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Abstract: The argument of environment-assisted invariance (known as envariance) implying Born’s
rule is widely used in models for quantum measurement to reason that they must yield the correct
statistics, specifically for linear models. However, it has recently been shown that linear collapse
models can never give rise to Born’s rule. Here, we address this apparent contradiction and point
out an inconsistency in the assumptions underlying the arguments based on envariance. We use
a construction in which the role of the measurement machine is made explicit and shows that the
presence of envariance does not imply that every measurement will behave according to Born’s rule.
Rather, it implies that every quantum state allows a measurement machine to be constructed, which
yields Born’s rule when measuring that particular state. This resolves the paradox and is in agreement
with the recent result of objective collapse models necessarily being nonlinear.
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1. Introduction

It has recently been shown that linear models for objective collapse (i.e., models whose
time evolution is generated by a linear operator) cannot give rise to Born’s rule [1]. This is
surprising, given that they fall into a class of models in which the emergence of Born’s rule
was previously suggested to be unavoidable [2,3]. The suggested proof for the emergence of
Born’s rule was first formulated in the context of decoherence and is based on the possibility
of quantum states entangling with an external environment [2]. However, the assumptions
entering the suggested proof were claimed not to depend on the actual presence, influence,
or dynamics of any environmental states. Essentially the same reasoning has therefore
also been applied in several other well-known approaches to the quantum measurement
problem, including the pilot wave and many-worlds theories [3–8].

In fact, the arguments based on envariance [2] can be applied to any model for
quantum state reduction, regardless of whether it involves an explicit environment and
regardless of whether it is linear or nonlinear. The envariance-based result, therefore,
appears to contradict the recent proof that general two-state time evolution can only yield
the emergence of Born’s rule if the dynamics is nonlinear [1]. Here, we resolve the paradox
by revealing an assumption in the envariance-based analysis, which significantly limits
its applicability.

2. Envariance

In order to contrast the arguments for the emergence of Born’s rule from envariance
with the observation that Born’s rule cannot arise in linear models for quantum state
reduction, we will first give a brief sketch of the suggested envariance-based proof. We
will use the concept of envariance as introduced by Zurek [2]. That is, if an operation ÛS
acting on a local system S can be undone by an operation ÛE acting solely on an external
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environment E, such that the combined system SE is unchanged under Û = ÛEÛS, the state
is said to be envariant under the operation ÛS [2].

The principal idea is then that the statistical properties of any local measurement on
a quantum state cannot be influenced by physical operations taking place at a causally
disconnected location or event. If this condition were violated, instantaneous, faster-than-
light communication would be possible. Applying the causality condition to quantum
states envariant under various types of operations imposes fundamental constraints on
statistics of measurement outcomes.

In the following, we will consider quantum states for the local system written as
|ΨS〉 = ∑N

i=1 ci|Si〉, with complex components ci for the orthonormal basis states {|Si〉}.
Entangling the local system with environmental degrees of freedom results in a state of the
form |ΨSE〉 = ∑N

i=1 ci|Si〉|Ei〉. Unless otherwise specified, any measurements we consider
will be on the local system without involving the environment (which might be in a causally
disconnected location).

Starting from a superposition over two system states, the phase of the complex com-
ponents in the quantum state can be shown not to influence the statistics of measurement
outcomes, due to envariance. Consider the following entangled state:

|ψ〉 = α|S0, Ea〉+ β|S1, Eb〉. (1)

Here, |S0〉 and |S1〉 are basis states for the local quantum system. The kets |Ea〉 and
|Eb〉 represent states of an environmental degree of freedom that, once entangled with the
system, is taken to a far-away location where it is causally disconnected from the system.

The state |ψ〉 is envariant under the phase rotation ÛS|S0〉 = eiφ|S0〉, since the ef-
fect of this operation on the state |ψ〉 can be undone by the environmental operation
ÛE|Ea〉 = e−iφ|Ea〉. That is, ÛEÛS|ψ〉 = |ψ〉. This directly implies that the phase of the
complex coefficient α cannot influence the statistics of measurements on any local property
of the state because that phase can be altered by an actor operating solely on the causally
disconnected environment.

A similar argument also holds for the phase of β, and we thus arrive at the result that
the statistical outcomes of quantum measurement can depend only on the absolute values
of its wave function components. This result places a constraint on the properties of any
model for quantum measurement: for a state of the form ∑N

i=1 ci|Si〉|Ei〉, the statistics of a
local measurement on S can only depend on the absolute values |ci|. If this restriction is
violated, faster-than-light communication between causally disconnected events would
be possible.

3. Quantum Measurement

By itself, envariance is a mathematical property of particular entangled quantum states.
The envariance of states occurring in particular models of quantum measurement may be
used to argue that the possible outcomes of these models are constrained. For example,
the arguments of the previous section could be used to argue that, in particular models for
quantum measurement, the probability of finding any outcome does not depend on the
phases in the initial state decomposition. Whether or not arguments based on envariance
can be applied to any specific measurement model depends on the detailed properties of
that model.

In Ref. [2], for example, it is shown, using arguments of envariance, that the existential
interpretation of quantum measurement satisfies the particular causality condition of
probabilities being independent of the phases of wave function components. Essentially the
same arguments have been used to argue more generally that pilot wave and many worlds
interpretations (in combination with decoherence) also satisfy it [4–8], as do objective
collapse theories based on spontaneous symmetry breaking [3]. The essential ingredients
in all of these demonstrations were identified in Ref. [3] to be:



Entropy 2023, 25, 435 3 of 8

1. The measurement process can, at least in principle, be divided into pre-measurement
and registration;

2. There is a preferred basis in which registration takes place;
3. The selection of a particular preferred basis state as the measurement outcome

is probabilistic;
4. The registration is a local process that is not influenced by events causally disconnected

from the measurement machine;
5. The probability of selecting any particular measurement outcome does not depend

on any physical property of either the system being measured or the measurement
machine used to measure it;

6. The measurement process does not a priori favour any particular outcome.

In fact, these six conditions turn out to allow the application of envariance-based argu-
ments in general. That is, if a model for quantum measurement obeys these conditions, we
can employ envariance to constrain the probability distribution of measurement outcomes.

To see how this works for the particular constraint that measurement outcomes do not
depend on the phases of wave function components, consider a pair of entangled states:

|ψ〉 = α|S0, P0, Ea〉+ β|S1, P1, Eb〉,
|χ〉 = α|S0, P0, Ec〉+ β|S1, P1, Ed〉. (2)

Here, |S0〉 and |S1〉 are the basis states of the quantum system being measured. The
states |P0〉 and |P1〉 are (pointer) states of the measurement machine that became entangled
with the system during pre-measurement (condition 1) [9]. Finally, the kets |Ea〉, |Eb〉, |Ec〉,
and |Ed〉 are states of an environment degree of freedom that may be located far from the
system and measurement machine.

The registration phase of the measurement process will select one of the pointer states
as the measurement outcome (condition 2) in a probabilistic fashion (condition 3). It does
not matter whether this happens through a dynamical evolution of the state itself, as in
objective collapse theories [3], or by assigning an observer or register to one of the branches,
as in relative-state-based interpretations [2,4–8].

Conditions 4, 5, and 6 ensure that the probability for any particular measurement out-
come to be registered cannot depend on what the kets appearing in Equation (2) represent
physically. The probabilities must therefore be determined entirely by the coefficients α and
β. This implies in particular that the probability for |S0, P0, Ea〉 being registered starting
from the state |ψ〉must equal that of |S0, P0, Ec〉 being registered starting from |χ〉. Finally,
condition 4 ensures that this is true even for the special case in which |Ec〉 → eiϕ|Ea〉 and
|Ed〉 → |Eb〉, showing that the probability for registering |S0, P0, Ea〉 cannot depend on the
phase of the α coefficient.

4. Swaps

Following the central steps in the suggested derivation of Born’s rule in Ref. [2], we
continue by considering the entangled state of Equation (1), but in the special case with
equal values for the coefficients:

|ψ〉 = α(|S0, Ea〉+ |S1, Eb〉). (3)

Besides the envariance under local phase rotations, this state is also envariant under
the unitary swap operation defined by ÛS = |S0〉〈S1|+ |S1〉〈S0|. This swap of the system
state can be undone by a unitary swap on the environment state defined by ÛE = |Ea〉〈Eb|+
|Eb〉〈Ea|, so that ÛEÛS|ψ〉 = |ψ〉, which demonstrates the envariance.

The swap operation on environmental states that are causally disconnected from the
system cannot influence the statistics of local measurements on the system. This means that
the statistics obtained when measuring |ψ〉 must equal those obtained when measuring
ÛE|ψ〉. However, because in this particular case with equal coefficients ÛE|ψ〉 = ÛS|ψ〉,



Entropy 2023, 25, 435 4 of 8

the probability for obtaining a measurement outcome associated with |S0〉must equal the
probability for finding the |S1〉 outcome.

In other words, any model that does not yield equal probabilities for measurement
outcomes starting from an equal-weight superposition allows faster-than-light communi-
cation. Again, it can be argued that imposing conditions 1–6 of the previous section on
models for quantum measurement suffices to ensure this condition will be adhered to. This
can be seen by considering the pair of states:

|ψ〉 = α|S0, P0, Ea〉+ β|S1, P1, Eb〉,
|χ〉 = β|S0, P0, Ea〉+ α|S1, P1, Eb〉. (4)

This state can be considered the result of pre-measurement (condition 1), while condi-
tions 2 and 3 will ensure that registration results in the probabilistic selection of one of the
pointer states. Conditions 4, 5, and 6 again ensure that the probability for any particular
measurement outcome is determined entirely by the α and β coefficients.

For Equation (4), this implies in particular that the probability for |S0, P0, Ea〉 being
registered starting from the state |ψ〉must equal that of |S1, P1, Eb〉 being registered starting
from |χ〉. Condition 4 ensures that this is true even for the special case in which β → α.
However, since, in that case, the two states become equal, and they must additionally
have the same probability of registering |S0, P0, Ea〉. We thus find that any model for
measurement meeting conditions 1–6 will find equal probabilities for registering any
particular final state starting from an equal-weight superposition.

Extending the argument, we can consider a state involving arbitrarily many components:

|ψ〉 =
N

∑
k=1

αk|Sk, Ek〉. (5)

If the weights αk are equal for any pair of labels k′ and k′′, then the state |ψ〉 is left
invariant by the consecutive swaps ÛS = |Sk′〉〈Sk′′ | + |Sk′′〉〈Sk′ | and ÛE = |Ek′〉〈Ek′′ | +
|Ek′′〉〈Ek′ |. Using similar arguments as above, we then conclude that any subset of states
with equal weights within a larger superposition must all have equal probabilities of being
registered in a local measurement on the system.

Notice that none of the arguments in this or the previous section require the environ-
mental states to actually exist or be present [2]. In fact, since local actions on the environment
cannot influence the statistics of local measurement outcomes on the system, we could con-
sider an extreme case in which the environmental degree of freedom is destroyed (without
measuring it) before the system is measured. Since the destruction of the environment
cannot influence the statistics observed in the system, the probability of registering any
particular outcome must be independent of whether the environment exists.

5. Born’s Rule?

Finally, the suggested argument for Born’s rule being implied by envariance starts
from a superposition with unequal weights:

|ψ〉 = α|S0, Ea〉+ β|S1, Eb〉. (6)

We may assume the environmental Hilbert space to be arbitrarily large. It is then
always possible to identify an alternative basis {|E′〉} for the environmental states, in which
the full state can be expressed as an equal-weight superposition:

|ψ〉 =
√

1
N

[
n

∑
i=1

∣∣S0, E′i
〉
+

n+m

∑
j=n+1

∣∣∣S1, E′j
〉]

. (7)
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Here, the rational fractions n/N and m/N can be made to approximate the real
numbers α2 and β2 with arbitrary precision [2]. Because the weights of all components in
this state are equal, causality guarantees equal probabilities for registering any one of them.

To see this explicitly, we need to identify two swap operations whose product leaves
the state invariant. In this case, however, the swap of system states, ÛS = |S0〉〈S1| +
|S1〉〈S0|, cannot be undone by a swap operation on the environment E′. The only exception
is the special case m = n, which would imply we had an equal-weight superposition with
α = β to begin with. To find a combination of operations that does leave the state invariant,
we need to consider the possible existence of a second environment E′′, which we may
assume to be causally disconnected from both the system and the first environment:

|ψ〉 =
√

1
N

[
n

∑
i=1

∣∣S0, E′i , E′′i
〉
+

n+m

∑
j=n+1

∣∣∣S1, E′j, E′′j
〉]

. (8)

In this state, a combined swap on the system and the first environment, ÛS =∣∣S0, E′i
〉〈

E′j, S1

∣∣∣+ ∣∣∣S1, E′j
〉〈

E′i , S0
∣∣, can be undone by a local swap on the second environ-

ment, ÛE =
∣∣E′′i 〉〈E′′j

∣∣∣+ ∣∣∣E′′j 〉〈E′′i
∣∣. Thus, the probabilities of registering any of the states∣∣S0, E′i , E′′i

〉
or
∣∣∣S1, E′j, E′′j

〉
must all be equal.

The final step in the suggested proof is then to argue that, because all states
∣∣S0, E′i , E′′i

〉
contain the system state |S0〉, and because all of them are orthogonal, the probability of
registering a measurement outcome associated with |S0〉 is equal to n times the probability
for registering any one of the states

∣∣S0, E′i , E′′i
〉
. That is, the probability of finding the

measurement outcome associated with |S0〉 is suggested in Ref. [2] to equal n/N, in
accordance with Born’s rule.

Notice that, if the reasoning in the previous paragraph holds, it would mean that
causality (in the form of envariance) implies Born’s rule and that any model for measure-
ment meeting conditions 1–6 would be guaranteed to give rise to Born’s rule. However,
it was shown by explicit construction in Ref. [1] that there are objective collapse models
meeting conditions 1–6 which nonetheless do not yield measurement statistics agreeing
with Born’s rule. In fact, it was shown that linear objective collapse models could not
possibly produce Born’s rule, even though conditions 1–6 do not exclude linear theories.
This seems to leave us with a contradiction.

6. Measurement Machines

We will resolve the paradox by explicitly including the measurement machine and
considering the states after measurement in the final steps of the suggested proof. First,
focus on a particular instance of Equation (6), in which the state after pre-measurement
but before registration of the measurement outcome is given by |ψ1〉 =

√
3/2|S0, P0, E0〉+

1/2|S1, P1, E1〉. As before, we can argue that there is always an alternative basis for the
environmental Hilbert space in which this state can be written as:

|ψ1〉 = 1/2
(∣∣S0, P0, E′a

〉
+
∣∣S0, P0, E′b

〉
+

+
∣∣S0, P0, E′c

〉
+
∣∣S1, P1, E′d

〉)
. (9)

The components in this state now have equal weights.
Next, consider the registration phase and the eventual outcome of the measurement

process. First, assume that the measurement process acting on the machine with pointer
states |P0〉 and |P1〉 is purely local and does not affect the environment. If the measurement
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machine then ends up registering the measurement outcome 0, the state corresponding to
the outcome will be given by the projection [9]:

IS ⊗ |P0〉〈P0| ⊗ IE′ |ψ1〉
= 1/2

(∣∣S0, P0, E′a
〉
+
∣∣S0, P0, E′b

〉
+
∣∣S0, P0, E′c

〉)
. (10)

Here, IS is the identity operator on the system states, and IE′ = IE is the identity
operator for the environment. We do not make any assumptions about the interpretations
of quantum mechanics. If the measurement were described by an objective collapse theory,
the (normalised) state of Equation (10) would be the actual state after measurement. If,
instead, we take a relative state interpretation, Equation (10) represents one component
of the final state superposition, which is then entangled—as a whole—with a register or
memory state storing the outcome 0 for the measurement.

Notice that the measured state of Equation (10) is not one of the components of the
equal-weight superposition of Equation (9). Rather, it corresponds precisely to |S0, P0, E0〉
which appeared in |ψ1〉 with weight

√
3/2. Because the selected final state is not one of the

equal weight components, we cannot use envariance to say anything about the likeliness
with which it is selected.

To invoke envariance, we need to consider a measurement process resulting in a mea-
surement outcome that corresponds to just one of the components |S0, P0, E′a〉,

∣∣S0, P0, E′b
〉
,

or |S0, P0, E′c〉. This requires the state after registration (obtained either objectively or
relative to a memory state) to be given by a projection operator on the environment as
well as the pointer state (Notice that projecting on the environment alone would suffice.
Since a measurement machine should have a pointer pointing out the measurement result,
however, we include a projection on the pointer states.):[

IS ⊗ |P0〉〈P0| ⊗
∣∣∣E′j〉〈E′j

∣∣∣]|ψ1〉 =
1
2

∣∣∣S0, P0, E′j
〉

. (11)

For the states registered by a measurement machine enacting these types of projections,
the arguments of the previous section can be applied. We then find equal probabilities for
obtaining any of the four components in Equation (9). Notice, however, that this projection
operation affects both the pointer and the environment. The corresponding measurement
machine thus violates condition 4 by acting non-locally. Moreover, the environmental states
|E′〉 cannot be argued to be hypothetical or included for the sake of argument only. For
envariance-based arguments to be applied to the measurement process, it necessarily needs
to project onto precisely the states |E′〉 that create an equal-weight superposition.

It might be argued that the environmental states |E′〉 could actually exist and that,
moreover, they might actually be local to the pointer, by somehow arguing that the mea-
surement machine includes the environmental states |E′〉. Even in that case, however, a
problem remains. To see this, consider an alternative initial state, which is given after
pre-measurement by |ψ2〉 =

√
2/3|S0, P0, E0〉+

√
1/3|S1, P1, E1〉. Notice that the environ-

mental states |E0〉 and |E1〉 here are the exact same states that appeared in our earlier
discussion of |ψ1〉. This is necessary because the measurement machine ought to entangle
|S0, P0〉 with the same environmental state |E0〉 regardless of the weight with which |S0, P0〉
appears in the initial wave function. If this were not the case, the Hamiltonian describing
the pointer–environment interaction would not be a linear operator.

In the alternative basis of environmental states |E′〉 that we introduced to write |ψ1〉
as an equal weight superposition, |ψ2〉 becomes:

|ψ2〉 =
√

2/3
(∣∣S0, P0, E′a

〉
+
∣∣S0, P0, E′b

〉
+

+
∣∣S0, P0, E′c

〉)
+
√

1/3
∣∣S1, P1, E′d

〉
. (12)
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Clearly, this is not an equal weight superposition and we can not use envariance to
say anything about the likeliness of measurement selecting any particular component in
this state.

In order to invoke envariance, we would first need to define yet a different basis for
the environment, in which the state can be written in the form:

|ψ2〉 =
√

1/3
(∣∣S0, P0, E′′A

〉
+
∣∣S0, P0, E′′B

〉
+
∣∣S1, P1, E′′C

〉)
. (13)

The measurement that is guaranteed by envariance to have equal probabilities of
registering any outcome is one that corresponds to the projection operators IS ⊗ |P0〉〈P0| ⊗∣∣∣E′′J 〉〈E′′J

∣∣∣. This is a different projector than the one in Equation (11), and thus it describes
a different physical measurement machine being used. In other words, there is no single
measurement process (projecting into one particular basis) that allows for the envariance-
based arguments to be applied regardless of the initial wave function.

In fact, each initial state configuration of the same physical system |S〉 requires a
different measurement machine in order for envariance to guarantee that its measurement
outcomes adhere to Born’s rule. Moreover, to know which measurement machine will yield
the correct statistics, we need to know the exact weights of all wave function components
in the initial state. Only then can we identify the basis of environmental states that yields
an equal-weight superposition, which we need to identify the measurement machine
projecting onto that basis. Clearly, this does not correspond to physical experience, in
which the same measurement machine can be used to measure any state of a system.

7. Conclusions

In conclusion, we showed that the arguments based on envariance that were previously
argued to imply Born’s rule [2], in fact, only show that, for each initial system state, it is
possible to define a (non-local) measurement machine that projects onto a combined system–
environment state with Born rule (equal) probabilities. This definition of the measurement
machine is different for each initial system state to be measured.

We also demonstrated that the envariance-based arguments cannot be used to predict
the probabilities for measurement outcomes starting from general initial states using a local
measurement machine projecting onto system states only. Envariance, therefore, does not
generally imply Born’s rule. This agrees with the recent observation that linear objective
collapse models cannot give rise to Born’s rule [1], even though they obey conditions 1–6
defined above. Because envariance cannot be used to derive Born’s rule, the conditions do
not imply Born’s rule, and the apparent contradiction is resolved.
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