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Abstract: This paper considers the main challenges for all components engaged in the driving task
suggested by the automation of road vehicles or autonomous cars. Numerous autonomous vehicle
developers often invest an important amount of time and effort in fine-tuning and measuring the
route tracking to obtain reliable tracking performance over a wide range of autonomous vehicle
speed and road curvature diversities. However, a number of automated vehicles were not considered
for fault-tolerant trajectory tracking methods. Motivated by this, the current research study of the
Differential Lyapunov Stochastic and Decision Defect Tree Learning (DLS-DFTL) method is proposed
to handle fault detection and course tracking for autonomous vehicle problems. Initially, Differential
Lyapunov Stochastic Optimal Control (SOC) with customizable Z-matrices is to precisely design
the path tracking for a particular target vehicle while successfully managing the noise and fault
issues that arise from the localization and path planning. With the autonomous vehicle’s low ceilings,
a recommendation trajectory generation model is created to support such a safety justification.
Then, to detect an unexpected deviation caused by a fault, a fault detection technique known as
Decision Fault Tree Learning (DFTL) is built. The DLS-DFTL method can be used to find and locate
problems in expansive, intricate communication networks. We conducted various tests and showed
the applicability of DFTL. By offering some analysis of the experimental outcomes, the suggested
method produces significant accuracy. In addition to a thorough study that compares the results to
state-of-the-art techniques, simulation was also used to quantify the rate and time of defect detection.
The experimental result shows that the proposed DLS-DFTL enhances the fault detection rate (38%),
reduces the loss rate (14%), and has a faster fault detection time (24%) than the state of art methods.

Keywords: optimal control; differential Lyapunov; fault detection; path tracking; autonomous
vehicles; machine learning; decision trees

1. Introduction

Automation is important growth in the automobile industry. Autonomous vehicles
(AVs) with superior driver assistance systems offer important benefits to drivers, giving
novel transportation use scenarios and implementations. The five basic capabilities, such as
localization, perception, planning, vehicle control, and system management, are considered
for AVs to drive without human participation. AVs have an electronic system that performs
the driving operations. AVs have vital features for the security of current vehicles [1]. With
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increasing demands for secure and quick transportation services for life-saving medical
devices, there is a growing emphasis on safety, reliability, sustainability, and steadfastness,
which makes it an extremely analytical and active study area among control communities.

A neural estimator-based fault tolerant control approach was developed to examine
the post-fault and enhance system reliability for nonlinear robotic systems. In order to
preserve the system’s stability, sliding mode control was employed through post-fault
dynamics. Next, a neural network was applied to regenerate the revamping fault rate and
account for the impact of the fault on the functionality of the entire system. Lastly, the
Lyapunov approach was to achieve the control law and neural network learning algorithms.
In this way, it was promised that the neural evaluator would match the rate of change in
terms of the fault and guarantee the tracking control. Since the network modeling capability,
it was claimed that a smooth time function was damaged, compromising the accuracy of
the fault modeling and the fault tolerance [2].

A fuzzy control with unknown timing and actuator malfunction was proposed to
address noise and fault before fault detection. Via sector nonlinearity, Takagi–Sugeno fuzzy
model was created to assess the precariousness due to the larger variance in vehicle mass.
In addition, a strong controller technique was introduced to solve network-influenced
delays and prevent packet failures. A fault-tolerant controller was also created to lessen the
actuator failure on the active steering systems of vehicles. The stability was improved by
the Lyapunov stability theory. Despite improvements in stability and fault tolerance for car
active steering systems, time spent on fault detection was unfocused [3].

The analysis of curved path tracking utilizing the Kalman filter and trigonometric
function improved tracking performance [4]. On the other hand, a linear time-varying
model was created to enhance the vehicle’s stability [5]. A study of path control techniques
for autonomous ground vehicles was examined [6]. Additionally, model predictive control
(MPC) was introduced to precisely control vehicle constraints and address the conflict that
can arise between tracking and safety measures. The transformation technique used in
connected and autonomous vehicles (CAVs) has the potential to reduce accidents involving
more cars, enhance the quality of life, and increase the efficiency of transportation networks
as a whole [7].

The merits and downsides of the most recent developments in the field of CAVs
were thoroughly examined in [8]. A few of the demands, possibilities, and long-term
prospects associated with CAVs were examined in [9]. Fault incidence, however, was not
covered. Multiple positioning modules for automated cars were shown in [10] via residue.
Despite improvements in fault detection, there was no distinction between malfunctioning
and normal situations. The linear quadratic regulator technique was used to address
this problem, which in turn addressed stability under both abnormal and typical traffic
patterns [11].

1.1. Motivation

Path tracking control enables autonomous vehicles to move in a precise and secure
manner and to behave safely in all driving situations. However, the relative research on
the autonomous vehicle for route tracking and fault detection is quite limited due to the
strong network modeling ability and fault detection rate due to constrained localization
and path planning. The goal of this study is to address the issue of fault detection and
course tracking for autonomous vehicles. The aforementioned concerns prompted the
current study. Motivated by the above references, we focus on the Differential Lyapunov
Stochastic and Decision Fault Tree Learning approach for autonomous vehicles, taking
into account positional factors, complex environmental factors, day and nighttime lighting
patterns, high fault detection rates, and time constraints.
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1.2. Contribution in Paper

The following are some of the contributions made by this paper:

(1) For path tracking with accurate vehicle state using a Luenberger observer and optimal
steering using a ceaseless linear model, a Differential Lyapunov Stochastic Optimal
Control (SOC) with customizable Z-matrices is given.

(2) To increase the fault detection rate with the least amount of time required, decision
fault tree learning is employed to acquire the unexpected deviation caused by the fault.

(3) Simulations and field tests are used to validate the proposed DLS-DFTL method and
the Decision Fault Tree Autonomous Vehicle Fault Detection algorithm.

1.3. Structure of the Paper

In conclusion, this study establishes an unanticipated deviation caused by fault while
simultaneously analyzing the optimal control and fault detection of the vehicle. This paper
is organized as follows: The related works in the areas of autonomous vehicle path tracking
and fault detection are presented in Section 2. The Differential Lyapunov Stochastic and
Decision Fault Tree Learning (DLS-DFTL) method’s design is discussed in Section 3. The
performance measure is covered in detail in Section 4 with the help of a table and graph
structure. Finally, Section 5 concludes the essay.

2. Related Works

The trend in autonomous vehicle technology has fast changed to more advanced
strategies with the development and upswing witnessed in deep learning-based techniques.
In particular, tracking and defect detection for autonomous self-driving systems have
advanced quickly. A deep learning model was developed to address the issue of local
position estimation in autonomous vehicles [12]. Fusion algorithms were used to study
another strategy for handling faults during bad weather [13]. Linear matrix inequality
criteria are used to solve problems with uncertainties and disturbances [14]. An analysis of
autonomous vehicles was published [15].

In order to ensure safe driving and handling limits utilizing the G-G diagram (i.e.,
grip during braking and acceleration), a route-tracking controller for autonomous vehi-
cles was created [16]. Phase Portrait was used to obtain the G-G diagram, and valida-
tion was then carried out using an FSAE racing car to guarantee the effectiveness of the
suggested controller.

Additionally, compared to the standard driving model, errors are found to be much
more susceptible due to the differing dynamics and characteristics of autonomous vehicles.
This problem was addressed by first modifying the Stanley controller and then integrating
it with an improved particle swarm model, therefore reducing the total lateral error rate [17].
In order to reduce the path tracking error, a navigation method based on the Differential
Global Positioning System (DGPS) was proposed in [18]. A low-cost nonlinear cycling
vehicle model was created to prevent rollover mishaps caused by trajectory tracking
control models [19]. It was suggested to conduct a broad inquiry for an autonomous
navigation system using deterministic and non-deterministic algorithms [20]. Finally, an
external navigation system was combined with an indirect Kalman filter during field
road drives in order to accomplish effective automated driving [21]. Novel fault-tolerant,
finite-time, and chatter-free approaches were investigated to enhance convergence and
stability. However, the fault detection rate was not measured [22]. A novel active fault
tolerant control scheme was developed for handling component/actuator faults [1]. A new
adaptive event-triggered mechanism was discussed for obtaining a suitable compromise
between control performance and real-time transmission consumption [23]. The Lyapunov
stability theory was used to minimize the loss rate. However, the fault detection time was
enhanced [24,25].

Motivated by the aforementioned research, the Differential Lyapunov Stochastic and
Decision Defect Tree Learning (DLS-DFTL) method was used in this paper to construct an
effective path-tracking and fault-detection model for autonomous vehicles.
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3. Using Decision Fault Tree Learning and Differential Lyapunov Stochastic Analysis

For its safe and reliable operation, a system that is expressly regarded as safety-critical
depends heavily on fast processing equipment with complex control mechanisms. If an
early fault in this system remains unfixed, it could lead to system collapse, which could
cause harm to people, economic hardship, or even an impact on the entire environment.

In order to create a path-tracking model for a given target vehicle, a Differential
Lyapunov Stochastic Optimal Control (SOC) with movable Z-matrices is provided in
this study. Additionally, the method was created in a way that deals with noise and
addresses the problems with faults that arise from localization and path planning. In order
to support the safety arguments with realistic autonomous vehicle ceilings, a suggested
trajectory model is presented for this purpose. The Decision Fault Tree Learning (DFTL)
fault detection algorithm was then provided to find an unexpected deviation caused by
a fault.

The suggested Differential Lyapunov Stochastic and Decision Fault Tree Learning
(DLS-DFTL) approach for rapid and precise fault identification is shown schematically
in Figure 1.

Figure 1. Diagram of the DLS-DFTL approach (Differential Lyapunov Stochastic and Decision Fault
Tree Learning).

The path tracking for autonomous vehicles is divided into two sections, as shown
in the above diagram: localization, Differential Lyapunov Stochastic Optimal Control
(SOC) path planning with configurable Z-matrices, and Decision Fault Tree Learning fault
detection (DFTL). The following sections contain a detailed discussion of the two models
mentioned above.

3.1. Adjustable Z-Matrices in Differential Lyapunov Stochastic Optimal Control (SOC)

The figure depicts the suggested Differential Lyapunov Stochastic Optimal Control
(SOC) for path tracking with movable Z-matrices. By using the Luenberger observer, the
precise status of the vehicle is assessed after acquiring the path information. The best
steering angle is then determined using a perpetual linear model. A precise, powerful
vehicle model is necessary to enhance the performance of the Luenberger observer and the
unceasing linear model.

With the aid of an accurate power vehicle model, the Luenberger observer is plotted
while correlating it with sensor noise, and a linear model with a movable Z-matrix is
created. Based on dynamic elements related to the vehicle’s speed, a customizable Z-matrix
is shown. In this way, the noise, accuracy, and fault tolerance situations in autonomous
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vehicle localization and path planning are manageable. Figure 2 depicts the Differential
Lyapunov SOC with reversible Z-matrices in schematic form.

Figure 2. Differential Lyapunov SOC schematic with customizable Z-matrices.

The function used to steer a road vehicle is designed to give a ceaseless linear model
the best possible control, and it is formulated as follows.

a = Pa + QIn + Rj (1)

b = Sa + Ti + Uj (2)

In Equations (1) and (2) above, “a” is the array of “n” state variables, “In” is the
the control input, “b” is the control output, and “P” through “Q” are the matrices with
infinitely many coefficients. Here, the value of “In” is determinedn to forecast output to
“b(t)” in order to reach a target “b des (t)” during a specific time period; “t” remains the
control objective. Preliminary conditions are “a 0” at time “t = 0”, and an input I and a
significance noise factor “j” are required for the endless linear model. The time response is
then mathematically stated as follows.

a(t) = STta0 +
∫ t

0
ST[m∗m]QIndm +

∫ t

0
ST[m∗m]Rjdm (3)

According to Equation (3) above, “ST” is the state transition matrix at time “t”, and
“STt” is the state transition matrix at time “m*m”. Each coefficient in the state transition
matrix represents a portion of the state variable “x” at time “t” that is linearly connected
to the state variable “y” at time zero and was differentiated with “dm”. By combining
Equations (2) and (3) above, the output response is as follows:

b(t) = S ∗ STta0 + S
[∫ t

0
ST[m∗m]

]
[QIn + Rj] (4)

Next, a Luenberger observer was created, which estimates the states of an observable
system while taking error and noise into account during localization and planning (i.e.,
autonomous vehicle path tracking). The aforementioned endless linear model and the
Luenberger observer use discrete input, discrete output, and discrete state space isolate
and address the problems with error and noise that impact localization and planning.
Additionally, because the suggested method is a dynamic model, it is prospective even
with changes in vehicle requirements that have been seen.
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In this way, the tracking issue and the noise that are present during localization are
also effectively resolved. This is mathematically expressed as follows:

SV′(k + 1) = STdSV′(k) + Ind In′(k) + Od
[
b(k)− b′(k)

]
(5)

According to Equation (5) above, “SV” (k) refers to the “k” evaluated state vector for
the “kth” input vector “In” “(k)”, and the “kth” evaluated output vector “b” “(k)” through
discrete state matrix “STd”; discrete input matrix “Ind”; and discrete observer matrix “Od”,
respectively. Last but not least, the error rate is mathematically represented as follows:

e(k + 1) = (STd −OdOMd) ∗ e(k) (6)

According to Equation (6) above, the term “e(k)” is the “kth” error vector for the
appropriate output matrix “OMd”. The error, in this case, coincides with zero when “ST-O-
OM” has eigenvalues that are closer to “1”. After examining the tracking characteristics,
a configurable Z-matrix was used to determine the relevant distance. The changeable
Z-matrix, which may be mathematically stated as follows, gives a tracking property for
various vehicle speeds and offers a modest ceiling for the autonomous vehicle without the
need for tuning.

Z = OM =
(
omij

)
, where omij ≤ 0 (7)

The last step was to use a Lyapunov function as a trajectory-tracking function that
produces a steady advancement in relation to an equilibrium point. The trajectory func-
tion is a Lyapunov with movable Z matrices for a specific target vehicle according to
the suggestion trajectory generation model. It is possible to optimize the trajectory by
choosing Lyapunov with changeable Z-matrices appropriately. The following is how this is
expressed mathematically:

L′(SVn+1) = minL[ f (SVn, an)] (8)

The best action “an” from the starting state (i.e., source state) to the equilibrium point
was chosen using the function “L” () and state vector “SVn” from Equation (8) above. The
following is a list of the Differential Lyapunov Stochastic Optimal Control Localization and
Path Tracking’s pseudo code representations as shown in Algorithm 1.

Algorithm 1. Path tracking and Differential Lyapunov Stochastic Optimal Control Localization

Input: control input “In = VID, VPosx, VPosy, Temp, FSpray”,

Output: Dependable and precise route tracking

Step 1: Initialize ceaseless coefficients “P, Q, R, S, T, U, V”;
Step 2: Begin;
Step 3: For each control input “i”;
Step 4: Evaluate array of “n” state variable using Equation (1);
Step 5: Evaluate control output using Equation (2);
Step 6: Evaluate ceaseless linear time response using Equation (3);
Step 7: Evaluate output response using Equation (4);
Step 8: Evaluate state vector for tracking using Equation (5);
Step 9: Obtain the error rate using Equation (6);
Step 10: Produce adjustable Z-matrix using Equation (7);
Step 11: Evaluate Lyapunov function for path tracking using Equation (8);
Step 12: End for;
Step 13: End.

Two different phases are necessary to provide reliable and accurate path tracking, as
stated in the method above. The algorithm takes into account the vehicle ID, the vehicle’s
horizontal position, and the vehicle’s vertical position, using a never-ending linear model
and tracking dynamics with changeable Z-matrices. State space and error are first seen
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using the Luenberger observer. Next, the error rate is reduced with the changeable Z matrix
values, allowing for effective path tracking.

3.2. Decision Fault Tree Learning (DFTL)

Decision Fault Tree Learning is used to detect the presence of any unexpected deviation
caused by a fault with the consequent optimal control localization and path tracking (DFTL).
Figure 3 depicts the DFTL model’s schematic view.

Figure 3. Representational view of DFTL model.

The training data for autonomous path tracking and fault detection consist of “X,
Y, and W”, as shown in the above image. Here, “X” stands for the payload set and is
mathematically represented as follows.

X = In = {x1, x2, . . . , xn} (9)

The payload set for each autonomous vehicle includes, according to Equation (9), the
vehicle ID (VID), vehicle horizontal position (VPos x), vehicle vertical position (VPos y),
sunset (SSet), and daylight (DLight), in that order. The control inputs are obtained the same
regardless of the number of cars. Next, “Y” is the outcome value determining whether
a defect was discovered or not, “Y0,1”. Finally, “W” is the weight of “n” control input
training data and is shown as follows.

W = {w1, w2, . . . , wn} (10)

The decision tree is claimed to have been created using the weighted control input
values that were previously assumed. Then, it chooses a random car from among all of
them. Finally, it divides the control input training data into “Vl” and “Vr” and assesses
information gain “IG” for developing a decision tree, which is stated as follows.

∆IG = IG(Vn)−
Vl
Vn

IG(Vl)−
Vr

Vn
IG(Vr) (11)

In Equation (11), “Vl” denotes the value of the left child in “Vn”, and “Vr” denotes the
value of the right child in “Vn”. Since the information gain value for factors such as sunset
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and sunshine are measured separately, the left and right children are extended accordingly.
The evaluation of “IG(V)” follows, as shown below.

IG(V) = 1−∑i∈V Wi/ ∑i∈V Wi (12)

The distance between two points (VPos x, VPos y) is measured for obtaining diver-
gences using Bregman and is mathematically represented as follows. This is performed
with the help of information gain value.

DF
(
VPosx, VPosy

)
= F(VPosx)− F

(
VPosy

)
(13)

The diagnostic rate for finding flaws is mathematically expressed as follows using the
obtained divergences.

drt = ∑yi 6=y′i
Wi/ ∑i=1,2,...,n Wi (14)

The number of vehicles taken into account for simulation in the communication
network is the denominator in Equation (13), and the numerator is determined depending
on the performance of the vehicle in the communication network. The numerator is the
number of defective vehicles in the communication network if the result of the network is
“GOOD”. The number of regular cars in the communication network is represented by the
numerator if the results of the communication network are “BAD”.

The following provides the Decision Defect Tree Learning (DFTL) pseudo code repre-
sentation for early autonomous vehicle fault detection as depicted in Algorithm 2.

Algorithm 2. Autonomous Vehicle Fault Detection Using a Decision Fault Tree

Input: Input “In = VID, VPosx, VPosy, SSet, DLigh”

Output: Early fault detection

Step 1: Begin;
Step 2: For each Input “In”;
Step 3: Acquire payload data and weight using Equations (9) and (10);
Step 4: Measure information gain for each vehicle using Equation (11);
Step 5: Measure distance between two consecutive points (i.e., VPosx, VPosy) using Equation (13);
Step 6: Evaluate diagnostic rate for identifying faults using Equation (14);
Step 7: Return (number of faulty vehicles “ f v”, number of normal vehicles “nv”);
Step 8: End for;
Step 9: End.

As stated in the aforementioned Decision Fault Tree Autonomous Vehicle Fault Detec-
tion algorithm, the goal remains in detecting an unexpected deviation caused by fault using
a Bregman Divergent Decision Tree and control input (i.e., vehicle ID, vehicle horizontal
position, vehicle vertical position, sunset, and daylight). Prior to creating a decision tree
based on the control input values, information gain is first measured. The distance between
each vehicle is then determined for two distinct coordinates, i.e., vehicle horizontal position
and vehicle vertical position, using Bregman Divergence. Finally, the diagnostic rate is
used to classify defective and healthy automobiles.

4. Performance Evaluation

The performance analysis of the Differential Lyapunov Stochastic and Decision Fault
Tree Learning (DLS-DFTL), as well as the currently used neural estimator-based fault-
tolerant control [2] and fuzzy control uncertain time-delay active steering [3], are shown
in this part. When the number of test datasets is varied, the fault detection rate, fault
detection time, and test loss for various cars are measured using the DLS-DFTL and two
current methods [2,3] for comparison. By using the TME Motorway Dataset and the Python
programming language, the analysis is carried out [22].
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The dataset used to benchmark DLS-DFTL was acquired utilizing the BRAiVE test ve-
hicle in Northern Italy in December 2011 in collaboration with VisLab (University of Parma,
Italy). The “TME Motorway Dataset” was made up of an image acquisition process that
includes stereo; 20 Hz frequency2; 1024 × 768 grayscale lossless compressed images, with
Bayer coded color information3 and a 32-degree horizontal field of view; an ego-motion
estimate (a confidential computing method); and vehicle annotation and classification
produced by a laser scanner.

The data shown here are time-stamped and consist of 28 clips that were chosen out of
a total of about 27 min of acquisition. This selection procedure takes into account various
traffic patterns, lane configurations, degree of road curvature, and lighting. In addition, the
dataset has been divided into two separate subsets based on the type of lighting, including
daylight and sunset.

4.1. Scenario 1: Performance Evaluation of Defect Detection Rate

The defect detection rate is the first important factor for tracking autonomous vehicles.
Here, the term “fault detection rate” refers to the monitoring of an autonomous vehicle and
the measurement of the fault detection rate in the event that the path being tracked has
a fault. Here, the simulation’s driverless vehicle becomes transformed into frames. The
following is how this is mathematically stated.

FDrate = ∑n
i=1

FF
Fact
∗ 100 (15)

The fault detection rate, or “FDrate”, is calculated using the number of defective
frames found during testing, or “FF”, and the actual number of faulty frames, or “Fact”, as
shown in Equation (15) above. It is measured in percentage (%) terms. The fault detection
rate for three approaches, including DLS-DFTL and neural estimator-based fault tolerant
control [2], is listed in Table 1 below, active steering with unpredictable time delays and
fuzzy control [3].

Table 1. Comparison of the rates of fault detection using various techniques.

Vehicles

Fault Detection Rate (%)

DLS-DFTL Neural Estimator-Based
Fault Tolerant Control

Fuzzy Control Uncertain
Time-Delay Active Steering

15 80 60 40
30 82.55 63.55 50.35
45 85.15 70.15 55.15
60 90.35 73.35 60.15
75 85.25 70.25 58.35
90 82.15 68.55 55.15
105 84.35 70.35 60.25
120 87.15 72.55 63.15
135 90.15 75 65
150 88.25 72.15 62.15

The defect detection rate in relation to 250 different frames is shown in Figure 4 above.
The horizontal axis in the figure denotes the 25 frames or less, and the vertical axis is the
defect detection rate expressed as a percentage (%). The defect detection rate is not directly
or inversely related to the frames taken into account for simulation, according to the figure.
This is because different movies were extracted at various points in time, and when those
videos were translated into frames, the problem that was found also varied. As a result, as
the number of frames increases, the defect detection rate neither increases nor decreases.
Let us take a hypothetical situation where “5” autonomous vehicles are used to track
paths and identify faults. Each autonomous vehicle is divided into five frames, making a
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total of twenty-five frames available for simulation. In the aforementioned scenario, “3”
autonomous vehicles were found to be defective.

Figure 4. Visualization of the fault detection rate.

The results of simulations for 25 frames indicate that while there were “5” total
problematic frames observed, “4” faulty frames were discovered using DLS-DFTL, “3”
faulty frames were discovered using [2], and “2” faulty frames were discovered using [3].
From these findings, it can be concluded that DLS-DFTL has a comparative advantage
over [2,3] in terms of defect detection rate. Due to the use of the Differential Lyapunov
Stochastic Optimal Control (SOC) with the Variable Z-Matrix model, this has occurred.
This model’s application for path tracking resulted in the calculation of the ideal steering
angle using a continuous linear model. Additionally, the customizable Z-matrix is built
around dynamic elements that depend on the vehicle’s speed. With this, it is discovered
that the fault detection rate using DLS-DFTL is significantly better than the 23% and 52%
rates using [2,3].

4.2. Scenario 2: Analysis of Fault Detection Time Performance

The defect detection time is the second important statistic for path tracking and fault
detection in autonomous vehicles. Early detection of malfunctioning autonomous vehicles
is made easier by reliable tracking performance. The measurement of fault detection time
is provided below.

FDtime = ∑n
i=1 Fi ∗ Time [FD] (16)

According to Equation (16) above, the fault detection time (FDtime) is calculated based
on the frames that are taken into account during simulation (Fi) and the amount of time
needed to identify a malfunctioning autonomous vehicle (FDtime). It is quantified in
milliseconds (ms). The fault detection times for three different methods—DLS-DFTL,
neural estimator-based fault tolerant control [2], and fuzzy control uncertain time-delay
active steering [3]—are listed in Table 2 below.
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Table 2. Fault detection time comparison for several techniques.

Frames
Fault Detection Time (%)

DLS-DFTL Neural Estimator-Based
Fault Tolerant Control

Fuzzy Control Uncertain
Time-Delay Active Steering

25 3.375 4.625 5.375
50 5.135 7.125 8.135
75 6.215 9.355 12.355
100 8.535 12.515 15.135
125 10.125 14.355 20.135
150 11.535 17.135 21.325
175 13.325 21.235 25.535
200 18.135 25.535 28.125
225 21.225 30.125 32.355
250 24.325 34.325 38.525

The three methods—DLS-DFTL, neural estimator-based fault tolerant control [2], and
fuzzy control uncertain time-delay active steering [3]—are shown in Figure 5 above in
terms of the time it takes to detect faults. The vertical axis depicts the fault detection time,
with the horizontal axis showing the frames used for path tracking and defect detection for
autonomous vehicles. The fault detection time is determined to be exactly related to the
simulation frames used, according to the figure. Therefore, when the number of films used
for simulation increases, the frames also increase, and faults may vary depending on the
path being tracked, which inevitably lengthens the time it takes to discover faults.

Figure 5. Visualization of the fault detection time.

However, simulations with 25 frames revealed that the fault detection time for DLS-
DFTL was 3.375 ms, 4.625 ms for [2], and 5.357 ms for [3]. According to the simulation
results, implementing DLS-DFTL is observed to reduce the fault detection time when com-
pared to [2,3]. The use of the Differential Lyapunov Stochastic Optimal Control Localization
and Path Tracking method is what caused the improvement. The endless linear model,
with which the state space and error were significantly observed, is the first model to which
this technique is applied in order to track an exact path. The reported error rate was then
decreased by utilizing configurable Z-matrices, allowing for considerable path tracking
and reducing the fault detection time by 31% and 16%, respectively, in comparison to [2,3].

4.3. Scenario 3: Loss Rate of Performance

The loss rate is the final parameter used in the path tracking and defect detection of
autonomous vehicles. The loss rate is the percentage of times that the path tracking and
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fault detection processes miss the malfunctioning autonomous vehicle. The loss rate is
calculated as shown below.

Lr = ∑n
i=1

FMO
Fi
∗ 100 (17)

Based on the total number of frames taken into account for the simulation (Fi) and
the missed-out malfunctioning autonomous vehicle’s frame (FMO), the loss rate (Lr) is
calculated using Equation (17) above. It is measured in percentage (%) terms. The loss rate
for each of the three methods—DLS-DFTL, neural estimator-based fault tolerant control [2],
and fuzzy control uncertain time-delay active steering [3]—is listed in Table 3 below.

Table 3. Loss rate comparison between different methods.

Frames
Loss Rate (%)

DLS-DFTL Neural Estimator-Based
Fault Tolerant Control

Fuzzy Control Uncertain
Time-Delay Active Steering

25 8 12 16
50 9.55 12.85 17.85
75 9.85 13 18
100 10.25 13.55 18.25
125 10.55 14 18.55
150 11 14.35 19
175 11.35 14.85 20.15
200 11.85 15 20.25
225 12 16.15 21
250 12.15 16.35 22.55

The loss rate for three distinct approaches is shown in Figure 6 above. The chart
suggests that increasing the frames causes the loss rate to increase significantly. The loss
rate in this context means that the malfunctioning autonomous vehicle went unnoticed.
If there are fewer defective autonomous vehicles that go unnoticed, tracking accuracy
will not be as good. Additionally, the figure shows that raising the frame count likewise
raises the loss rate. However, when compared to [2,3], a comparative study carried out
through simulations demonstrates better results when employing DLS-DFTL. In other
words, simulations with 25 frames reveal that 85 use DLS-DFTL, while 12% and 16%,
respectively, use [2,3].

Figure 6. Loss rate in graphical representation rorm.



Entropy 2023, 25, 443 13 of 15

Due to the implementation of the Decision Fault Tree Autonomous Vehicle Fault
Detection algorithm, the loss rate is said to be decreased when utilizing DLS-DFTL. This
method takes into account three different variables. First, information on the anonymous
vehicle’s horizontal and vertical positions, as well as the time of day, sunset, and daylight,
was used to inform the decision tree. Bregman was then used to calculate the distance
between each vehicle for two distinct coordinates, i.e., vehicle horizontal position and
vehicle vertical position, and finally, the diagnostic rate was used to distinguish between
the faulty and normal autonomous vehicles.

5. Discussion

Though there are numerous talented approaches for tracking control of fault-tolerant
methods in the literature, there is still room for the development of existing methods. The
aforementioned concerns have prompted the current study. Furthermore, the majority of
tracking control methods have important flaws that make their real-world implementation
challenging. Hence, this study proposes Differential Lyapunov Stochastic and Decision
Fault Tree Learning (DLS-DFTL) for accurate path tracking. Differential Lyapunov Stochas-
tic Optimal Control Localization was utilized to minimize fault detection time via movable
Z-matrix. Decision Fault Tree Learning (DFTL) was employed to identify unanticipated
deviation caused by the fault. Bregman Divergence was applied to measure distance among
every vehicle for two distinct coordinates. In this way, the diagnostic rate identifies faults
with lower latency.

Because of their advantages, such as guaranteed stability, ease of implementation,
higher fault detection rate, lower fault detection time, and loss, the current investigation
was prompted by this concern. It was revealed during numerical results that the proposed
control technique is suitable for tracking control systems. This study compared the pro-
posed DLS-DFTL with the existing neural estimator-based fault-tolerant control [2] and
fuzzy control uncertain time-delay active steering [3] using TME Motorway Dataset based
on various parameters, such as fault detection rate, fault detection time, and loss rate. The
current results confirm that the proposed DLS-DFTL improves the fault detection rate by
38%, reduces the fault detection time by 24%, and minimizes the loss rate by 14% compared
to the existing ones, namely neural estimator-based fault-tolerant control [2] and fuzzy
control uncertain time-delay active steering [3] with the aid of TME Motorway Dataset.

6. Conclusions

In this paper, we proposed a powerful Differential Lyapunov Stochastic and Decision
Fault Tree Learning (DLS-DFTL) paradigm for tracking vehicle dynamics and handling
in the presence of faults. The proposed DLS-DFTL method was designed based on the
Differential Lyapunov Stochastic Optimal Control (SOC) with a Variable Z-Matrix model
and Decision Fault Tree Autonomous Vehicle Fault Detection algorithm. At first, the Luen-
berger observer combined the best features of the continuous linear model. Differential
Lyapunov Stochastic Optimal Control Localization and Path Tracking were implemented
for the autonomous vehicle to achieve reliable performance in the presence of disturbances.
Afterward, Decision Fault Tree Learning (DFTL) was applied for early problem identifica-
tion in autonomous vehicles. The DLS-DFTL approach was applied in Python for precise
validation. The numerical results showed that the DLS-DFTL approach outperformed with
full proof trajectory tracking, which is capable of monitoring effectively in the literature.
Due to the lower loss rate and fault detection time, the DLS-DFTL approach achieved better
performance in terms of fault detection rate, fault detection time, and loss rate. Finally,
we also showed that the average loss of the proposed mechanisms was very small. In the
future, the proposed scheme with two fault-tolerant mechanisms is a promising solution
for emerging traffic management of high reliability and low latency.
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