in Ref. [28]. We show the transport time extracted from
the spectral form factor can be used to describe the transition from the DL regime to the
ergodic regime.

2. Definitions and Methods
2.1. Quantum Billiards

Quantum billiards are archetypical models of both classical and quantum chaos. In
the quantum billiard problem, we consider a quantum particle trapped inside a region
B C R? referred to as the billiard table. The eigenfunctions ¢, are given by the solutions of
the Helmholtz equation

(v2 n k%l)lpn —0, )

and Dirichlet b.c. ¢,|35 = 0, with eigenenergies E, = k%, where k;, is the wave number
of the n-th eigenstate. We use a system of units where /1 = 1, and the mass of the particle
is m = 1/2. The very efficient scaling method, devised by Vergini and Saraceno [54] and
extensively studied by Barnett [55], allows us to compute very large spectra of the order of
10° states (the implementation is available as part of [56]). The spectral staircase function
counts the number of eigenstates (or modes) up to some energy N(E) := #{n|E, < E}.
The asymptotic mean of the spectral staircase for billiards is given by the well known
generalized Weyl's law [57]

Nweyl(E) = (AE — LVE) /4 +c @)
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where A is the area of the billiard, £ is the circumference, and c is a constant corner and
curvature correction. The asymptotic density of states is then

A L

E)=—-— . 3
The Heisenberg time is defined as the inverse of the mean level spacing or
b = 2700 (E). 4)

To compare the universal statistical fluctuations it is convenient to unfold the spectra. This
is performed by inserting the numerically computed billiard spectrum into Weyl’s formula
en := Nweyl(En). The resulting unfolded spectrum e, has a uniform mean level density
equal to one. In the unfolded spectrum ty = 277.

One of the paradigmatic examples is the stadium billiard of Bunimovich [58,59]. The
stadium is constructed from two semicircles separated by a rectangular region. We fix the
radius of the semicircles to one. The family of stadium billiards is characterized by the
width of the separation ¢. The stadium is classically chaotic for any value of . Because of
the two reflection symmetries, it is sufficient to consider the quarter stadium in the quantum
case, corresponding to the odd—odd symmetry sector of the full stadium. Two examples of
stadium eigenstates are shown in Figure 1. In panel (a), we show a typical dynamically
localized eigenstate in the ¢ = 0.02 stadium. The localization is evident in the distinctly
regular nodal patterns that are similar in appearance to very strong scarring. Although the
probability density function extends over all the configuration space, it is visibly depleted
in the inner part of the billiard near the origin (note the colour scale is logarithmic). In
(b), we show a typical eigenstate in the ¢ = 0.5 stadium. The state is practically uniformly
extended, with the typical chaotic nodal patterns of random superpositions of plane waves,
with some scarring visible around an unstable (bow-tie-shaped) periodic orbit.

0.0 0.5 1.0 15

Figure 1. Representativeeigenstates in the (quarter) stadium billiards. (a) Localized eigenstate at
k =302.60195 and ¢ = 0.02. (b) Extended state at k = 302.6037 and & = 0.5. We plot the probability
density in the logarithmic scale, log;, (|9|?).

2.2. Spectral Form Factor

The SFF is loosely defined as the Fourier transform of the spectral two-point correlation
function and may be written as
2
>, ®)

K(T)—<

) exp(27ie, )
n
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where the sum goes over the unfolded energy levels. The time T is measured in units of
Heisenberg time 1y = 1. The SFF is not a self-averaging quantity [3], it exhibits erratic
fluctuations with time. This means a separate averaging must be performed, represented by
(---). This is commonly an average over different realizations when considering random
matrices or disordered systems. For clean single-body systems, we instead perform a
moving time average to smooth out the fluctuations [26,27]. This is achieved by convolving
the SFF with a Gaussian function in time,
1(t—1t)?

& 1
K(t) = exp(—=
() /0 o3

This introduces an additional numerical parameter ¢. It is further useful to decompose the
SFF into the connected and disconnected part K = Kconn + Kgise. The disconnected part is
given by the diagonal terms from definition (5) and depends solely on the density of states
(see Ref. [25] for more details). It is also evident from definition (5) that the SFF behaves
as a delta distribution at ¢ = 0. This narrow peak is produced by the disconnected part of
the SFE. The spectral fluctuations are encoded in the connected part of the SFF, which we
obtain by subtracting the disconnected part Kconn = K — Kgjse. Since we are only interested
in spectral fluctuations, we will only consider the connected part of the SFF in all further
instances.

The stadium billiards are classically chaotic systems with time-inversion symmetry.
Their universal spectral statistics are therefore expected to follow the Gaussian orthogonal
ensemble (GOE) of RMT [1,2]. In the infinite dimensional GOE case, the SFF has the
following analytical form,

2

)dt. )

) _exp(27ie, )
n

2t —1In(21+1) <1
2 —7in(&H) T>1

@)

Kgog(T) = {

This has the basic anatomy of a so-called “ramp” followed by a saturation regime after
reaching the Heisenberg time. This contrasts well with the integrable case, where an
immediate saturation is expected. Since all stadium billiards are ergodic chaotic systems,
we expect the SFF will follow the universal GOE prediction. However, when ¢ is small,
the transport times become very large and should even diverge as we approach the limit
& — 0 (the limiting case is the integrable circle billiard, where the momentum becomes
a strictly conserved quantity). Classically, the fact that the system is ergodic becomes
apparent only after the transport time is reached, and the dynamics are able to explore
all the phase space. We expect the SFF of the stadia will follow the GOE prediction only
after the transport elapses. We will therefore define the quantum transport time 7r as the
time at which the SFF of the numerically computed billiard spectrum begins to follow the
RMT prediction. The procedure that is used to extract 7r is described in more detail in
Appendix A. The transport time may either be greater or smaller than 7y = 1 (note that
by definition (5) we measure time in the SFF in units of Heisenberg time). Following the
argument from the introduction, this means we expect localization when 77 > 1, and no
localization (extendedness) when 77 < 1.

2.3. Dynamical Localization and Level Repulsion

We will measure the localization of the eigenstates indirectly by computing the level
of the repulsion exponent of the spectra. The level repulsion exponent is defined by using
the nearest-neighbour level spacing. An intuitive understanding of the connection between
level repulsion and localization may be gained from the following heuristic picture. The
eigenstates of chaotic systems in the non-localized regime are extended in the phase space,
and there is a great deal of overlap between them. In the extreme case of full extendedness,
the differences in the overlaps will stem purely from local fluctuations of the wave (or
Husimi) functions. This means strong couplings between the consecutive states are possible
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and indeed very probable, leading to a gap in the eigenenergies. For an extremely simplified
case, one may consider a two-level system, where the gap of the eigenenergies (avoided
crossing) may be computed directly. On the other hand, dynamically localized states only
occupy a smaller area of the phase space. If the consecutive states occupy different areas
of the phase space, there will be essentially no overlap between them, with the couplings
exponentially suppressed. This is more likely to happen if the eigenstates are more severely
localized, leading to a much weaker level repulsion. The connection between localization
and level repulsion has a strong foundation in our previous works and also related studies
in different systems. In particular, in Ref. [45] we showed that the level repulsion exponents
in the stadium billiards are proportional to the mean values of localization measures based
on the Husimi representation of the eigenstates (for a recent study of the localization
measures in more general divided phase space systems, see also [60]).

The level spacing is defined as the difference in energy between two consecutive levels
in the unfolded spectrum s; = ¢;;1 — ¢;. The unfolding procedure guarantees that the mean
level spacing is in unity. We also studied the probability density distribution P(s). The
level repulsion is given by the behaviour of P(s) at small s, namely P(s) « s?, where f is
called the level repulsion exponent. Following the quantum chaos conjecture, the level
spacing distribution of chaotic quantum systems is well described by the Wigner surmise
obtained from RMT. In the GOE case, = 1 indicates linear level repulsion. On the other
hand, integrable systems are expected to show Poissonian level statistics (Berry-Tabor
conjecture) and no level repulsion g = 0. In the localized regime, the distribution is not
known analytically. Empirically, the level repulsion exponent changes from 0 to 1 as we
transition from the severely localized to the delocalized chaotic regime. One of the most
popular ways of describing the level spacing distribution in the transition region is to use
the Brody distribution [61], which interpolates the two regimes

Pg(S) = cSP exp(—dSﬁH), (8)

. . . _ p+2\\P 1!
where the normalization constants are given by ¢ = (B +1)d, and d = (F (m)) .

Alternatively, another popular choice is the Izrailev distribution [41]; however, we opted
for the Brody distribution due to the simpler expression and empirically good description
of the numerical results in previous papers [43-46,62]. The level repulsion exponent g is
the indicator of dynamical localization, which we compare to Tr across the transition.

3. Results
3.1. Transport Times

To compute the quantum transport times, we computed the spectra of the stadium
billiards at 22 values of ¢ € (0.01,0.07). Each spectrum contains around 10° levels with
k, € (640,4000). The lowest levels start at around the 10%-th eigenstate. Because the
scaling method computes the eigenvalues in only small intervals, some levels are lost in
the computation due to numerical errors. By comparing with Weyl’s law, we estimate that
less than 0.1% are lost.Since the SFF is a linear spectral statistic, we expect this to have
a negligible effect on the result. Even with the great efficiency of the numerical method,
collecting the spectra and computing the SFF takes considerable computational effort due
to the large spectra required to obtain good results.

The connected SFF of the selected stadia are shown in Figure 2a. The numerical results
are compared with the GOE curve (7). We see the ¢ = 0.5 result, where the transport time
is expected to be very short, nicely follows the GOE curve from start to finish. When ¢ is
decreased, the numerical SFF detaches from the GOE curve at some point. This point is
by our definition the transport time. We see the transport time increases as ¢ is decreased,
eventually becoming longer than the Heisenberg time. We note the SFF still exhibits some
fluctuations, even though each of the spectra contains many levels—approximately 10°.
The smoothing parameter in the presented case is ¢ = 0.01, which we find is the optimal
compromise between fine resolution and the intensity of fluctuations. We extract the
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transport times, including some error estimates (shown with the error bars), as described in
Appendix A. The result is presented in Figure 2b. In the inset, we show the same graph
in the decadic log-log scale. The transport times appear to roughly follow a power law
decay tr o €77, with a transition from vy = 1 to 7 = 1/2 above ¢, =~ 0.04. The caveat is that
the power laws should not be seen as a definitive result, since the range of the parameter
values is within one decade. In Ref. [50], we computed the classical transport times of the
stadia in the space of conjugated momenta and discrete time (the conjugated momenta
of the billiard mapping, describing the classical dynamics, are p = sin ), where 0 is the
angle of reflection when the particle hits the boundary). There, we found N7 o e~7 with
a transition from ¢y = 5/2 to v = 2 above ¢, ~ 0.05; however, the transitional value is
not sharply defined. We note that considering the transport in the flow of the stadium
billiard (real time) instead of the billiard map (discrete time) might give different results,
because the slow decay of correlations in the classical stadium billiard is caused by special
types of bouncing ball and boundary glancing orbits [63]. The difference in the decay rates
indicates the quantum transport time extracted from the SFF is not directly proportional to
the discrete transport time in momentum space. However, both are monotonic functions
(within some fluctuations) of the parameter ¢, and both seem to exhibit a transition in the
power law behaviour at roughly the same parameter range.

(b)
571

15_% 10_: 5_1/2
€=10.01 0{’ 0.5
e =0.02 ° —

=0.03 & 1.0 1 )
€ : IS Q 0.01 0.02 0.04 0.08
e =0.04 Roo
e =0.05 %
e=0.5 OOQOO
GOE 0.5 1 oOo .
3 0.02 0.04 0.06 0.08
T €

Figure 2. (a) Connected spectral form factors of stadium billiards in units of Heisenberg time. The
GOE curve, expected in chaotic systems, is shown with the black dashed line. (b) Dependence of
the quantum transport times (in units of Heisenberg time), extracted from the SFF, on the billiard
parameter e. The error bars show the estimated errors due to the fluctuations in crossing the threshold
value. The inset shows the same plot in the decadic log-log scale.

3.2. Level Repulsion

To determine the level repulsion exponents §, we fit the level spacing distributions
of the computed spectra with the Brody distribution (8). In Figure 3a, we show some
examples of the fits. We see the level spacings are indeed described well by the Brody
distribution. In panel (b), we show § as a function of t7. We observe the transition from the
extended to the localized regime as the transport time increases, empirically confirming
the heuristic argument that the transition should happen when the transport time is close
to the Heisenberg time. Quantitatively, the mid-point of the transition f = 0.5 occurs
already at 71 ~ 0.8. The relation between the two quantities appears to be close to linear. In
Ref. [45], we found a nonlinear functional relation between p and the parameter « = ty/tr
(the denominator is the classical transport time) that would be analogous to 1/tr. This
indicates that the quantum transport times are not exactly analogous to the classical
transport times. Nevertheless, we clearly establish a functional relation between the level
repulsion exponent and the quantum transport times. Because the level repulsion exponents
are a linear function of localization measures (see Refs. [45,46]), this demonstrates the link to
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dynamical localization and potentially also a more general relation (a similar non-universal
but characteristic behaviour) between level spacing distributions and spectral form factors
in other contexts.

(a) (b)
0.8 - 0 -
0.6 -
0.6 -
= 0.4 4 =
0.4 4 oY)
0.2 -
0.2 -
0.0 -
T T T T T
0 2 4 0.5 1.0 1.5

T

Figure 3. (a) Representative examples of nearest-neighbour level spacing distributions (coloured
lines) fitted by the Brody distribution (black dashed lines). (b) Dependence of the level repulsion
exponent (Brody parameter) on the quantum transport times (in units of Heisenberg time).

4. Discussion

We have presented a numerical study of the spectral form factors of the stadium
billiards in relation to dynamical localization. The main result is the computation of the
connected spectral form factors and extraction of the quantum transport times 77 (in units
of Heisenberg time) from the SFE. By relating 77 to the level repulsion exponent 8, we
show that the transition from the localized to the delocalized regime is governed by the
ratio between the transport time and the Heisenberg time. The novelty of the presented
approach compared with previous studies of the dynamical localization transition is that all
computations are based on the quantum spectral statistics alone. No classical computations
of the transport times are needed. This might be especially beneficial in cases where the
classical transport processes are very complex and the definition of the relevant transport
time might be ambiguous, such as, for instance, in systems with divided phase space and,
as already demonstrated in Ref. [28], in many-body systems without a classical limit. The
relationship between 8 and 7t is close to linear. This is different from the nonlinear relation
with the analogous quantity &« = ty/t7 found in Ref. [45], where the transport times ¢t
were computed from the classical momentum diffusion in discrete time. Nevertheless, both
definitions of the transport time exhibit a power law regime change at roughly the same
value of ¢. Since quantum billiards may be considered a generic example of Hamiltonian
systems, the results are widely applicable. Further research directions might include a
similar study of the SFF in systems with divided phase space, such as, for instance, the
limacon billiards (see Refs. [46,64,65] and references therein).
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Abbreviations

The following abbreviations are used in this manuscript:

RMT Random matrix theory

SFF  Spectral form factor

GOE  Gaussian orthogonal ensemble
DL Dynamical localization

Appendix A. Extracting the Quantum Transport Times

The appendix describes the details of how we extract the quantum transport time
from the SFF data. We follow the procedure outlined in Ref. [28]. The objective is to find
the point in time when the connected SFF starts to follow the GOE curve (7). Let us define

the following quantity
K(7)
810 (KGOE (7) ) ‘ ' (AD

This measures the ratio between the numerical data and the GOE curve, and the logarithm
gives the order of magnitude. When g — 0, the two quantities are exactly equal. To deter-
mine the quantum transport time, we select a threshold value gg and define 77 as the time at
which g(7) < go. Because the SFF fluctuates even after the smoothing procedure, pinpoint-
ing the exact value of 71 remains challenging. A local fluctuation exactly at the threshold
may obscure the result. To estimate the errors incurred by the fluctuations, we vary go
in a small interval and compute the mean and standard deviation of the obtained 77. In
Figure A1, we show g(7) for a few different stadium billiards. The fluctuations of g(7)
in the final stationary regime are of the order of 0.01, i.e., about 2% relative difference.
We therefore opted for gy = 0.02, or about 5% relative difference, and varied it down
to go = 0.015 to obtain the error estimates. The final results are shown in Figure 2b in
Section 3.1.

g(t) =

100 4 223 — £=0.01
] — £=0.02
] — £=0.03
101 4 — £=0.04
E ] — £=20.05
= . L\“u‘: threshold
1072 4 LI
] VI
3 '\ " ‘
L
1073 A -
0 1 2 3

Figure Al. Dependence of the quantity g(7) for representative values of e. The transport time is
determined by the point where the curve crosses the threshold for the first time.
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