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Abstract: Terahertz (THz) waves are widely used in the field of non-destructive testing (NDT).
However, terahertz images have issues with limited spatial resolution and fuzzy features because
of the constraints of the imaging equipment and imaging algorithms. To solve these problems, we
propose a residual generative adversarial network based on enhanced attention (EA), which aims
to pay more attention to the reconstruction of textures and details while not influencing the image
outlines. Our method successfully recovers detailed texture information from low-resolution images,
as demonstrated by experiments on the benchmark datasets Set5 and Set14. To use the network to
improve the resolution of terahertz images, we create an image degradation algorithm and a database
of terahertz degradation images. Finally, the real reconstruction of terahertz images confirms the
effectiveness of our method.

Keywords: terahertz image; image super-resolution; generative adversarial network; attention mechanism

1. Introduction

Terahertz refers to electromagnetic waves with frequencies between 100 GHz and
10,000 GHz. The waveband is between microwaves and infrared light. It has some unique
properties such as transience, low energy, and penetrability. Therefore, terahertz imaging [1]
can be applied in fields such as biomedical diagnosis [2,3], non-destructive testing [4],
industrial safety testing [5,6], etc.

A crucial technique for terahertz imaging is terahertz tomography [7]. Terahertz
tomography makes use of the penetrability of terahertz waves through dielectrics to
capture the changes in amplitude and phase of the electromagnetic waves as they pass
through the object. Then, tomographic reconstruction algorithms are used to take these
changes and figure out how the object is made inside.

However, terahertz tomography images have certain issues that result in poor resolu-
tion. Firstly, the reconstructed image is distorted due to the diffraction and scattering of the
terahertz waves inside the object. Secondly, because the data acquisition process is discrete,
the data in the reconstructed image are also discrete, and the missing data lead to ray-like
stripe artifacts in the image.

In addition, due to the strong energy in the center of the THz Gaussian beam and
weak energy in the periphery, and the fact that the beam has a certain width, the edges of
the reconstructed images are presented as bands with significant widths rather than sharp
lines. In other words, the picture quality is poor, and the edge’s contour is hazy. Therefore,
improving the terahertz image’s quality after reconstruction is a crucial challenge.

There are mainly two ways to improve the resolution of terahertz images. One is to
improve the imaging system, and the other is to adopt a super-resolution reconstruction
method. At present, some research teams focus on improving the terahertz imaging system
to improve the spatial resolution [8-10], while other teams propose to obtain a better image
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effect via a super-resolution algorithm. Li et al. [11] used the Lucy—-Richardson algorithm
to improve the resolution of coherent terahertz imaging systems. Ding et al. [12] applied
the Lucy—Richardson algorithm to a reflective terahertz imaging system.

In recent years, Dong et al. [13] have proposed a super-resolution reconstruction
method based on a convolutional neural network (CNN). They applied a three-layer super-
resolution network and achieved state-of-the-art results in a super-resolution reconstruction
at that time. Since then, many deeper and better-performing convolutional network models
for super-resolution reconstruction have been proposed [14-17]. Meanwhile, there were
research teams that applied convolutional super-resolution networks to terahertz image
reconstruction [18-20]. However, these methods constructed the network model by increas-
ing the number of convolutional layers, causing the parameters to expand exponentially
and they did not introduce specific structures to enhance the reconstruction of image details.
Deeper networks can extract more information for picture reconstruction, but network
overfitting makes training difficult. After that, Fan et al. [21] proposed a lightweight SR-
CNN method to improve the image quality and to meet the demand of small datasets. In
2021, Su et al. [22] suggested a novel subspace-and-attention-guided restoration network
(SARNet), which adopted attention guidance to fuse spatio-spectral features of amplitude
and phase. Yang et al. [23] introduced the remaining channel mechanism and the residual
channel attention mechanism to restore the high-frequency information.

This article proposes a super-resolution reconstruction model for terahertz images
based on the residual generative adversarial network with EA. The model has a multi-
branch residual block convolutional structure that obtains feature information from each
layer during the feature extraction process and conducts feature fusion. Additionally, an
enhanced attention mechanism that combines both spatial and channel attention has been
added to the residual block. In addition to extracting information from the channels, it also
incorporates direction-aware and position-sensitive information, forcing the network to
focus more on texture and picture details while maintaining the integrity of the image’s
shape and lowering network parameters.

The main contributions of this paper are summarized as follows:

1.  We design a super-resolution generative adversarial network with attention and
residuals that are suitable for multiple super-resolution tasks.

2. We employ an enhanced attention mechanism and make the network pay more
attention to the reconstruction of image details and texture information.

3. We use the cosine annealing algorithm to improve the network training process, speed
up the training process, and effectively improve the network’s performance.

4. We build a terahertz degradation model and image database, and apply the network
to terahertz tomography image super-resolution reconstruction.

2. Related Work
2.1. Deep CNN Super-Resolution Based on Residual Block

Due to the development of integrated circuits and the increasing GPU computing
power, deep learning has been gradually applied in every field. Dong et al. [13] applied the
deep learning method to SR and acquired a far more effective image SR compared with the
traditional methods. In 2016, the introduction of residual learning alleviated the vanishing
gradient problem [24]. The author of very deep convolutional networks super-resolution
(VDSR) [14] applied a residual network at image super-resolution. The low-resolution
image carries low-frequency information that is similar to the low-frequency information
in the high-resolution image. As a result, the network only needed to learn the residual
high-frequency difference between a high-resolution image and a low-resolution image.
This method increased the receptive field of the network, improved its performance, and
simplified the network training. In 2017, the emergence of Densenet [25] further increased
the connectivity of network features. Every layer’s feature result became the input once
more, allowing the network to learn more detailed feature information. To produce re-
constructions that are more accurate than the actual data, Ledig et al. [26] suggested the
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super-resolution generative adversarial network (SRGAN). The generative adversarial
network (GAN) [27] divided the network into two parts: a generative model and a dis-
criminative model. The generative model was used for generating super-resolution images.
The discriminative model was used for discriminating the gap between generated images
and ground truth images. The network could train more thoroughly if the loss functions of
different models were competing with one another. On the basis of SRGAN, Wang sug-
gested an enhanced super-resolution generative adversarial network (ESRGAN) [28] and a
real-world enhanced super-resolution generative adversarial network (Real-ESRGAN) [29].
In order to improve the visual quality and model performance, the ESRGAN introduced
residual dense blocks and the Real-ESRGAN proposed a set of degradation models for the
degradation process of the real-world.

2.2. Image Super-Resolution Based on Attention Mechanism

Attention mechanisms can be employed for a variety of deep learning models across
many different domains and tasks [30]. In computer vision, attention mechanisms are
designed to locate the areas of a picture that capture human attention with a greater
priority. In 1998, Itti [31] introduced a technique that employs the remarkable information
of various picture elements, locates the image’s attention points, and dynamically changes
the image’s attention points to replicate the shifting process of human visual attention.
The Spatial Transformer Network (STN) [32], developed by Google DeepMind in 2015,
allows the network to preprocess images by learning the deformation characteristic of the
picture using the affine transformation theory. This is a kind of attention model based on
space. Hu et al. [33] proposed a novel architectural unit called Squeeze-and-Excitation
(SE), which adaptively recalibrates channel-wise feature responses by explicitly modeling
interdependencies between channels. This mechanism might cause the network to prioritize
the most useful information in the input. Then, using the residual in residual (RIR) structure
and SE architectural, a very deep residual channel attention network (RCAN) [34] was
deployed. Through adaptive modification of the weight on the feature channel, they
could control the influence of the channel on the network feature. In 2018, Woo [35]
integrated spatial and channel attention and proposed the convolutional block attention
module (CBAM). It can make space information condense into channel information and
provide a more precise attention mechanism. Coordinate attention (CA) [36] obtains the
horizontal and vertical feature information of each channel, encodes the spatial information
using batch normalization (BN) to normalize the data in each batch, and stabilizes its
distribution. It then fuses the spatial information through the channel attention mechanism
to achieve a composite attention structure. This enhances the relationships between the
deep features of pixels.

3. Methodology

In this paper, a generative adversarial network based on an attention mechanism
and a residual module was proposed, which consists of a generation network and a
discrimination network.

The generation network is used to map low-resolution images to super-resolution
images. The discriminator network is used to examine the difference between the generated
super-resolution image and the original image, and the discrimination loss is added into
the training of the generator network, enabling the network to better recover the true
image features.

3.1. Generation Network

In the generation network, the network is divided into four parts: pixel match-
ing, shallow feature extraction, deep feature mapping, and image mapping reconstruc-
tion. As shown in Figure 1, Ilr and Isr represent the input and output of the generation
network, respectively.
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Figure 1. An overview of our generation network.

A layer of PixelUnshuffle is included in the pixel matching module to help with pixel
separation. This layer realizes down-sampling by changing the four-dimensional tensor
of size (B,C,H,W) to (B,C x r*, H/r,W/r). By adjusting the parameter r, it allows the
training process for 1, 2, and 4x super-resolution tasks to share the same network. The
procedure for pixel matching is depicted as

Tz’nput = Hpus(ILR) 1)

where Hpys stands for the PixelUnshuffle layer and Tj;,,; for the tensor output. The
4 x super-resolution task networks are used as the fundamental network to share a group
of networks. In the 2 super-resolution task, PixelUnshuffle splits the pixels, reduces the
image size by 2 times, and increases the number of channels to 4 times. Similarly, for the
1x super-resolution task, the image size is reduced by 4 times, and the number of channels
is increased to 16 times. Finally, the reconstruction process realizes the inverse process
of PixelUnshuffle.

For shallow feature extraction modules, single-layer convolution is used for simple
linear mapping. The shallow feature extraction process is expressed as

Fo = Hyf(Input) ()

where H; represents the mapping process with 3 x 3 convolution.

The EARDB (enhanced attention residual dense block) structure block is used as
the basic skeleton in the deep feature mapping module. The residual structure between
EARDBEs is shown in Figure 2, which can be expressed as

Fy = HgARDBn(PH—l) +F,1= HgARDBn(HgZ}%Danl - Fo.. ‘)) + Fu1 (©)

where HZZ}{D Bn—1 and H{ ,rpp, Tepresent the (n — 1)th and nth EARDB feature extraction
structures, respectively. Three attention residual dense block (ARB) structures are connected
by residual structures inside the EARDB module.

In order to achieve multiscale feature fusion and reduce network parameters, the
dense structure inside the ARB is used to execute feature fusion. The dense process in ARB
can be expressed as

ARBoutput = Conv5(Cat(Xy, Convdoutput, - - ., Convloytput)) 4)

where Conov5 is the last convolution in the ARB block. Cat is a contact structure that
combines 32-dimension growth channel output from each convolution in the ARB.
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Figure 2. The architecture of EARDB block.

For the image mapping reconstruction process, we use two up-sampling modules
to interpolate the extracted features and make the feature pixels increase 4 times. The
upscaling module is made up of the nearest neighbor (NN) layer. Then, the image pixel is
combined using two convolution layers. It is shown as follows:

Isg = COHU%X:;(Hup(Hrec(ILR) + ILR)) ®)
where Hy, represents the reconstruction module and H,,,, represents the interpolation operation.

3.2. Enhanced Attention

The purpose of EA is to enhance the ability of the network to find key features. The
input is Tpxcx xxy, @ four-dimensional tensor. B represents the number of images input
into one iteration of the network batch and C represents the number of characteristic
channels of the image in the network. X and Y represent the size of the channels in the X
and Y directions, respectively.

The structure of RCAN [34] proves that global mean pooling can build the dependency
between channels, increase the sensitivity information of the model to channels, and
affect the channel weights in the image reconstruction process. Additionally, inspired by
coordinate attention (CA) [36], we can effectively combine channel attention and spatial
attention by associating image location information. Therefore, the EA mainly consists of
two processes, coordinate information generation and coordinate attention embedding. EA
is shown in Figure 3.

In the process of coordinate information generation, two mean pooling kernels are
used in the X and Y directions to extract the features of position information. In X direction,
it outputs a tensor of H x 1 dimension. The characteristics of row m in the X direction are
as follows: .

Zk,m - szk(irm) (6)
0<i<N
where Z ,, represents the characteristics of the kth channel in m line, and x; represents the
characteristics of the kth channel.
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Figure 3. The architecture of enhanced attention.

Similarly, we can achieve the characteristics of Y direction for a tensor of 1 x W. The
characteristics of the nth row and the kth channel in Y direction are shown as follows:

1 .
Zk,n = szk<]/n> (7)
0<j<M

Finally, M x N dimension tensor is compressed into two low dimensional tensors M x 1
and 1 x N.

To preserve the key points in the channel, we use two maximum poolings to record the
maximum values of the rows and columns. The X-direction feature tensor of dimensions
H x 1 and the Y-direction feature of dimensions 1 x W are finally obtained. The pooling
process in X direction is shown as

Exm = Jgogﬁ](xk(i,m)) ®)

The pooling process in Y direction is expressed as

Ejm = Max (xc(j,n)) ©

’ 0<j<M

The result in Equations (6)—(9) transform into a tensor in (m + n) X 2 through dimension
change and contact operation.

For the coordinate attention-embedding process, it needs to encode all the position
features and generate attention parameters. These parameters serve to emphasize the area
of interest within the picture. In addition, the coding process should also consider the
relationship between channels based on location information.

Firstly, coding map characteristics are obtained by 1 x 1 convolution and non-linear
mapping module. In CA, the author adds BN to facilitate network training. However, it has
been confirmed in several models such as ESRGAN [28] that BN leads to the loss of image
information and the smoothing of strong changes between pixels in the super-resolution
task. It is not conducive to the reconstruction of image details. After coding and non-linear
mapping, we decode the feature into two tensors Tx and Ty of X and Y dimensions. Then,
the two tensors are transformed by convolution, respectively. The decoding process is
shown as
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g, = 0(Convyy1(Tx)) (10)

and
8y = J(Conlel(Ty)) (11)

where gy, gy are the attention features of x direction and y direction obtained by the EA.
Here, Convy 1 is the convolutional decoding process. Ty, T, are the tensors after encoding
and non-linear mapping. Finally, the input feature is multiplied by the attention feature
result, which is output for EA.

3.3. Discriminator and Loss Function

The discrimination network is shown in Figure 4. Input is the super-resolution image
generated by the generation network, and output is the probability that the super-resolution
image is close to the real image. The network structure mainly refers to the design idea of
the VGGnet [37], which consists of convolution, preLU, and BN. It contains 8 convolutional
layers; the convolution kernel size is 3 x 3, and the convolution dimension gradually
increases from 64 dimensions to 512 dimensions. After obtaining the deep features in the
convolutional layer, the final probability value is obtained by two fully connected layers,

one preLU layer, and one sigmod layer.

Figure 4. An overview of our discriminator network.

Out

PReLU

3x3 Conv
3x3 Conv

S

The generation network loss function is denoted by Ls and is shown as follows: it
includes content loss function, the perceptual loss function and the adversarial loss function.

LG = Lper + A1Lpy + ALY (12)

In Equation (12), A1 and A, are the weighting coefficients used to balance the two
loss functions.

The content loss function is used to evaluate the L1 distance of the image Isr generated
by the generation network from the original image Ihr.

The perceptual loss Ly, is defined by a pretrained VGG16 network. The perceptual
loss function is defined as the Euclidean distance between the features of the reconstructed
image Isr and the real image IHR. It is expressed as

Lyer = E{llpG(x)] — 9|3} (13)

where ¢[G(x)] represents the feature map of the generated super-resolution image through
vggl6, and B is the feature map of the original high-resolution image through vgg16.

The adversarial loss LR? is used to judge the image generated by the network, and the
adversarial loss function of the discriminator seeks to maximize the proportion of accurate
evaluations. The loss function is expressed as

Lp = —E{log Dra[y, G(x)]} — E{log{1 — Dra[G(x), y1}} (14)

where D, represents the output of adversarial network.
The purpose of the generator’s adversarial loss function is to minimize the probability
of the correct judgment, which is expressed as
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Lp = —E{log{1 — Draly, G(x)]} — E{log{Dra[G(x), y]}} (15)

where X is the original image and G(x) is the image generated by the generated network.

4. Experiments
4.1. Discriminator and Loss Function

In order to compare with other SR algorithms, we use the most common training
datasets DIV2K [38] and Flicker2K [39] for the training dataset DF2K. Among them, DIV2K
includes 1000 2K resolution images, and Flicker2K includes 1450 2K resolution images.
These images were cropped into 48,115 pieces of 400 x 400 pixel images, and the low-
resolution images are obtained via the bicubic down-sampling.

In the training process, Set5 [40] is adopted for validation after every 500 iterators.
Additionally, for the final result verification process, public benchmark datasets Set5 and
Set14 [41] are employed to evaluate our proposed network.

During the imaging process, the scattering and refraction of electromagnetic waves will
produce periodic stripes in addition to the noise. In the Fourier frequency spectrum, these
periodic stripes have characteristic frequency points with high amplitude [42]. In order
to apply the network to super-resolution reconstruction of terahertz images, we design
a terahertz image degradation model to simulate real terahertz images. The degenerate
expression is as follows:

01(x,y) = IFFT{FFTJi(x,y) « PSF(x,y)] * Mask} (16)

O1(x,y) is a simulated terahertz image that has been degraded, while i(x, y) is the
original image. Firstly, the picture is blurred through PSF(x,y), which is a Gaussian blur
kernel. Afterwards, we use the fast Fourier transform (FFT) to convert the image to the
frequency domain and multiply it with a multiplicative Mask. Mask is a matrix used to
increase the amplitude value of spectral feature points. The position of the Mask is the
characteristic frequency points with high amplitude positions mentioned above and it is
usually 1/4 height up and down from the vertical position of the image center. Finally,
degraded terahertz-simulated images are obtained by the inverse Fourier transform (IFFT).

In addition, we build a dataset of tomography results, and apply the degradation
algorithm to this dataset. It includes 352 pictures, 340 for network training and 12 for
testing and verification.

Based on the original image Iyr and the reconstructed image Isg, the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM) are calculated to evaluate the
network effect. The PSNR is expressed as

2552

PSNR =10 x Ig(3 ==

) (17)

where

1 S P a2
MSE = [} ) (£ f) = F(i.j)’] (18)
M and N are the height and width of an image, respectively. f(i, j) represents the grayscale
values of all pixels in the original image and f (i, j) represents the grayscale values of all
pixels in the reconstructed image. The reconstructed image looks most like the original
image when the PSNR value is high.
The SSIM is formulated as

(2urpfs +c1)(20f + c2)
(}41-“2 + ,‘Mfz +C1)(0’1:2 + Ufz + Cz)

SSIM(F, f) = (19)
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F is the original reference image, f is the image to be evaluated, p is the image gray
level mean, and ¢ is the image gray level variance. C1 =kl x L and C2 =k2 x L. L is the
image gray level, where L is the image gray level and k1 and k2 are equal to 0.01 and 0.03,
respectively. SSIM obtains quantitative values by comparing the luminance, contrast, and
structure of the original image and the reconstructed image. The larger the SSIM value, the
closer the reconstructed image is to the original image.

Texture features in pictures with a high PSNR or SSIM may not match to the visual
habits of the human eye. NIQE is a non-parametric evaluation index that measures the
impact of image super-resolution by comparing the Gaussian distributions of the original
picture and the super-resolution image. NIQE evaluates image quality by equation as

1
D(v1,02,) 1, ) ) = \/((01 - Uzﬁ(%) (01 —v2)) (20)

v1, )1 is the mean and variance of the original image Gaussian distribution, and v, ), is
the mean and variance of the reconstructed image Gaussian distribution.

4.2. Training Details

Our model is trained using the PyTorch framework with an NVIDIA RTX 1660Ti GPU.
In the pretraining, the L1 loss function is used to train the generation network and a model
with a high PSNR is obtained. The optimizer is set to Adam optimizer, and the initial
learning rate is 2 x 10~*. The optimizer parameters are 1 = 0.9, parameter 32 = 0.99, and
batch size = 16.

In training process, we employ two sets of learning rate adjustment strategies. Firstly,
we employ the multistep learning rate (MultiStepLR), a technique that gradually decreases
the learning rate. It can reduce the learning rate by fifty percent for every 25,000 iterations.

Secondly, the cosine annealing learning rate algorithm (CosineAnnealingLR) is used
to adjust the learning rate. The characteristic of this algorithm is that the learning rate
initializes at a small value, and then the rate can rise when the model becomes stable. After
that, the learning rate declines gradually. In addition, the training process includes multiple
CosineAnnealingLR cycles, and the learning rate of each cycle is initialized.

In the experiment, we set the CosineAnnealingLR algorithm’s learning cycle to 30,000,
30,000, and 40,000 iterations. Additionally, the learning rate for the MultiStepLR method is
modified every 25,000 iterations. Both of them have a total training time of 10,000 iterations.

The training curves of the two algorithms in training 9block-x4-EARDB are depicted
in Figure 5, with both algorithms using 100,000 iterations to obtain the final model. It can be
observed that the PSNR experiences a sudden drop after 30,000 and 60,000 iterations when
using the CosineAnnealingLR algorithm. However, the curve rapidly rises again after the
learning rate restarts. Compared to the MultiStepLR algorithm, the CosineAnnealingl. R
algorithm results in a 0.13 dB improvement in performance.

After the pretraining, this model is used as the initial model of the generated network
and trained with the discriminant network. The initial learning rate is set to 10~%; Adam
optimizer and MultiStepLR algorithm are used to train the generative adversarial network.

4.3. Ablation Study

Under the same training settings, to demonstrate the effectiveness of our proposed
architecture, we test different attention networks on the original network. The original
network structure is shown in Figure 1.

The quantitative comparisons of different attention networks for x2 SR task and x4 SR
task are depicted in Table 1 on the datasets Set5 and Set14.

In order to compare the CA mechanism with other advanced attention mechanisms,
we have added different attention mechanisms to the same network structure, the residual
dense block (RDB) network. In Table 1, the bicubic adopts the linear interpolation method.
RDB is a network without the attention structure, and the rest of the networks add SE [33],
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CBAM [35], CA [36], and EA, respectively. In addition, the result of the EARDB network
is used as a pretraining model to train generative adversarial network with enhanced
attention residual dense block (EARDB-GAN).

PSNR/db

313
31.2 - W
31.17 V

31.0
30.8

MultiStepLR
30.6 CosineAnnealingLR

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k iterator/times

Figure 5. The training curves of two learning rate adjustment schemes.

The attention structure is added after the first four convolutions in the block. The
number of blocks is set to 9 and the number of iterations to 100k iterators.

Through comparison, we find that EA has the best effect on x2 task and x4 task. On
x4 task, PSNR and SSIM have a greater improvement effect, which indicates that the more
pixels the more obvious the EA attention mechanism is on the feature. We also compared
the results of the generated network and the discriminant network after each iteration, and
found that PSNR and SSIM decreased to some extent, but NIQE reached the maximum.

The reconstruction results of EARDB, EARDB-GAN network, and bicubic algorithm
with x4 image super-resolution are shown in Figure 6. It can be found that through our
proposed network, the image details have been better reconstructed. Despite the fact that
the EARDB network can achieve a higher PSNR, the images obtained by EARDB-GAN are
more similar to real images.

In order to prove the improvement effect of the EARDB-GAN, we compare it with
SRGAN [26] and ESRGAN [28] under the same training conditions. The results in Table 2
show that our network is a lightweight model, which reduces the parameters by one time
and achieves the same effect as ESRGAN.

In this section, we test different generation networks in Set14 with varying numbers
of blocks. The experimental results with a scaling factor of x2 in five models are shown in
Table 3. It can be seen that the network has the best effect in EARDBx4 with 9 blocks, where
PSNR and SSIM achieve the biggest value. In a deeper situation, the model continues to
increase the number of network layers, which does not significantly improve the objective
evaluation indicators, but increases the number of model parameters.

In order to verify the effect of the algorithm on terahertz images, we use the terahertz
image database to resume training with the network EARDB-GAN, which is trained
by DE2K. Additionally, the terahertz image database contains 352 computer-generated
geometric images. The dataset includes images of various combinations of geometric
shapes, such as triangles, circles, pentagons, etc. Figure 7 shows some images of this
database, degraded images, and images after EARDB-GAN network reconstruction. It
can be seen that the degradation algorithm has successfully simulated some problems of
terahertz images, such as their low resolution, blurry edges, and fringe artifacts. Using
such a dataset for training, the network can learn the degradation process of terahertz
images. From the reconstructed images, the network in this paper can accurately restore
the terahertz image details and retain the object contour.
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Figure 6. Visual comparison of x4 super-resolution images on the DIV2K datasets.

Table 1. Quantitative results of several SR models with attention architecture at scaling factors of
x2 and x4 (average PSNR/SSIM/NIQE). The best performance is highlighted in red.

Params Set5 Set14
Method Scale (K) PSNR/SSIM/NIQE  PSNR/SSIM/NIQE
Bicubic 2 0 33.52/0.9230/6.2358  30.21/0.8683/5.5834
RDB 2 27,715 36.72/0.9435/6.7594  32.69/0.8988/5.8812
SERDB X2 27,935 36.89/0.9483/6.7312  33.02/0.9075/5.8619
CBAMRDB 2 28,150 36.93/0.9501/6.7248  33.08/0.9083/5.8405
CARDB 2 28,375 37.01/0.9510/6.7101  33.23/0.9108/5.8322
EARDB X2 30,470 37.14/0.9527/6.7262  33.45/0.9113/5.8326
EARDB-GAN 2 30,470 36.95/0.9491/62162  33.17/0.9091/5.5138
Bicubic w4 0 28.41/0.8091/7.2812  25.97/0.7023/6.4523
RDB x4 27,695 30.61/0.8813/7.4811  27.53/0.7729/6.6979
SERDB w4 27,915 30.85/0.8852/7.4631  27.75/0.7782/6.6810
CBAMRDB w4 28,130 30.92/0.8891/7.4566  27.91/0.7829/6.6731
CARDB x4 28,355 31.11/0.8908/7.4392  28.03/0.7853/6.6607
EARDB w4 30,450 31.30/0.8913/7.4401  28.20/0.7890/6.6725
EARDB-GAN w4 30,450 31.03/0.8901/7.2293  27.86/0.7851/6.4281

Table 2. Several SR models with GAN at scaling factors of 2 and 4 yielded quantitative results
(average PSNR, SSIM, and NIQE). The best performance is highlighted in red.

Params Set5 Set14
Method Scale
(K) PSNR/SSIM/NIQE PSNR/SSIM/NIQE
SRGAN X2 110,870 36.83/0.9428/6.2257 32.81/0.9041/5.5174
ESRGAN X2 130,950 36.91/0.9483/6.2203 32.95/0.9067/5.5153
EARDB-GAN x2 30,470 36.95/0.9491/6.2162 33.17/0.9091/5.5138
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Table 2. Cont.

Params Set5 Set14
Method Scale
(K) PSNR/SSIM/NIQE PSNR/SSIM/NIQE
SRGAN x4 110,830 30.95/0.8879/7.2317 27.79/0.7831/6.4297
ESRGAN x4 130,910 31.01/0.8892/7.2303 27.86/0.7845/6.4282
EARDB-GAN x4 30,450 31.03/0.8901/7.2293 27.86/0.7851/6.4281

Table 3. Comparison network with the number of RDB. All the other settings are strictly the same.
The best performance is highlighted in red.

EARDBx4 EARDBx4 EARDBx4 EARDBx4 EARDBx4
7 Blocks 8 Blocks 9 Blocks 10 Blocks 11 Blocks

Params 23,752 K 27,101 K 30,450 K 33,799 K 37,148 K
PSNR/SSIM  28.13/0.7881  28.17/0.7887  28.20/0.7890  28.19/0.7890  28.14/0.7883

Network

Original
Image

Degeneration
Image

Reconstruction
Image

Figure 7. Application of degeneration algorithm on terahertz dataset and reconstruction effect of our
EARDB-GAN network.

Figure 8 shows a group of real terahertz images. These images were preprocessed
using the wavelet adaptive threshold denoising algorithm [43], which employs wavelet
decomposition and adaptively adjusts the denoising threshold and wavelet reconstruction
to obtain images that are denoising with smoother edges. Finally, these preprocessing
images are reconstructed by EARDB-GAN. It can be found that the method in this paper
has a good effect on the super-resolution task of terahertz images.
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References

Terahertz
tomography image

Preprocessing
Image

Reconstruction
Image

Figure 8. Reconstruction of real terahertz image after wavelet preprocessing.

5. Conclusions

In this paper, we propose a super-resolution reconstruction method for terahertz
images based on a residual generative adaptive network with an enhanced attention
mechanism. The network’s key parameters can be adaptively updated using the attention
module, and pixel coordinate information can be incorporated into the attention mechanism.
Efficient residual dense connection blocks are used to realize the multiscale information
fusion of the image. Extensive quantitative and qualitative experiments demonstrate that
our method outperforms most state-of-the-art attention mechanisms.

The network’s training effect has been improved through the periodic simulated
annealing training method.

To apply the network to terahertz image super-resolution reconstruction, a terahertz
image training dataset and image degradation algorithm have been established. The exper-
iments show that our algorithm has a significant impact on terahertz image reconstruction.
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