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Abstract: In the large-scale measurement field, deployment planning usually uses the Monte Carlo
method for simulation analysis, which has high algorithm complexity. At the same time, traditional
station planning is inefficient and unable to calculate overall accessibility due to the occlusion of
tooling. To solve this problem, in this study, we first introduced a Poisson-like randomness strategy
and an enhanced randomness strategy to improve the remora optimization algorithm (ROA), i.e., the
PROA. Simultaneously, its convergence speed and robustness were verified in different dimensions
using the CEC benchmark function. The convergence speed of 67.5–74% of the results is better
than the ROA, and the robustness results of 66.67–75% are better than those of the ROA. Second, a
deployment model was established for the large-scale measurement field to obtain the maximum
visible area of the target to be measured. Finally, the PROA was used as the optimizer to solve optimal
deployment planning; the performance of the PROA was verified by simulation analysis. In the
case of six stations, the maximum visible area of the PROA reaches 83.02%, which is 18.07% higher
than that of the ROA. Compared with the traditional method, this model shortens the deployment
time and calculates the overall accessibility, which is of practical significance for improving assembly
efficiency in large-size measurement field environments.

Keywords: large-scale measurement field; tooling occlusion; deployment planning; remora optimization
algorithm; enhanced randomness

1. Introduction

Research on the deployment planning of digital measuring instruments in large-scale
measurement fields mainly focuses on two categories. One is the influence of measurement
uncertainty [1] for a specific point on the measurement to determine the interval of the
station and optimize the station according to the uncertainty. The other type considers
whether the measurement target is measurable as a planning condition and obtains the
actual station position of the measuring instrument through accessibility judgment. Ac-
cessibility can be divided into two categories: accessibility and visual methods, which are
mainly used in the fields of contact and visual measurements. Accessibility analysis [2] is
the smallest conical area in a series of observable directions. It is mainly used to analyze
whether a target can reach the surface of a measured object without collision and it is
suitable for the contact measurement of small and medium parts on a three-coordinate
measuring machine. The principle of the visibility graph method [3] is similar to that of
the accessibility analysis method. The detection plan derived from the geometry refers to
the collection of a series of position points where the optical instrument can measure the
light to measure the target point. For the plane measurement point, the visibility graph
was a hemisphere collection. A single measuring instrument cannot measure all target
points in a large-scale measurement field. Therefore, multiple instruments are needed to
work together to build a measurement network covering the entire assembly space. Due
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to the discrete nature of station locations, Monte Carlo simulation is usually used to solve
for the effects of the number of stations, the distance, and the uniformity of distribution
on the overall measurement field [4]. However, the reference points to be measured in
the traditional method are fixed points, which have certain limitations. Meanwhile, the
traditional method of station deployment cannot calculate the overall accessibility. In this
study, we transform deployment planning into an optimization problem and obtain the best
deployment plan by optimizing the station coordinates using an optimization algorithm
with light detection as the rule.

Optimization algorithms can be divided into traditional and metaheuristic optimiza-
tion algorithms based on the process of solving optimization problems. Meta-heuristic
optimization algorithms include evolutionary algorithms, swarm intelligence algorithms,
intelligent bionic optimization algorithms, and other intelligent optimization algorithms.
In the field of evolutionary algorithms, Dong et al. [5] proposed a novel multi-objective,
evolutionary-based, probabilistic transformation inspired by a genetic algorithm. Wan
et al. [6] introduced Gaussian chaos mapping and other evolutionary strategies to improve
the black widow spider optimization algorithm. Wu et al. [7] combined the Bernstein oper-
ator and the differential evolution algorithm and proposed refracted oppositional-mutual
learning. Pang et al. [8] used a differential evolution algorithm and multitask learning to
predict photovoltaic power. In the field of swarm intelligence algorithms, Opoku et al. [9]
combined an ant colony optimization algorithm with iterative conditional patterns for com-
puting estimates of neural source activity. To optimize wireless sensor node deployment,
Wu et al. [10] proposed a virtual force-directed particle swarm optimization approach,
where the optimization objective is to maximize network coverage. Dai et al. [11] solved
the problem of gravity anomaly matching using an artificial bee colony algorithm based on
a radiation transformation. Dong et al. [12] combined time-shift multi-scale weighted per-
mutation entropy with a gray-wolf-optimized support vector machine to classify the faults
of rolling bearings. In the field of intelligent bionic optimization, Zhou et al. [13] used the
immune fruit fly optimization algorithm to search the combined parameters of k and α in
variational mode decomposition. Lu et al. [14] optimized the extreme learning machine for
better classification performance using the chaotic bat algorithm. Tong et al. [15] improved
the cuckoo algorithm to support continuous hyper-parameters, integer hyper-parameters,
and mixed hyper-parameters. Deb et al. [16] commented on the variants and applications
of flock optimization algorithms. In other areas of intelligent optimization algorithms, Kuo
et al. [17] used simulated annealing to reduce the complexity of a fully connected network.
Shang et al. [18] used an artificial immune algorithm to solve the multi-objective clustering
problem and to obtain a Pareto optimal solution set. Liao et al. [19] used a firefly algorithm
to reduce energy costs. Goh et al. [20] proposed the use of harmony search, to form a hybrid
HS-SVM, to perform feature selection and hyperparameter tuning simultaneously and a
hybrid HS-RF to tune the hyperparameters.

The remora optimization algorithm (ROA) [21] is a relatively new meta-heuristic
optimization algorithm inspired by the parasitic properties of the remora. The algorithm
combines the whale optimization algorithm (WOA) [22] and sailfish optimization algorithm
(SFO) [23], and the population is updated by switching the two strategies. Almalawi
et al. [24] focused on the design of remora optimization and a deep learning heavy metal
adsorption rate prediction model for biochar. Raamesh et al. [25] proposed a combination
of battle royale optimization and remora optimization to address the selection of software
test cases. In this study, different improvements were used. Based on the original ROA,
the Poisson-like randomness strategy and enhanced randomness strategy were added
such that the population individuals have more changes. In addition, an optimization
model was established for the engineering problem of deployment planning in large-scale
surveying fields, and high-dimensional parameters were obtained through the improved
remora algorithm (PROA) and converted into effective station parameters.
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To test the proposed PROA, we used 45 CEC benchmark functions for testing on
the base dimension and selected four other meta-heuristic optimization algorithms for
performance comparison. Simultaneously, to test the performance of the algorithm in
optimizing high-dimensional parameters, we selected 12 CEC benchmark functions with
scalable dimensions for testing and comparison. Finally, the improved algorithm was
tested and compared to the engineering problem of deployment planning in a large-scale
measurement field, and its usability was verified.

2. Original ROA

The original ROA was optimized by exploiting the parasitic properties of the remora.
Initialization is first performed, and the individuals of the population randomly start their
respective initial positions within the upper and lower boundaries. Subsequently, the
fitness function of each individual is calculated, and the optimal position and fitness are
updated. Attempt a new location using the following formula:

Ratt = Rt
i +
(

Rt
i − Rpre

)
× rand1, (1)

where Ratt is the attempted new position, Rt
i is the i-th individual in the course of the t-th

iteration, Rpre is the last historical position, and rand1 is a normally distributed random
number between [0, 1]. The fitness f (Ratt) of the attempted new position and the fitness
f
(

Rt
i
)

of the current individual are calculated and compared. When the latter is greater
than the former, the host feeds as follows:

Rt+1
i = Rt

i + (2V × rand2 −V)×
(

Rt
i − C× Rbest

)
(2)

V = 2×
(

1− t
max_iter

)
, (3)

where Rt+1
i is the ith individual in the t-th iteration process, Rbest is the global optimal

position, rand2 is a random number between [0, 1], max_iter is the maximum number of
iterations, t is the current iteration number, V is the host feeding range, and C is a fixed
coefficient of 0.1. Otherwise, the host is changed and the WOA or SFO strategy is used to
update the location. The WOA strategy formula is as follows:

Rt+1
i =

∣∣Rbest − Rt
i
∣∣× eα × cos(2πα) + Rt

i (4)

α = rand3 ×
(
−
(

1 +
t

max_iter

)
− 1
)
+ 1, (5)

where rand3 is a random number between [0, 1] and α is a random number between [−1, 1].
The formula for the SFO strategy is as follows:

Rt+1
i = Rbest −

(
rand4 ×

(
Rbest + Rt

m
)

2
− Rt

m

)
, (6)

where rand4 is a random number between [0, 1], and Rt
m is a random individual in the

population. Finally, the above steps are repeated until the maximum number of iterations
is reached.

3. Proposed PROA
3.1. Poisson-like Randomness Strategy

In the original ROA, a new position was attempted using Equation (1). However,
this attempt is only related to the population individuals and their historical positions;
the search space is limited, and it easily falls into a local optimum. Therefore, this study
introduces a Poisson-like randomness strategy that is obtained by deforming the probability
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density function of the Poisson distribution. The Poisson probability density function
formula is as follows:

P(X = k) =
λk

k!
e−λ, (7)

where k = 0, 1, 2, . . .. Figure 1 shows the probability density function curve for λ ∈ [1, 6].
The horizontal axis is x, and the vertical axis represents the probability density.
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Figure 1. Poisson distribution probability density function.

In this study, we set λ = 6 for two reasons:

1. The slope was gentle, and there was no sudden change in the function value.
2. The peak and surrounding area are close to one side, which is the opposite of the

trend of the change in the strength of the search strategy.

The steps to obtain the two parametric curves of a Poisson-like randomness strategy
are as follows:

1. Horizontally mirror the probability density function curve of λ = 6 in Figure 1 such
that it conforms to the trend of the search strategy strength changes.

2. Parameter curve r1 is obtained by stretching the x-axis according to the maximum
number of iterations of the optimization algorithm.

3. Because the two parameters have opposite trends, 1− r1 is the parameter curve r2.

Considering the maximum number of iterations set to 500 as an example, the two-para-
meter curves are shown in Figure 2. The entire iterative process is divided into three phases:
the yellow area is phase 1, which implies global search; the green area is phase 2, which is
close to the optimal solution; and the blue area is phase 3, which implies local search.
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Finally, two change parameters were used to adjust the position of other individuals
in the population and the optimal position to affect the new position of the attempt. The
formula used is as follows:

Ratt = Rt
r + rt

2 ×
(

Rt
r − Rt

i
)
+ rt

1 ×
(

Rbest − Rt
r
)
, (8)

where Ratt is the new location attempted and rt
1 and rt

2 are the parameter values during the
t-th iteration.

As shown in Figure 2, the new positions that were tried in the global search phase
gradually approached the global optimal solution, and the distance was closest in Phase 2.
However, the new locations that were tried during the local search phase were closer to
other individuals in the population. From the perspective of the overall search process,
Phase 1 enhances the spatial search ability of individual populations. In Phase 3, the
individuals are all close to the global optimum, and each individual increases the diversity
of local search directions by approaching other individuals.

3.2. Enhanced Randomness Strategy

In the original ROA, the SFO strategy was associated with only one individual in
the population, and replacement host diversity was not high. Therefore, this study used
three enhanced randomness strategies to replace the original SFO strategy. The formula
used is as follows:

Rt+1
i = Rt

i + rand5 ×
(

Rt
i −
(

Rt
k + Rt

h
)
/2
)

(9)

Rt+1
i = Rbest + Rt

d + rand6 ×
(

Rt
e − Rt

f

)
(10)

Rt+1
i = rand7 × Rt

i + rand8 ×
(

Rbest − Rt
i
)
, (11)

where Rt
k, Rt

h, Rt
d, Rt

e, and Rt
f are other random individuals in the iterative process and

rand6, rand7, and rand8 are random numbers between [0, 1].
Compared with the original single strategy, the enhanced randomness strategy strength-

ens the connection with other individuals in the population, strengthens the connection
with the optimal individual, and increases the diversity of the replacement hosts.

3.3. Steps to the PROA

In the proposed PROA, the original trial strategy was replaced with a Poisson-like
randomness strategy. Simultaneously, the direction of free travel was extended using an
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augmented randomness strategy. A flowchart is shown in Figure 3, and the pseudocode is
presented in Algorithm 1.

Algorithm 1: Pseudocode for the PROA.

Input: population position Ri(1, 2, . . . , n), the number of iterations max_iter, fitness function f ,
and bound [lb, ub].
Output: best position, best fitness, and fitness history.

1: Initialize the pre-population dataset Rpre;
2: While t < max_iter carry out
3: Amend agent if out of bound [lb, ub];
4: Calculate f

(
Rt

i
)

of each agent;
5: Update Rbest and f

(
Rt

best
)
;

6: For each agent indexed by i carry out

7:
Using Equation (8) to make an experienced attempt Ratt with Poisson-like

distribution;
8: Calculate f (Ratt) and f

(
Rt

i
)
;

9: If f
(

Rt
i
)
> f (Ratt) then

10: Perform host feeding by Equation (2);
11: Else
12: If random(i) = 1 then
13: Using Equation (4) to update the position by WOA policy;
14: If random(i) in [2, 4] then

15:
Using Equations (9)–(11) to update the position with enhanced randomness SFO

policy;
16: End if
17: End if
18: Add current population to Rpre;
19: End for
20: t = t + 1;
21: End while
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4. Performance Comparison under the CEC Benchmark Function
4.1. Experimental Configuration

To examine the convergence speed and robustness of the PROA, we selected 45 bench-
mark functions proposed in the IEEE CEC competition as fitness functions for testing [26]
(refer to the Supplementary Materials for details). In addition, we compared the PROA
with the artificial electric field algorithm (AEFA) [27], white shark optimization algorithm
(WSO) [28], sooty tern optimization algorithm (STOA) [29], squirrel optimization algorithm
(SSA) [30], and the original ROA. In order to ensure the integrity of the six algorithms’
data and to ensure minimum expense, the number of populations is set to 20 and the
maximum number of iterations is set to 500. Each algorithm was run 50 times for this
configuration. In addition, we selected benchmark functions with 12 scalable dimen-
sions for high-dimensional (D = 100/500/1000) testing with the same configuration as the
standard dimensions.

4.2. Comparison of Experimental Results

Because of the plethora of CEC benchmark functions for comparison, we present the
full experimental results in the Supplementary Materials. In Section 4.2.1, Section 4.2.2,
Section 4.2.3, Section 4.2.4, we only present the optimization results of six of the CEC bench-
mark functions. Information on Rosenbrock (F16) [31], Dixon–Price (F17) [32], Rastrigin
(F22) [33], Griewank (F41) [34], Penalized (F43) [35], and Penalized2 (F44) [36] is shown in
Table 1.

Table 1. Part of CEC benchmark functions.

No. Function D 1 Range Formulation

F16 Rosenbrock 30 [−30, 30] f (x) = ∑n−1

i=1
[100

(
xi+1 − x2

i
)2

+ (xi − 1)2]

F17 Dixon–Price 30 [−10, 10] f (x) = (xi − 1)2 +∑n

i=2
i
(
2x2

i − xi−1
)2

F22 Rastrigin 30 [−5.12, 5.12] f (x) = ∑n

i=1
[x2

i − 10 cos(2πxi) + 10]

F41 Griewank 30 [−600, 600] f (x) = 1
4000∑n

i=1
x2

2 −∏n

i=1
cos
(

xi√
i

)
+ 1

F43 Penalized 30 [−50, 50]

f (x) = π
n

{
10 sin2(πy1) +∑n−1

i=1
(yi − 1)2[1 + 10 sin2(πy1)] + (yn − 1)2

}
+

n

∑
i=1

u(xi, 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

u(xi, a, k, m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a
k(−xi − a)m, x < −a

F44 Penalized2 30 [−50, 50] f (x) = 0.1

sin2(πx1) +

n−1

∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)]

+(xn − 1)2[1 + sin2(2πxn)]
}
+

n

∑
i=1

u(xi, 5, 100, 4)

1 Dimension of parameters.

4.2.1. Comparison of Standard Dimension Results

The experimental results for the standard dimensions are listed in Table 2. From the
experimental results, it can be observed that the PROA achieves the best results when opti-
mizing F16, F17, F22, F41, F43, and F44, both in terms of the average result of optimization
and robustness. Compared with the ROA, the average value of the PROA increased by
two orders of magnitude in the experimental results of optimizing F16, F43, and F44, and
the average value also increased by one order of magnitude in the experimental results of
optimizing F44. In terms of robustness, the standard deviation of the PROA was reduced
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to 1% of the ROA in the experimental results of optimizing F16, F17, and F44. In the
experimental results of optimizing F43, it was also reduced to 1/20 of the ROA.

Table 2. Results of solving CEC benchmark functions (standard D).

Function Metric AEFA WSO STOA SSA ROA PROA

F16
Mean 5.45 × 104 1.21 × 105 2.85 × 101 3.23 × 106 1.08 × 100 2.05 × 10−2

Std 1.25 × 105 1.08 × 105 4.08 × 10−1 1.58 × 107 4.18 × 100 5.20 × 10−2

F17
Mean 2.87 × 103 8.46 × 102 6.73 × 10−1 5.63 × 104 3.99 × 10−1 2.49 × 10−1

Std 1.19 × 104 8.98 × 102 4.06 × 10−2 1.02 × 105 2.85 × 10−1 4.18 × 10−3

F22
Mean 1.15 × 100 2.17 × 100 0.00 × 100 7.86 × 100 0.00 × 100 0.00 × 100

Std 2.87 × 100 1.20 × 100 0.00 × 100 1.21 × 101 0.00 × 100 0.00 × 100

F41
Mean 1.66 × 101 7.85 × 100 4.88 × 10−2 1.64 × 101 0.00 × 100 0.00 × 100

Std 5.84 × 100 4.13 × 100 6.15 × 10−2 4.35 × 101 0.00 × 100 0.00 × 100

F43
Mean 2.67 × 101 3.67 × 100 1.52 × 10−1 1.32 × 102 1.69 × 10−4 9.50 × 10−6

Std 9.25 × 100 4.90 × 100 5.98 × 10−2 1.22 × 102 3.80 × 10−4 1.81 × 10−5

F44
Mean 6.25 × 102 1.07 × 103 2.04 × 100 3.04 × 103 6.76 × 10−3 4.68 × 10−5

Std 2.03 × 102 2.72 × 103 2.44 × 10−1 7.28 × 102 1.35 × 10−2 1.55 × 10−4

In terms of the convergence speed, the experimental results are shown in Figures 4–9.
The horizontal axis represents the number of iterations, and the vertical axis represents the
fitness function value. It can be observed from the experimental results that, compared with
the ROA, the PROA achieves the optimal result twice in advance when optimizing F16,
and four times ahead, to obtain the minimum value when optimizing F17, F22, and F41. In
the optimization of F43 and F44, the iterative process was also advanced by one round.
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4.2.2. Comparison of Results under Dimension 100

The experimental results listed in Table 3 are from when the optimization parameter
dimension was 100. From the experimental results, it can be observed that the PROA still
performs well in high dimensions. When optimizing F16, the average result of multiple
optimizations of the PROA is 0.1% of the ROA, and the standard deviation is 1% of the
ROA. However, when optimizing F17, the average result of multiple optimizations is only
1/20 of the ROA. However, its robustness is still 100 times that of the ROA. When the
PROA is optimized with F43 as the objective function, the result is 100 times better than
that of the ROA regardless of whether the mean or the standard deviation of the optimized
results are optimized. When optimizing F44, the result reduces to 0.01% of the ROA result.

Table 3. Results of solving CEC benchmark functions (D = 100).

Function Metric AEFA WSO STOA SSA ROA PROA

F16
Mean 6.68 × 106 1.58 × 106 1.10 × 102 4.17 × 108 1.38 × 101 8.67 × 10−2

Std 2.57 × 106 7.11 × 105 1.46 × 101 3.75 × 108 3.19 × 101 1.80 × 10−1

F17
Mean 1.41 × 106 3.70 × 104 1.42 × 100 3.71 × 106 6.14 × 10−1 2.54 × 10−1

Std 4.84 × 105 2.14 × 104 5.09 × 10−1 2.06 × 106 3.58 × 10−1 6.42 × 10−3

F22
Mean 1.20 × 102 1.88 × 101 4.34 × 10−5 9.55 × 101 0.00 × 100 0.00 × 100

Std 3.22 × 101 4.32 × 100 7.00 × 10−5 3.88 × 101 0.00 × 100 0.00 × 100

F41
Mean 1.26 × 102 6.46 × 101 4.80 × 10−2 3.84 × 102 0.00 × 100 0.00 × 100

Std 1.69 × 101 1.34 × 101 6.57 × 10−2 1.41 × 102 0.00 × 100 0.00 × 100

F43
Mean 2.42 × 102 9.56 × 102 3.96 × 10−1 5.12 × 106 2.70 × 10−4 5.84 × 10−6

Std 6.28 × 102 5.54 × 103 5.02 × 10−1 3.62 × 107 1.43 × 10−3 1.24 × 10−5

F44
Mean 7.87 × 104 1.64 × 105 1.10 × 101 3.28 × 107 1.17 × 10−1 7.19 × 10−5

Std 1.19 × 105 2.59 × 105 7.92 × 10−1 1.12 × 108 5.78 × 10−1 8.77 × 10−5
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From the experimental results in Figures 10–15, it can be observed that the conver-
gence speed of the PROA still has certain advantages when the dimension is 100. The
ROA requires two additional iterations to reach the minimum when optimizing F16 and
F17. When optimizing F22 and F41, five additional iterations were required. Only when
optimizing F43 and F44 is only one additional iteration required to achieve the same results
as the PROA.
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4.2.3. Comparison of Results under Dimension 500

The experimental results listed in Table 4 are from when the number of optimized
parameters was 500. When the PROA optimizes F16, both the mean and standard deviation
of the optimized results are reduced to 0.1% of the ROA. When optimizing F17, the PROA
results were more common, and the results were only reduced by 1/2. When the PROA and
the ROA were optimized for F22 and F41, the same results were achieved. However, better
results were obtained when F43 and F44 were optimized. The mean and standard deviation
of the ROA when optimizing F43 were 4% and 3%, respectively. When optimizing F44, the
PROA achieved 0.1% and the ROA achieved 0.15%, respectively.

Table 4. Results of solving CEC benchmark functions (D = 500).

Function Metric AEFA WSO STOA SSA ROA PROA

F16
Mean 4.94 × 107 2.03 × 107 2.04 × 104 7.24 × 109 1.32 × 102 2.61 × 10−1

Std 7.66 × 106 4.27 × 106 1.87 × 104 2.29 × 108 1.96 × 102 3.29 × 10−1

F17
Mean 4.59 × 107 2.42 × 106 2.74 × 103 8.77 × 108 8.16 × 10−1 3.37 × 10−1

Std 4.95 × 106 6.15 × 105 2.05 × 103 3.49 × 107 3.20 × 10−1 1.81 × 10−1

F22
Mean 1.54 × 103 1.71 × 102 2.72 × 10−2 3.98 × 103 0.00 × 100 0.00 × 100

Std 1.08 × 102 1.71 × 101 2.53 × 10−2 1.02 × 102 0.00 × 100 0.00 × 100

F41
Mean 1.82 × 103 6.01 × 102 2.94 × 10−1 1.39 × 104 0.00 × 100 0.00 × 100

Std 6.10 × 101 5.11 × 101 2.04 × 10−1 2.70 × 102 0.00 × 100 0.00 × 100

F43
Mean 2.75 × 105 2.13 × 105 5.12 × 100 8.25 × 109 1.18 × 10−4 5.00 × 10−6

Std 2.63 × 105 2.15 × 105 4.48 × 100 6.39 × 108 3.04 × 10−4 1.06 × 10−5

F44
Mean 8.40 × 106 4.99 × 106 3.83 × 102 1.51 × 1010 2.98 × 10−1 5.35 × 10−4

Std 3.12 × 106 3.17 × 106 2.87 × 102 9.20 × 108 7.00 × 10−1 1.05 × 10−3

The convergence when the dimension was 500 is shown in Figures 16–21. When
the PROA optimized F16, F22, and F44, compared with the ROA, the optimal result was
achieved by two iterations ahead of time. While optimizing F17 and F41, it was advanced
by five times. When the PROA optimizes F43, the advantage is not obvious, and it only
leads to the iterative process in one round.
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4.2.4. Comparison of Results under Dimension 1000

The experimental results shown in Table 5 are from when the number of optimized
parameters reached 1000. Compared to the ROA, the average optimization result of the
PROA was reduced by three orders of magnitude, and the standard deviation was reduced
by two orders of magnitude when optimizing F16. However, the PROA’s performance in
optimizing F17 was average, the average value only dropped by 1/2, and the standard
deviation was similar to that of the ROA. The comparison results of the PROA and the
ROA when optimizing F22 and F41 were the same as those of the other dimensions. The
PROA obtained better results when F43 and F44 were optimized. In terms of the mean,
they were 1% and 0.1% for the ROA results, respectively, and the robustness reached 1%
for the ROA.

Table 5. Results of solving CEC benchmark functions (D = 1000).

Function Metric AEFA WSO STOA SSA ROA PROA

F16
Mean 8.39 × 107 5.33 × 107 3.09 × 105 1.50 × 1010 1.82 × 102 6.81 × 10−1

Std 8.79 × 106 1.06 × 107 4.38 × 105 2.93 × 108 3.35 × 102 1.09 × 100

F17
Mean 4.24 × 107 1.30 × 107 8.78 × 104 3.63 × 109 9.07 × 10−1 4.89 × 10−1

Std 3.96 × 106 2.49 × 106 8.20 × 104 1.01 × 108 2.27 × 10−1 2.91 × 10−1

F22
Mean 2.66 × 103 3.92 × 102 1.47 × 10−1 8.21 × 103 0.00 × 100 0.00 × 100

Std 1.20 × 102 3.76 × 101 1.08 × 10−1 1.48 × 102 0.00 × 100 0.00 × 100

F41
Mean 8.15 × 103 1.32 × 103 8.81 × 10−1 2.83 × 104 0.00 × 100 0.00 × 100

Std 1.42 × 102 1.48 × 102 4.75 × 10−1 4.13 × 102 0.00 × 100 0.00 × 100

F43
Mean 1.14 × 106 1.13 × 106 3.13 × 102 1.75 × 1010 1.01 × 10−4 2.16 × 10−6

Std 6.52 × 105 1.30 × 106 2.10 × 103 6.93 × 108 1.83 × 10−4 3.84 × 10−6

F44
Mean 2.42 × 107 1.65 × 107 2.72 × 103 3.18 × 1010 2.18 × 10−1 9.81 × 10−4

Std 4.93 × 106 5.46 × 106 2.52 × 103 1.32 × 109 4.93 × 10−1 1.83 × 10−3
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The convergence results for 1000 dimensions are shown in Figures 22–27. From the
experimental results, it can be observed that, compared with the ROA, the PROA obtained
the optimal result by two iterations ahead of time when optimizing F16. Three iterations
were advanced for optimizing F17 and F41. However, the PROA reached its minimum
value with only five iterations when optimizing F22, which was five times that of the
ROA. The PROA achieved average results in optimizing F43 and F44, leading to only
one iteration.
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According to the convergence curve (refer to Supplementary Materials for details),
we calculated the convergence rate statistics, as shown in Figure 28. Each ring represents
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the experimental result of one dimension; green indicates that the PROA has a better
convergence curve than the ROA; light yellow indicates that the convergence speed of
the two algorithms is ambiguous; and orange indicates that the convergence speed of the
PROA is worse than that of the ROA. From the statistical results of the experiment, it can
be observed that the PROA convergence speed changes on the CEC benchmark function
by 67.5–74%. In all dimensions, the rate of slower convergence was 7.5–8%. In addition,
there are cases in which the convergence curves of the ROA and the PROA are entangled
with each other, but the results of high-dimensional tests are much better than those of
standard dimensions.
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The statistical results based on the standard deviation obtained from the experiments
(refer to Supplementary Materials for details) are shown in Figure 29. The horizontal axis
represents the difference between the standard deviations of the PROA and the ROA and
the vertical axis represents the proportion of the difference in the overall results. It can
be observed from the figure that better results than the original ROA were obtained on
approximately 75% of the CEC benchmark function. In the test results for the standard
dimension, the proportion of performance degradation was less than 9%. In addition, the
part whose standard deviation from the ROA was less than 10–6 only accounted for 0–2%.
However, more than 10–6 and less than 10–3 accounted for 8–16%.
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The experimental results show that the PROA can converge faster than the original
ROA in most CEC benchmark functions, whether it is a standard dimension or a high-
dimensional parameter. This is because, in the global search stage, the PROA speeds up
the search speed and improves the search ability through the Poisson-like randomness
strategy, making it more directional than the original ordinary random. Furthermore, the
subsequent augmented randomness strategy enables individuals of the population to reach
more hosts during the free travel phase. The local search ability near the optimal solution
and the overall robustness of the algorithm are enhanced.

5. PROA Applied to Deployment Planning
5.1. Deployment Planning Model

In large-scale measurements, the target to be measured must have many features and a
wide distribution range. One station cannot measure all feature points. Therefore, multiple
stations must be determined for planning and measurement. Adjacent stations require at
least three public transfer points to complete the coordinate system fitting. With an increase
in the number of transfer points, the fitting variance of the coordinate system decreases
continuously, but when the number exceeds seven, the reduction speed of the error slows
down. Therefore, in the actual measurement process, 5–7 public transfer points are selected
for measurement, and the coordinate system is fitted [37]. The following principles should
be followed in the deployment of the measuring instruments [38]:

1. A single station can directly measure most features and cover tooling or ground
transfer points as much as possible. Simultaneously, priority should be given to
selecting transfer points with a large distance and at the edge of the venue.

2. The location of the station should avoid areas with frequent changes in temperature
and airflow. Excessive fluctuations directly affected the measurement accuracy of the
entire measurement field.

3. The accuracy of the measuring instrument is closely related to the measurement
distance. In the establishment of the range, minimizing the distance between the
station and the feature to be measured can reduce the measurement error.

4. In the case of tool occlusion, the sum of the fields of view of all the stations should be
as large as possible and enclose the entire measurement space.

Based on these principles, it is necessary to first set the planning range of the station.
For the target to be measured, the side of the bounding box is the limit planning range,
and there is a risk of bumping parts into the arrangement of the measuring equipment.
Therefore, the bounding box is first enlarged by bzoom_in, and then the side is divided into k
areas, where q = bk/4c, p = dk/4e. As shown in Figure 30, the translucent blue area is the
bounding box of the target to be measured, and the yellow translucent area is the enlarged
bounding box based on the original bounding box, which is also the definition domain of
the measurement device.
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Next, we converted the principles that need to be followed for site deployment into a
mathematical model. Station deployment has the following constraints:

1. Between two adjacent stations, it can be observed that the number of public transfer
points on the target to be tested cannot be less than c1, that is, the constraint C1(x) ≥ c1.

2. The number of public transfer points on the tooling that can be observed between
two adjacent stations cannot be less than c2, that is, constraint C2(x) ≥ c2.

3. The number of public transfer points on the ground between two adjacent stations
cannot be less than c3, that is, the constraint C3(x) ≥ c3.

4. The number of reference points that can be observed from all stations should account
for above c4 of the total number of key points, that is, the constraint C4(x) ≥ c4.

Here, c1, c2 and c3 are integers and c4 is a decimal in the interval [0, 1]. C1(x), C2(x),
C3(x), and C4(x) are constraint functions. All of the constraints filter the visible part of the
object under test using a “hidden” point removal operator [39]. The constraint calculation
formula is as follows:

C(x) =
{

c− C(x), C(x) < c
0, C(x) ≥ c

, (12)

where c is the constraint value and C(x) is the constraint function.
Finally, the objective function of the deployment model is set. The ultimate goal of this

placement model is to minimize the invisible area when it is obscured by tooling. Because
the model has multiple constraints, we introduced a large penalty factor σ according to the
characteristics of the outlier penalty function. The objective function is then expressed as:

F(x) = 1−Vratio + σ×∑4

i=1
C2

i (x) (13)

Vratio = ∪k
j=1Vj/Vtotal (14)

Here, Vj is the visible point cloud seen by the j-th station, Vratio is the overall point
cloud of the object to be tested, Vtotal is the ratio of the visible area to the total area, and Ci
is the station constraint.

5.2. Simulation Results and 3D Visualization

To verify the feasibility of the station deployment model and the stability of acces-
sibility, the text runs 30 times with the ROA and the PROA as the optimizers under the
configuration in Table 6. In addition, in the simulation experiment, the number of target
point clouds to be measured, tooling point clouds, and ground point clouds were 51,433,
30,100, and 6847, respectively. Figure 31 shows the average historical results of the max-
imum visible area of the deployment plan, where the horizontal axis is the number of
iterations and the vertical axis is the area ratio of the visible area. The statistical results of
all of the experiments are shown in Table 7.

Table 6. Simulation configuration.

No. Parameter Symbol Value

1 Key point (xyz) /

220, 24, −640
−230, 24, −640
19, 62, −590
−19, 60, −290

2 Number of laser trackers k 6
3 Bounding box magnification factor bzoom_in 0.2
4 Number of populations NP 20
5 Maximum number of iterations max_iter 500

6 The number of public transfer points on the target to be tested can be seen between
two adjacent stations c1 2
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Table 6. Cont.

No. Parameter Symbol Value

7 The number of public transfer points on the tooling can be seen between
two adjacent stations c2 1

8 The number of public transfer points seen on the ground between two adjacent stations c3 2
9 The proportion of the number of key points that can be seen in all stations c4 0.75
10 Penalty factor σ 106
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Table 7. Deployment result (30 times).

Algorithm Min Max Mean Std

ROA 64.95% 80.18% 75.82% 0.0350
PROA 73.51% 83.02% 79.63% 0.0225

From the experimental results shown in Figure 31, it can be observed that, from the
10th iteration, the ROA convergence speed becomes slower. At the 100th iteration, the
maximum visible area obtained by the ROA optimization was 64.95%, whereas the PROA
reached 81.7% after rapid convergence. In the subsequent iteration interval of 100–500, the
ROA optimization trend tends to be stable. The PROA increased to 83.02%, an increase of
1.32% within this range. When the final iteration completed the entire optimization process,
the performance of the PROA was 18.07% higher than that of the ROA.

Conversely, as shown in the statistical results in Table 7, the results of the maximum
visible area obtained by the PROA optimization are better than the ROA in three aspects:
maximum value, minimum value, and mean value. In terms of robustness, the PROA
stability was improved by 1/3. The simulation experiment verifies that the PROA is
superior to the ROA, in terms of both convergence speed and robustness.

Finally, we used PyVista to render the station’s historical and optimal positions in a
3D space, as shown in Figure 32. The light blue grid is the ground, translucent brown is
the station definition domain, dark blue is tooling, red sphere is the key point, green is the
visible area, orange is the invisible area, black dots are the historical positions of population
exploration during the optimization process, and the red point marked with a red box is
the optimal position of the deployment plan after the iteration has been completed.
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6. Conclusions

In this paper, we propose the PROA. The algorithm introduces a Poisson-like random-
ness strategy to enhance the global search ability of individual populations. Simultaneously,
an enhanced randomness strategy is introduced to improve the local search ability of the
population and the robustness of the algorithm. The ROA and PROA were tested with
different dimensions (D = standard/100/500/1000) using the CEC benchmark function.
The convergence curve results of 67.5–74% of the PROA are better than those of the ROA,
and the robustness results of 66.67–75% are better than those of ROA. This study establishes
a deployment optimization model for a large-scale measurement field layout planning
problem. The PROA was applied to the deployment planning model, and the performance
of PROA and the feasibility of the model were verified through simulation experiments.
Compared to the ROA, the performance improved by 18.07%, and the maximum viewing
area of the PROA can reach 83.02%. It improves the computational efficiency and calculates
the overall accessibility compared to traditional station planning methods. Next, we will
study the deployment optimization model more deeply from the aspects of cooperation
target point measurement accuracy and station transfer accuracy and explore more complex
location configuration modes to solve the booth optimization problem [40].
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