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Abstract: As a typical symbol-wise solution of asymmetric Slepian-Wolf coding problem, Distributed
Arithmetic Coding (DAC) non-linearly partitions source space into disjoint cosets with unequal sizes.
The distribution of DAC coset cardinalities, named the Coset Cardinality Spectrum (CCS), plays an
important role in both theoretical understanding and decoder design for DAC. In general, CCS cannot
be calculated directly. Instead, a numerical algorithm is usually used to obtain an approximation.
This paper first finds that the contemporary numerical algorithm of CCS is theoretically imperfect
and does not finally converge to the real CCS. Further, to solve this problem, we refine the original
numerical algorithm based on rigorous theoretical analyses. Experimental results verify that the
refined numerical algorithm amends the drawbacks of the original version.

Keywords: distributed arithmetic coding; Slepian-Wolf coding; coset cardinality spectrum; numerical
algorithm

1. Introduction

As an important branch of network information theory, Distributed Source Coding
(DSC) can find broad potential applications in many scenarios (e.g., wireless sensor net-
work, genome compression, etc.). Just as traditional source coding, DSC has two forms.
Lossless DSC is also called Slepian-Wolf Coding (SWC) [1]. The general form of lossy DSC is
referred to as Berger-Tung coding [2], while a special case of asymmetric lossy DSC with
side information at the decoder is referred to as Wyner-Ziv Coding (WZC) [3]. Up to now,
the most important works on SWC have focused on its asymmetric form. Let X and Y be
two correlated discrete random variables. Given Y available only at the decoder, the achiev-
able rates of compressing X without loss are bounded by R ≥ H(X|Y). Different from
SWC, an important property of WZC is that it usually suffers rate loss when compared to
traditional lossy coding with side information available at both the encoder and the decoder.
However, if the difference between source and side information is an independent Gaussian
random variable, there is no rate loss [4,5].

This paper treats only asymmetric SWC. The asymmetric SWC problem is in essence
a channel coding problem [6–9]. To show this point, one can take Y as a noisy version
of X corrupted by virtual channel noise and take the bitstream of X as the index of the
coset containing X. If the elements in each coset are spaced as far (in Hamming distance)
as possible and Y is near (in Hamming distance) enough to X, then X can be recovered
from its bitstream with the help of Y. From this viewpoint, the bitstream of X is actually
the syndrome of a coset code. Hence traditionally, asymmetric SWC was implemented
by channel codes (e.g., Turbo codes [10], Low-Density Parity-Check (LDPC) codes [11], and
polar codes [12], etc.).

Arithmetic coding is usually deemed as the most important method for lossless
data compression [13,14]. Due to the duality between source coding and channel coding,
arithmetic coding can be easily modified to achieve the purpose of error detection and
correction [15–17]. In 2007, people found that after some slight modifications, arithmetic
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coding can also serve as a coset code to implement asymmetric SWC. There are mainly two
approaches: One is bit puncturing [18] and the other is interval enlarging [19–21]. This paper
will focus only on the latter approach, which is often referred to as Distributed Arithmetic
Coding (DAC), while ignoring the former. For independent and identically-distributed (i.i.d.)
binary sources, DAC is in general inferior to channel codes, e.g., LDPC codes, polar codes,
etc., as shown by the experimental results in [22]. However, for binary sources with memory
or nonbinary sources, DAC performs significantly better than channel codes [23–26].

In nature, DAC is a many-to-one nonlinear mapping that partitions source space
into disjoint cosets of unequal cardinalities. Then an important problem is how DAC
coset cardinality is distributed, which can be answered by the so-called Coset Cardinality
Spectrum (CCS). The idea of CCS budded in [27,28] and was formally defined for uniform
and nonuniform binary sources in [29,30], respectively. The concept of CCS is very useful
as it not only can serve as a theoretical tool to analyze the properties of DAC [31,32], but
also can be used to derive correct decoding formulae [31,32] (See the discussion in the last
paragraph of Section 2).

If the stream of source symbols is grouped into length-n blocks, then DAC CCS is a
tuple of n + 1 probability density functions (pdfs). It is impossible to deduce the exact closed
form for each pdf directly. Instead, one can begin with the final pdf, which is usually simple
and calculable, and then derive each pdf via a backward recursion. In [29], a numerical
algorithm was proposed to implement the backward recursion for uniform binary sources,
and then it was generalized to nonuniform binary sources in [30].

However, the numerical algorithm proposed in [29,30] is very primitive and lacks
theoretical justification. This paper will make an in-depth analysis of the numerical
algorithm proposed in [29,30] and observe the results carefully. It will be found that
the numerical algorithm proposed in [29,30] does not exactly converge to the real CCS.
After a strict theoretical analysis, this paper will propose a novel numerical algorithm,
which perfectly overcomes the drawbacks of the original numerical algorithm.

The rest of this paper is arranged as below. Section 2 briefly reviews the background
knowledge of DAC and CCS. Section 3 presents the original numerical algorithm and its
trivial upgrade version. Section 4 proposes the novel numerical algorithm for DAC CCS
based on solid theoretical analyses. Section 5 reports some experimental results to compare
three numerical algorithms. Finally, Section 6 concludes this paper.

2. Review on DAC and CCS

Let Xn , (X1, . . . , Xn) be a length-n binary source block with bias probability
Pr(Xi = 1) = p. The entropy of X is H(X) = −p log2 p − (1 − p) log2(1 − p).
The DAC codec recursively maps every source symbol onto an interval in [0, 1) according
to the following rule

x ∈ B , {0, 1} → [x(1− pr), (1− x)(1− p)r + x) ⊂ [0, 1), (1)

where r ∈ [0, 1] is called the normalized rate or overlapping factor. Let [l(Xn), h(Xn)) ⊂
[0, 1) denote the mapping interval of Xn. In theory, [l(Xn), h(Xn)) can be represented by
− log2 (h(Xn)− l(Xn)) ∈ R bits. However, due to the indivisibility of a bit, the bitstream
of Xn actually includes −blog2 (h(Xn)− l(Xn))c ∈ Z bits, which can be explained as a real
number U0 in [l(Xn), h(Xn)). Hence, there is a rate loss of δ bits, where

δ , log2 (h(Xn)− l(Xn))− blog2 (h(Xn)− l(Xn))c ∈ [0, 1). (2)
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If we decode the bitstream U0 along the path Xn, then we will obtain a tuple of n + 1 real
numbers Un

0 , (U0, U1, . . . , Un) which can be deduced recursively. The forward recursion
of Un

0 can be easily transformed into an equivalent backward recursion as shown below [30].{
Ui−1 = (1− p)rUi, Xi = 0
Ui−1 = prUi + (1− pr), Xi = 1

. (3)

The pdf of Ui is called the i-th CCS and denoted by fn,i(u), 0 ≤ u < 1, which is usu-
ally simplified as fi(u). Especially, f0(u) is called the initial CCS and fn(u) is called the
final CCS.

At this point, we have two choices: One is beginning from the initial CCS f0(u) and
then deducing fi(u) for 0 < i ≤ n via a forward recursion; the other is beginning from
the final CCS fn(u) and then deducing fi(u) for 0 ≤ i < n via a backward recursion.
Unfortunately, it is impossible to deduce the initial CCS f0(u) directly, so forward recursion
is infeasible. Instead, it is proved in [30] that depending on the parameters p and r, fn(u)
will tend to be a piecewise uniform function or

lim
n→∞

fn(u) =
log2 e

1 + |1− 2u| . (4)

Once fn(u) is known, fi(u) for 0 ≤ i < n can be deduced via a backward
recursion [30].

fi−1(u) = (1− p)1−r fi(u(1− p)−r) + p1−r fi((u− (1− pr))p−r). (5)

In general, it is impossible to deduce fi−1(u) from fi(u) analytically, even though the closed
form of fi(u) is known. Hence, we have to resort to a numerical algorithm, which mimics
(5) in a discrete way.

Regarding the physical meaning of CCS, there is a detailed explanation in [28].
Let us take uniform binary sources as an example. For any real number u ∈ [0, 1), if u is fed
into a DAC decoder with overlapping factor r, then we will get an incomplete binary tree.
In this tree, the number of level-i nodes is roughly (limn→∞ fn,n−i) · 2i(1−r). If we implement
the decoder in a breadth-first way, i.e., with the M-algorithm, for every level-i node, the
sub-tree grown from this level-i node will have about (limn→∞ fn,i(u)) · 2(n−i)(1−r) leaf
nodes, where u is the real number at the level-i node. Obviously, those level-i nodes with
larger (limn→∞ fn,i(u)) should be more likely, and vice versa. That is why DAC CCS can
be used to derive correct decoding formulae.

3. Original Numerical Algorithms
3.1. Rounding Numerical Algorithm

The first version of the numerical algorithm was proposed in [28,30] for uniform and
nonuniform binary sources, respectively. This algorithm divides the interval [0, 1) into N
segments and then uses a finite number of fi(j/N)’s, where j ∈ [0 : N) , {0, . . . , N − 1},
to approximate fi(u). For simplicity, we use f̂i(j) to denote the approximation of fi(j/N).
Then (5) can be discretized as

f̂i−1(j) = (1− p)1−r f̂i(j′) + p1−r f̂i(j′′). (6)

Now the key is to find a good mapping from j to j′ and j′′. Let b·e denote the rounding
operation. This problem was solved by a brute-force method in [28,30] as follows:{

j′ = bj(1− p)−re
j′′ = b(j− N(1− pr))p−re

. (7)



Entropy 2023, 25, 437 4 of 10

For some j ∈ [0 : N), we will have j′ /∈ [0 : N) or j′′ /∈ [0 : N). It does not matter because
we have f̂ (j) ≡ 0 for any j /∈ [0 : N) according to the definition of CCS. Since the core of (7)
is the rounding operation, this method will be formally referred to as rounding numerical
algorithm below.

Though the rounding numerical algorithm works well at first glance [28,30], its ratio-
nality is indeed flawed. On one hand, since (1− p)−r > 1, we have j(1− p)−r ≥ j and thus
among N points of f̂i(j)’s, only about N(1− p)r < N points, i.e., 0 ≤ j < jmax ≈ N(1− p)r,
are used for the first line of (7). On the other hand,

(j− N(1− pr))p−r = N − (N − j)p−r

= (N − j)− (N − j)p−r + j

= (N − j)(1− p−r) + j < j, (8)

where the last inequality is due to N > j and p−r > 1. Thus among N points of f̂i(j)’s, only
about Npr < N points, i.e., N(1− pr) ≈ jmin ≤ j < N, are used for the second line of (7).
In summary, not all N points of f̂i(j)’s will be used to generate f̂i−1(j)’s. In other words,
some points of f̂i(j)’s are discarded without being used when we try to deduce f̂i−1(j)
according to (6), which is equivalent to the case that partial information of fi(u) is lost
when we try to deduce fi−1(u) according to (5). This is imperfect in theory and may bring
two negative effects in practice:

• The rounding numerical algorithm cannot generate an accurate approximation of CCS.
This phenomenon will be observed in the experimental results of Section 5.

• Even if ∑N−1
j=0 f̂i(j) = N, (6) does not strictly satisfy the normalization condition

∑N−1
j=0 f̂i−1(j) = N. Thus an extra re-normalization step is needed after (6).

3.2. Linear Numerical Algorithm

To improve the performance of the rounding numerical algorithm, more points of
f̂i(j)’s should be involved in generating f̂i−1(j)’s. This problem can be solved by linear
interpolation. Below we will propose a trivial upgrade of the rounding numerical algorithm,
which we will refer to as linear numerical algorithm. Let b·c and d·e denote the flooring
and ceiling operations, respectively. Let us define α , j(1− p)−r ≥ j and β , (j− N(1−
pr))p−r < j. In general, (6) can be refined as

f̂i−1(j) = (1− p)1−rg0(α) + p1−rg1(β), (9)

where {
g0(α) = (dαe − α) f̂i(bαc) + (α− bαc) f̂i(dαe)
g1(β) = (dβe − β) f̂i(bβc) + (β− bβc) f̂i(dβe)

. (10)

Then we discuss some special cases:

• If α ∈ Z, then g0(α) = f̂i(α). If β ∈ Z, then g1(β) = f̂i(β).
• If bαc ≥ N, then g0(α) = 0. If dβe < 0, then g1(β) = 0.
• If bαc < N and dαe ≥ N, then g0(α) = f̂i(bαc). If bβc < 0 and dβe ≥ 0, then

g1(β) = f̂i(dβe).
However, it must be pointed out that the linear numerical algorithm still does not

guarantee that all N points of f̂i(j)’s are used to generate f̂i−1(j)’s, and a renormalization
step is still needed after (9).

4. Fair Numerical Algorithm

In the rounding/linear numerical algorithms, we take f̂i(j) as an approximation of
fi(j/N), i.e., f̂i(j) ≈ fi(j/N) for any j ∈ [0 : N), and for each f̂i−1(j), we try to find
the corresponding f̂i(j′). This understanding is however incorrect. The correct physical
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meaning of f̂i(j) should be an approximation of the scaled-up probability of Ui falling into
the interval [j/N, (j + 1)/N)), i.e.,

f̂i(j) ≈ N
∫ (j+1)/N

j/N
fi(u) du. (11)

According to (5), we have

∫ (j+1)/N

j/N
fi−1(u) du =

∫ (j+1)/N

j/N

(
(1− p)1−r fi(u(1− p)−r) + p1−r fi((u− (1− pr))p−r)

)
du. (12)

Let u′ , u(1− p)−r and u′′ , (u− (1− pr))p−r. Let{
I0 , [j(1− p)−r/N, (j + 1)(1− p)−r/N)

I1 , [(j− N(1− pr))p−r/N, (j + 1− N(1− pr))p−r/N)
. (13)

Then we can obtain∫ (j+1)/N

j/N
fi−1(u) du = (1− p)

∫
u′∈I0

fi(u′) du′ + p
∫

u′′∈I1

fi(u′′) du′′

= (1− p)
∫

u∈I0

fi(u) du + p
∫

u∈I1

fi(u) du. (14)

Naturally, we have

f̂i−1(j) = (1− p) · g0(j) + p · g1(j), (15)

where {
g0(j) ≈ N

∫
u∈I0

fi(u) du

g1(j) ≈ N
∫

u∈I1
fi(u) du

. (16)

In plain words, g0(j) is an approximation of the scaled-up probability of Ui falling into the
interval I0, and g1(j) is an approximation of the scaled-up probability of Ui falling into the
interval I1.

4.1. Calculation of g0(j)

Let λ0 , j(1− p)−r ≥ 0 and η0 , (j + 1)(1− p)−r > λ0 ≥ 0. Then we can obtain

N
∫

u∈I0

fi(u) du = N
∫ (bλ0c+1)/N

λ0/N
fi(u) du + N

∫ (bλ0c+2)/N

(bλ0c+1)/N
fi(u) du + . . .

+N
∫ bη0c/N

(bη0c−1)/N
fi(u) du + N

∫ η0/N

bη0c/N
fi(u) du. (17)

For N sufficiently large, fi(u) can be taken as uniform over [j/N, (j + 1)/N).
Hence we have

N
∫ (bλ0c+1)/N

λ0/N
fi(u) du ≈ (bλ0c+ 1− λ0) · N

∫ (bλ0c+1)/N

bλ0c/N
fi(u) du

≈ (bλ0c+ 1− λ0) · f̂i(bλ0c) (18)
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and

N
∫ η0/N

bη0c/N
fi(u) du ≈ (η0 − bη0c) · N

∫ (bη0c+1)/N

bη0c/N
fi(u) du

≈ (η0 − bη0c) · f̂i(bη0c). (19)

According to the above analysis, we can obtain the following results.

• N ≤ λ0 < η0: It is easy to know g0(j) ≡ 0.
• λ0 < N ≤ η0: In general, we have

g0(j) = (1− (λ0 − bλ0c)) · f̂i(bλ0c) +
N−1

∑
j′=bλ0c+1

f̂i(j′). (20)

Especially, if λ0 ∈ Z, then

g0(j) =
N−1

∑
j′=λ0

f̂i(j′). (21)

• λ0 < η0 < N: In general, we have

g0(j) = (1− (λ0 − bλ0c)) · f̂i(bλ0c) + (η0 − bη0c) · f̂i(bη0c) +
bη0c−1

∑
j′=bλ0c+1

f̂i(j′). (22)

Let us consider three special cases:

– If λ0 ∈ Z and η0 /∈ Z, then

g0(j) = (η0 − bη0c) · f̂i(bη0c) +
bη0c−1

∑
j′=λ0

f̂i(j′). (23)

– If λ0 /∈ Z and η0 ∈ Z, then

g0(j) = (dλ0e − λ0) · f̂i(bλ0c) +
η0−1

∑
j′=dλ0e

f̂i(j′). (24)

– If λ0 ∈ Z and η0 ∈ Z, then

g0(j) =
η0−1

∑
j′=λ0

f̂i(j′). (25)

4.2. Calculation of g1(j)

Let η1 , (j + 1 − N(1 − pr))p−r ≤ N and λ1 , (j − N(1 − pr))p−r < η1 ≤ N.
Similarly, we can get the following results.

• λ1 < η1 < 0: It is easy to know g1(j) ≡ 0.
• λ1 < 0 ≤ η1: In general, we have

g1(j) = (η1 − bη1c) · f̂i(bη1c) +
bη1c−1

∑
j′=0

f̂i(j′). (26)
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Especially, if η1 ∈ Z, then

g1(j) =
η1−1

∑
j′=0

f̂i(j′). (27)

• 0 ≤ λ1 < η1: In general, we have

g1(j) = (1− (λ1 − bλ1c)) · f̂i(bλ1c) + (η1 − bη1c) · f̂i(bη1c) +
bη1c−1

∑
j′=bλ1c+1

f̂i(j′). (28)

Let us consider three special cases:

– If λ1 ∈ Z and η1 /∈ Z, then

g1(j) = (η1 − bη1c) · f̂i(bη1c) +
bη1c−1

∑
j′=λ1

f̂i(j′). (29)

– If λ1 /∈ Z and η1 ∈ Z, then

g1(j) = (dλ1e − λ1) · f̂i(bλ1c) +
η1−1

∑
j′=dλ1e

f̂i(j′). (30)

– If λ1 ∈ Z and η1 ∈ Z, then

g1(j) =
η1−1

∑
j′=λ1

f̂i(j′). (31)

4.3. Discussion

From the above analysis, it can be found that all N points of f̂i(j)’s are made use of
to generate f̂i−1(j)’s, and such treatment is fair for every f̂i(j). For this reason, we will
formally refer to this method as fair numerical algorithm. Given ∑N−1

j=0 f̂i(j) = N, it is easy to

know ∑N−1
j=0 g0(j) = ∑N−1

j=0 g1(j) = N. Hence, (15) satisfies the normalization property by
itself and no renormalization step is needed after (15).

Let us briefly discuss the convergence of numerical algorithms. Let f (u) denote the
asymptotic form of fn,0(u) as n→ ∞. According to (5), it is obvious that

f (u) = (1− p)1−r f (u(1− p)−r) + p1−r f ((u− (1− pr))p−r). (32)

For the rounding/linear numerical algorithms, as analyzed above, partial parts of f (u) have
been lost, so the discrete version of (32) will not exactly hold, while for the fair numerical
algorithm, since all information of f (u) is reserved, the discrete version of (32) will exactly
hold as the number of segments N goes to infinity.

5. Experimental Results

We use a classical CCS to compare three numerical algorithms. Given p = r = 0.5, for
n sufficiently large, as i increases, fn−i will tend to be ladder-shaped and we have [27,28].

lim
i→∞

f∞−i(u) =


u

3
√

2−4
, 0 ≤ u <

√
2− 1

1
2−
√

2
,
√

2− 1 ≤ u < 2−
√

2
1−u

3
√

2−4
, 2−

√
2 ≤ u < 1

. (33)
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For simplicity, we set the final CCS fn(u) = Π(u), where Π(u) is a uniform function over
[0, 1). Some results are included in Figures 1–3. In these figures, we set n = 128 and
N = 1024. It can be observed that for small i (e.g., 1, 2, and 3), the rounding numerical algo-
rithm performs almost as well as the fair numerical algorithm, while the linear numerical
algorithm performs very poorly as there are some big spikes. When i = 8, small spikes are
also observed for the rounding numerical algorithm, but no spike is observed for the fair
numerical algorithm. Finally, for large i (e.g., 16, 32, and 64), the resulting curves of the
rounding numerical algorithm always fluctuate slightly along the real CCS given by (33),
and more experiments show that there is no trend that these curves will finally converge to
the real CCS as i increases. On the contrary, for both the linear numerical algorithm and the
fair numerical algorithm, their curves coincide with the real CCS very well for large i, and
there is a trend that these curves will finally converge to the real CCS as i increases.
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1.71

1.715

(b)

Figure 1. Some examples of the rounding numerical algorithm. Though the rounding numerical
algorithm performs well for small i, it always fluctuates slightly along the real CCS for large i and
will not finally converge to the real CCS as i increases. (a): Rounding numerical algorithm for ending
symbols. (b): Rounding numerical algorithm for starting symbols.
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Figure 2. Some examples of the linear numerical algorithm. Though the linear numerical algorithm
performs well for large i, i.e., the curves coincide with the real CCS well, it will cause big spikes for
small i. (a): Linear numerical algorithm for ending symbols. (b): Linear numerical algorithm for
starting symbols.
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Figure 3. Some examples of the fair numerical algorithm. It overcomes all weaknesses of the
rounding/linear numerical algorithms. (a): Fair numerical algorithm for ending symbols. (b): Fair
numerical algorithm for starting symbols.

6. Conclusions

As an important property of DAC, CCS finds its broad applications in many scenarios.
However, CCS is usually incalculable so we have to resort to numerical algorithms. This
paper finds that the original numerical algorithm proposed in our previous papers is not
sound in theory and does not work well in practice (fails to generate an accurate approxi-
mation of CCS). Based on a strict theoretical analysis, this paper proposes a novel numerical
algorithm that overcomes the weaknesses of the original numerical algorithm. The su-
periority of the newly-proposed numerical algorithm is well validated by experimental
results.

A software package of source codes to reproduce the experimental results in this paper
has been released in [33].
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