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Abstract: In this work, the balance equations of non-equilibrium thermodynamics are coupled to
Galilean limit systems of the Maxwell equations, i.e., either to (i) the quasi-electrostatic limit or (ii) the
quasi-magnetostatic limit. We explicitly consider a volume Ω, which is divided into Ω+ and Ω− by a
possibly moving singular surface S, where a charged reacting mixture of a viscous medium can be
present on each geometrical entity (Ω+, S, Ω−). By the restriction to the Galilean limits of the Maxwell
equations, we achieve that only subsystems of equations for matter and electromagnetic fields are
coupled that share identical transformation properties with respect to observer transformations.
Moreover, the application of an entropy principle becomes more straightforward and finally helps
estimate the limitations of the more general approach based the full set of Maxwell equations.
Constitutive relations are provided based on an entropy principle, and particular care is taken in
the analysis of the stress tensor and the momentum balance in the general case of non-constant
scalar susceptibility. Finally, we summarise the application of the derived model framework to an
electrochemical system with surface reactions.

Keywords: electrothermodynamics; bulk-surface systems; asymptotic analysis; entropy principle;
constitutive modelling

1. Introduction

The reliable simulation of electrochemical systems on the device level requires ther-
modynamically consistent continuum models. Standard models such as the Poisson–
Nernst–Planck system suffer from well-known limitations, cf., e.g., [1,2], of which the
most-obvious deficiency is the missing volume exclusion effects. Several similar remedies
for this problem have been proposed; see, e.g., [3–5] and the literature cited therein. More
recent approaches that also take the dielectric effects of the solvent into account were given,
e.g., in [6,7]. The latter one builds on a bulk-surface electrothermodynamic modelling
framework summarised in [8], which unifies classical non-equilibrium thermodynamics
containing electromagnetic fields as in [9,10] and its extensions to surfaces [11,12]. As
an alternative modelling framework, Reference [13] recently developed a multiscale elec-
trothermodynamics approach within the GENERIC formalism. Although not less complex
and technical compared to [8], this approach is so far limited to closed bulk systems.

Applying the abstract framework of [8] to electrochemical problems typically first
requires strong simplifications of the model, thereby favouring the impression that the
framework appears too general and not precisely tailored to the considered class of prob-
lems. Moreover, the readers of [8] might be confused by some decisions made there for
mainly pragmatic reasons, but leading to a discussion of the stability conditions that are
related to the choice of independent variables and that are necessary in addition to the
employed entropy principle. Finally, the way that the electromagnetic sub-system and
the classical material mixture part are coupled in [8] might not appear fully satisfactory
because of the different transformation properties of these sub-systems. The problem of
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different transformation properties can be remedied in two alternative ways. On the one
hand, one can give up mass conservation in favour of a fully relativistic description of
matter. On the other hand, one may try to couple a low-velocity Galilean limit system of
the Maxwell equations to the classical, i.e., non-relativistic, balance equations of mixtures
of matter.

In this work, we proceed with the second of the alternatives, since we aim at engi-
neering applications and, in particular, electrochemical applications. As shown by [14], cf.
also [15], there is not one unique Galilean limit of the Maxwell equations, but instead, there
are two distinct limits, i.e., the electric—or quasi-electrostatic—limit and the magnetic—or
quasi-magnetostatic—limit. While coupling the electric limit to the balance equations of
mass, momentum, and energy seems most reasonable for electrochemical applications,
the magnetic Galilean limit is more naturally related to magneto-hydrodynamics. We
re-examine the derivation of Galilean limit systems of the Maxwell equations here, as we
are not aware that this has been carried out before for the case of singular surfaces. This
way, we can make sure that we do not miss relevant effects during coupling to the balances
of matter later on or during the following derivation of constitutive equations. For each of
the two Galilean limit cases considered in this work, there is one corresponding variant of
the entropy principle in [8] such that coupling the general full set of Maxwell equations to
the classical balance equations of matter and taking the Galilean limit after exploitation of
the entropy principle yield the same results as obtained here. However, none of the two
alternative variants of the entropy principle in [8] are capable of covering both Galilean
limit cases equally well. It turns out that the application of the entropy principle here
is much more straightforward compared to [8], as a re-definition of the combined inner
energy of field and matter becomes unnecessary and a discussion of the stability of the
polarisation relaxation does not arise.

The obtained constitutive equations differ between the two Galilean limit cases. As can
be expected, polarisation relaxation is only covered in the quasi-electrostatic case, whereas
the relaxation of magnetisation is only present in the quasi-magnetostatic case. Moreover,
the generalised driving forces for thermodiffusion differ between the Galilean limits, as
does the stress tensor.

We apply the geometrical setting and notation of [8], but neglected the elastic defor-
mations, since these effects do not contribute to the questions discussed here. The results
obtained here can be generalised in a safe and straightforward manner to include elastic
effects in the same way as in [8].

2. Notation

We consider a geometrical setup where, locally, an orientable surface S divides a
domain Ω ⊂ R3 into two subdomains Ω± ⊆ R3 with S := ∂Ω+ ∩ ∂Ω−. The domain
Ω, as well as the surface S may evolve in time. In addition to quantities defined in the
domains Ω+ or Ω−, there are, in general, corresponding quantities on the surfaces S, which,
in general, do not coincide with the corresponding traces from the subdomains. As a
convention, the same letters are used for these quantities, but the surface variables are
indicated by an underset s.

We apply the convention of implicit summation over coordinate indices appear-
ing twice. We indicate the Cartesian components of vectors and tensors by lowercase
Latin indices, e.g., i, j, whereas at the surface S, we use uppercase Greek indices such as,
e.g., Γ, ∆ for the tangential components.

The tangential vectors are defined as the partial derivatives of the smooth bijective
parametrisation θ mapping from some open parameter domain to the surface S. In addition,
we define the (unit) normal vector and the metric tensor by

τ1/2 =
∂θ(t, U1, U2)

∂U1/2 , ν =
τ1 × τ2

|τ1 × τ2|
and g = [τ1, τ2]

T [τ1, τ2] . (1)
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As a convention, we chose the mapping θ such that ν is the inner normal of Ω+. For the
matrix components of the metric tensor g, we use lower indices g∆Γ, and we use upper
indices g∆Γ for the components of the inverse matrix of the metric. A vector V defined on
the surface can, thus, be written as V = V∆

τ τ∆ + Vνν, with the normal component by Vν

and the tangential components V∆
τ = gΓ∆VτΓ, for ∆ = 1, 2.

The curvature tensor b∆Γ of the surface S and the Christoffel symbols ΓΣ
∆Γ are defined

by a decomposition of the derivatives of the tangential vectors into their tangential and
normal components:

∂τ∆

∂UΓ = ΓΣ
∆Γ τΣ + b∆Γ ν for Γ, ∆ = 1, 2 . (2)

Then, the mean curvature of S is kM = 1
2 bΓ∆gΓ∆. Let a : S→ R be a scalar and V : S→ R3

a vector field. Then, the covariant derivatives of the tangential components are defined as

a‖Γ =
∂a

∂UΓ , for Γ = 1, 2 , V∆
τ‖Γ =

∂V∆
τ

∂UΓ + Γ∆
ΓΣ VΣ

τ for Γ, ∆ = 1, 2 . (3)

Let υ
s

denote the velocity of the surface S. For a scalar a : [0, tend)× S→ R, we define the

time derivative:
∂t,νa = ∂ta− a‖∆ υ

s
∆
τ . (4)

Let u be a generic function defined at least in one of the subdomains Ω±. We denote
the trace of u by

u±(t, x
s
) = lim

x∈Ω±→x
s
∈S

u(t, x) , (5)

whenever u is defined on this side of the surface; otherwise, we set the corresponding trace
to zero. We define the jump and the mean value of u at the surface S by

[[u]] = u+ − u− , ū = 1
2 (u

+ + u−). (6)

3. Maxwell Equations and Their Galilean Limits

The Maxwell equations for the electromagnetic field are most generally formulated
such that time and space and all involved equations are properly combined into four-
dimensional objects. Then, the equations satisfy the most-fundamental symmetry principle,
i.e., the principle of relativity, meaning that the balance equations, as well as the constitutive
equations remain invariant with respect to arbitrary observer transformations.

Here, 1+3-dimensional Maxwell equations are formulated in a way following the
classical work of Truesdell and Toupin [16]. This includes the postulation of Maxwell–
Lorentz aether relations that are independent of the considered material. The precise form
of these relations depends on the frame of reference. Here and in the following section,
we assume an inertial frame of reference such that the Maxwell–Lorentz aether relations
take the most-simple form (9) below. In the 1+3-dimensional setting, Maxwell–Lorentz
aether relations are only invariant with respect to Lorentz transformations. The Galilean
transformation is a good approximation of the Lorentz transformation in the limit of
vanishing barycentric velocity, i.e., v/c0 → 0. However, the derivation of a Galilean limit
system of the Maxwell equations is complicated by the fact that there are two different limit
systems, cf. [14,15].

3.1. General Maxwell Equations

The underlying physical principle for the derivation of the Maxwell equations is the
conservation of charge and magnetic flux. The (total) electric charge density ne in each
volume domain Ω±, a well as n

s
e on the surface satisfy the local conservation equations, viz.
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∂tne + div(neυ + Je) = 0 , (7a)

∂t,νn
s

e +
(
n
s

eυ
s

∆
τ + J

s

e,∆
τ

)
‖∆ − 2kMυ

s ν n
s

e = −[[ne(υν − υ
s ν) + Je

ν ]] . (7b)

Here, we split the electric current as je = neυ + Je. We introduce the charge potential D and
the current potential H by means of a formal solution of the charge balances (7); see [8]
Therefore, we have

ne = div(D) , Je = −∂tD− υ div(D) + curl(H) , (8a)

n
s

e = [[D · ν]] , J
s

e = ν× [[H − υ
s
× D]] . (8b)

The conservation of magnetic flux in the bulk and on the surface reads

0 = div(B) , 0 = ∂tB + curl(E) , (8c)

0 = [[B · ν]] , 0 = ν× [[E + υ
s
× B]] , (8d)

where E is the electric field. We postulate universal valid Maxwell–Lorentz aether relations,
i.e., independent of the considered material, it holds in an inertial frame:

D = ε0E and H = 1
µ0

B , (9)

where the dielectric constant ε0 and the magnetic constant µ0 are related to the speed of light
by ε0µ0 = c−2

0 . The remaining constitutive quantity is the electric flux density Je.
As an immediate consequence of the universal valid Maxwell–Lorentz aether relations (9)

and charge conservation (7a), we conclude that the sum of the electric current and the dis-
placement current is at any time t and location x source-free. This motivates the definition
of the total current as

j := je + ε0∂tE =⇒ div(j) = 0 . (10)

Implied Balances

From Maxwell’s Equation (8), the following two additional balance equations can be
derived, cf. [10]. The balance of electromagnetic momentum reads in each subdomain Ω±,
as well as on the surface S

∂t(D× B)− div
(

σEM
)
= −neE− (neυ + Je)× B =: −k , (11a)

−[[D× B)υ
s ν]] + [[σEM ν]] = −n

s
eĒ− (n

s
eυ

s
+ J

s

e)× B̄ =: −k
s

, (11b)

where the right-hand sides are the negative Lorentz force in the volume and on the surface,
respectively. The Maxwell stress tensor in (11) is

σEM = E⊗ D− 1
2 E · D 1 + H ⊗ B− 1

2 H · B 1 , (12)

where 1 denotes the identity matrix. The balance of electromagnetic energy reads

1
2 ∂t
(
E · D + B · H

)
+ div

(
E× H

)
= −(neυ + Je) · E =: −π , (13a)

− 1
2 [[(E · D + B · H)υ

s ν]] + [[(E× H) · ν]] = −
(
n
s

eυ
s
+ J

s

e) · Ē =: −π
s

, (13b)

where the right-hand sides are the negative Joule heat in the volume and on the surface,
respectively.
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3.2. Polarisation and Magnetisation

When considering a macroscopic non-relativistic continuum description of mixtures of
charged matter, there is the free charge density nF defined as a Galilean conserved quantity.
In general, this free charge does not coincide with the previously introduced electric charge
ne. As an example, nF may solely represent the net charge of molecules in a mixture without
taking into account the internal electronic structure. However, also this internal electronic
structure in general has relevance for the overall electromagnetic field. To bridge this gap
and represent these microscopic effects on the more macroscopic level, we introduce the
polarisation charge density nP and the polarisation current density JP as

ne = nF + nP , Je = JF + JP , (14)

The conservation of the electric charge ne and of the free charge nF then also imply the
conservation of the polarisation charge nP = ne − nF. We introduce the vector of polari-
sation P and Lorentz magnetisation M by the same approach of the formal solution to the
conservation equations, viz.

nP = −div(P) , JP = ∂tP + υ div(P) + curl(M) , (15a)

n
s

P = −[[P]] · ν , J
s

P = ν× [[M + υ
s
× P]] . (15b)

Not all of the introduced quantities so far are Galilean scalars, vectors, or tensors,
respectively. Due to its importance in electrodynamics and for the upcoming constitu-
tive modelling, we introduce the Galilean vectors of the electromotive intensity and the
magnetisation:

E = E + υ× B , M = M + υ× P . (16)

The electric current can then be expressed as

je = nFυ + JF + ∂tP + curl(M− υ× P) . (17)

For later use in the balance of the inner energy, we verify that

π − k · υ = (JF + JP) · E (18a)

π
s
− k

s
· υ

s
= (J

s

F + J
s

P) · (Ē + υ
s
× B̄) . (18b)

3.3. Non-Dimensional System and Quasi-Static Galilean Limits
Non-Dimensional Form of the System

To write the model equations in non-dimensional form, we introduce characteristic
reference values tref, xref for the time and space coordinates. Velocity is then scaled by the
derived reference value υref = xref/tref, cf. Table 1. However, we remark that a different
scaling of velocity might be more appropriate in a system coupled to the diffusion of
matter. We introduce reference values Eref, Bref for the electric and magnetic field strength,
respectively. Moreover, we use the elementary charge e0 as the reference value for charge
and introduce Tref and nref

α as the reference values for the temperature and for the number
densities of particles in the volume domains, respectively.
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Table 1. Scaling of variables and constitutive functions in the bulk regions and on the surface.

x = xref · x̆ , t = tref · t̆ , υ = xref

tref · ῠ ,

E = Eref · Ĕ , E = Eref · Ĕ , P = ε0Eref · P̆ ,

B = Bref · B̆ , M = 1
µ0

Bref · M̆ , M = 1
µ0

Bref · M̆ ,

nF = e0nref · n̆F , JF = e0nref xref

tref · J̆F , Je = e0nref xref

tref · J̆e ,

σEM = kBTref nref · ˘σEM , k = kBTref nref 1
xref · k̆ , π = kBTref nref 1

tref · π̆ ,

n
s

F = e0n
s

ref · n̆F , J
s

F = e0n
s

ref xref

tref · J̆
s

F , J
s

e = e0n
s

ref xref

tref · J̆
s

e ,

k
s

= kBTref n
s

ref 1
xref · k̆ , π

s
= kBTref n

s
ref 1

tref · π̆ ,

Upon the definition of the dimensionless constants:

β =

√
c0Bref

Eref , λ =

√
ε0Eref

e0nrefxref , κ =

√
e0 c0Bref xref

kBTref , (19)

we obtain in the volume domains Ω± the following dimensionless system:

λ2 div(Ĕ + P̆) = n̆F , (20a)

−λ2∂t(Ĕ + P̆) + λ2 c0
υref β2 curl(B̆− M̆) = n̆Fῠ + J̆F , (20b)

div(B̆) = 0 , (20c)

β2 υref

c0
∂tB̆ + curl(Ĕ) = 0 . (20d)

For the surface, we introduce an additional reference number density n
s

ref and relate it to

the volume by the dimensionless constant:

δ =
n
s

ref

nref λxref . (21)

Then, the surface balances are in dimensionless form:

λ[[(Ĕ + P̆) · ν]] = δn̆
s

F , (22a)

λν× [[ c0
υref β2(B̆− M̆)− ῠ

s
× (Ĕ + P̆)]] = δ J̆

s

F , (22b)

[[B̆ · ν]] = 0 , (22c)

ν× [[Ĕ + β2 υref

c0
ῠ
s
× B̆]] = 0 . (22d)

The balance of electromagnetic momentum reads in the volume domains and on
the surface

β2∂t(κ
2λ2 υref

c0
Ĕ× B̆) + div

(
− β2σ̆EM) = −β2k̆ , (23a)

−β2[[κ2λ2 υref

c0
· (Ĕ× B̆)ῠ

s ν]] + [[β2σ̆EM ν]] = −λδβ2k̆
s

. (23b)
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Here, the Maxwell stress tensor multiplied by β2, viz.

β2σ̆EM = κ2λ2 ·
(

Ĕ⊗ Ĕ− 1
2 Ĕ · Ĕ1 + β4(B̆⊗ B̆− 1

2 B̆ · B̆1
))

(24)

contains terms independent of β2, as well as the Lorentz force and the Joule heat do, i.e.,

β2k̆ = κ2 ·
(
n̆eĔ + β2 υref

c0
J̆e × B̆

)
, β2π̆ = κ2 ·

(
n̆eĔ · ῠ + J̆e · Ĕ

)
, (25a)

β2k̆
s
= κ2 ·

(
n̆
s

e ¯̆E + β2 υref

c0
(n̆

s
eῠ

s
+ J̆

s

e)× ¯̆B
)

, β2π̆
s
= κ2 ·

(
n̆
s

e ¯̆E · ῠ
s
+ J̆

s

e · ¯̆E
)

. (25b)

The electromotive intensity and magnetisation are

Ĕ = Ĕ + β2 υref

c0
(ῠ× B̆) , M̆ = M̆ + υref

c0
1
β2 (ῠ× P̆) , (26)

The balance of electromagnetic energy reads

1
2 λ2κ2∂t

(
1
β2 |Ĕ|2 + β2|B̆|2

)
+ λ2κ2 div

(
Ĕ× B̆

)
= −π̆ , (27a)

− 1
2 λκ2[[( 1

β2 |Ĕ|2 + β2|B̆|2)υ
s ν]] + λκ2[[(Ĕ× B̆) · ν]] = −δ π̆

s
, (27b)

and the introduction of polarisation and Lorentz magnetisation implies, for the electric
current and the surface electric charge flux,

j̆e = n̆Fῠ + J̆F + λ2∂tP̆ + λ2 curl( c0
υref β2M̆− ῠ× P̆) , (28a)

δ J̆
s

e = λν× [[ c0
υref β2B̆− ῠ

s
× Ĕ]] . (28b)

Depending on the chosen characteristic reference values tref, xref, Eref, Bref, Tref, nref
α ,

and n
s

ref
α , the size of the dimensionless quantities may differ by several orders of magnitude,

allowing considerable simplifications of the model equations. We consider in the follow-
ing two alternative limiting cases for the parameter β, whereas we only assume for the
remaining parameters λ, κ, ω, and δ that they remain moderate in size. At this point, we
only remark that, later on, it is possible to analyse additional limit processes, such as, e.g.,
λ→ 0, which corresponds to the thin interface limit in electrochemical applications.

3.4. Quasi-Electrostatic Limit β2 � 1

We assume that β is a small parameter, whereas vref

c0
and the time derivative of B

remain bounded. As a consequence, we obtain the equations of electrostatics for the electric
field, which read in the dimensional form

div(ε0E + P) = nF , [[(ε0E + P) · ν]] = n
s

F , (29a)

curl(E) = 0 , ν× [[E]] = 0 . (29b)

A constitutive equation for P, which is independent of B and M, then allows for a given
free charge obtaining E and P from (29). The balance of electromagnetic momentum
reduces to

−div
(
σEM) = −k , +[[σEM ν]] = −k

s
, (30)

with the Maxwell stress tensor depending only on E, viz.

σEM = ε0
(
E⊗ E− 1

2 |E|
2 1
)

. (31)
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In this limit, the electromotive intensity is identical to the electric field. The magnetic field
is not vanishing; it does not have any effect on the Lorentz force, viz.

E = E , k = neE , π = neE · υ + Je · E , (32a)

k
s
= n

s
eĒ , π

s
= n

s
eĒ · υ

s
+ J

s

e · Ē . (32b)

The Joule heat cannot be evaluated from E and P alone, but also requires knowledge of B.
The remaining Maxwell equations, in general, together with a constitutive equation for M,
determine the magnetic flux density B, i.e.,

div(B) = 0 , ∂t(ε0E + P) + nFυ + JF = curl( 1
µ0

B−M+ υ× P) , (33a)

[[B · ν]] = 0 , ν× [[υ
s
× (ε0E + P)]] + J

s

F = ν× [[ 1
µ0

B−M+ υ× P]] . (33b)

The electric current and the surface current flux are then

je = nFυ + JF + ∂tP + curl(M− υ× P) , J
s

e = ν× [[ 1
µ0

B− υ
s
× (ε0E)]] . (34)

3.5. Quasi-Magentostatic Limit 1
β2 � 1

Under the assumption that the derivatives of Ĕ + P̆ remain bounded, Maxwell’s
equations simplify in this limit to

curl( 1
µ0

B−M) = nFυ + JF , ν× [[ 1
µ0

B−M]] = J
s

F , (35a)

div(B) = 0 , [[B · ν]] = 0 . (35b)

A constitutive equation for M, which is independent of E and P, then allows for a given
free current to obtain B and M from (35). The balance of electromagnetic momentum
reduces to

−div
(
σEM) = −k , +[[σEM ν]] = −k

s
, (36)

with the Maxwell stress tensor depending only on B, viz.

σEM = 1
µ0

(
B⊗ B− 1

2 |B|
2 1
)

. (37)

In the quasi-magnetostatic limit, the magnetisation is identical to the Lorentz magnetisation.
The electric field does not vanish; it does not have any effect on the Lorentz force, and the
Joule heat is negligible, viz.

M = M , k = (neυ + Je)× B , π − k · υ = Je · (υ× B) , (38a)

k
s
= (n

s
eυ

s
+ J

s

e)× B̄ , π
s
− k

s
· υ

s
= J

s

e · (υ
s
× B̄) . (38b)

The Lorentz force cannot be evaluated from B and M alone, but also requires knowledge of
E. The remaining Maxwell equations, together with a constitutive equation for P, determine
the electric field, i.e.,

∂tB + curl(E) = 0 , ν× [[E + υ
s
× B]] = 0 , (39a)

div(ε0E + P) = nF , [[(ε0E + P) · ν]] = n
s

F . (39b)

The electric current and the surface current flux are

je = nFυ + JF + ∂tP + curl(M) , J
s

e = ν× [[ 1
µ0

B]] . (40)
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4. Balance Equations of Galilean Electrothermodynamics

The Galilean limit systems of electromagnetics can now be consistently coupled to
classical, i.e., non-relativistic balance equations for charged mixtures of matter. We consider
partial mass balances for each of the constituents of the mixture, a single momentum
balance of the mixture, and an energy balance of matter.

4.1. Description of Reacting Mixtures

We use different index sets I± to refer to the constituents of a mixture in Ω± and the
index set IS for the constituents on the surface S. We apply the non-restrictive assumption
that the sets I± are disjoint, i.e., I+ ∩ I− = ∅. All constituents of the subdomains Ω±

are assumed to be also constituents on the surface S, but there may be some additional
constituents that are exclusively present on S. Thus, we have I± ⊆ IS.

There may be several chemical reactions among the bulk constituents, as well as
chemical reactions on the surface. Picking some indices k, `, then, these reactions in the
bulk or surface may be written in the general form:

∑
α∈I±

ak
αAα −−⇀↽−− ∑

α∈I±
bk

αAα , ∑
α∈IS

a
s
`
αAα −−⇀↽−− ∑

α∈IS

b
s
`
αAα , (41)

where Aα is used as a notation to refer to the different constituents. The constants ak
α, bk

α are
positive integers, and γk

α := bk
α − ak

α denote the stoichiometric coefficients of the reactions.
The net reaction rate is Rk, where reactions in the direction from left to right are counted
as positive.

Each constituent has the (atomic) mass mα, for α ∈ I± or α ∈ IS, and the net charge
zαe0, where zα is the charge number of the constituent. Since charge and mass have to be
conserved by each single reaction in the bulk and on the surface, we have

∑
α∈I±

zαγk
α = 0 , and ∑

α∈I±
mαγk

α = 0 , (42a)

∑
α∈IS

zαγ`
α

s
= 0 , and ∑

α∈IS

mαγ`
α

s
= 0 . (42b)

To describe the thermodynamic state of the mixture, we use in the volume domains
the inner energy density ρu, the particle number densities nα, and partial velocities υα for
α ∈ I±. On the surface, the surface inner energy density ρ

s
u
s

and the number densities and

partial velocities of the surface constituents are n
s α and υ

s α for α ∈ IS. The multiplication of

the number densities by mα gives the partial mass densities:

ρα = mαnα , ρ
s

α = mαn
s α . (43)

The mass density and the barycentric velocity of the mixture are defined by

ρ = ∑
α∈I±

ρα , υ =
1
ρ ∑

α∈I±
ραυα , (44a)

ρ
s
= ∑

α∈IS

ρ
s

α υ
s
=

1
ρ
s

∑
α∈IS

ρ
s

αυ
s α . (44b)

The (non-convective) bulk and surface diffusion flux Jα and J
s

α with respect to the barycen-

tric velocity are defined as

Jα = ρα(υα − υ) , implying ∑
α∈I±

Jα = 0 , (45a)

J
s

α = ρ
s

α(υs α − υ
s
) , implying ∑

α∈IS

J
s

α = 0 . (45b)
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The free charge density and free current are are defined as

nF = e0 ∑
α∈I±

zαnα , JF = e0 ∑
α∈I±

zα Jα , (46a)

n
s

F = e0 ∑
α∈IS

zαn
s α . J

s

F = e0 ∑
α∈IS

zα J
s

α . (46b)

4.2. Balance Equations
4.2.1. Partial Mass Balances

In each of the subdomains Ω±, as well as on the surface S, the partial mass balances are

∂tρα + div(ραυ + Jα) = ∑
k

mαγk
αRk for α ∈ I± , (47a)

∂t,νρ
s

α +
(
ρ
s

αυ
s

∆
τ + J

s

∆
α,τ
)
‖∆ − 2kMυ

s ν ρ
s

α = ∑
`

mαγ
s

`
αR

s
` − [[ρα(υν − υ

s ν) + Jα · ν]] for α ∈ IS . (47b)

The partial mass balances can be combined to derive bulk and surface conservation laws
for the total mass density of the mixture and for the free charge.

4.2.2. Balance of Momentum

In the absence of electromagnetic fields, the momentum density of the mixture with
respect to the barycentric velocity is ρυ. We postulate that, in the absence of gravitation,
the total momentum of matter and the electromagnetic field is a conserved quantity. In
the Galilean limits of the Maxwell equations, the Maxwell stress σEM equals the negative
Lorentz force, while the electromagnetic momentum density is negligibly small. We
introduce the total stress tensor Σ containing σEM. Then, in either of the Galilean limit cases,
the total momentum balances of the matter and electromagnetic field read in Ω± and on S

∂t(ρυ) + div
(
ρυ⊗ υ− Σ

)
= ρ f , (48a)

∂t,ν(ρ
s
υ
s

i) +
(
ρ
s
υ
s

iυ
s

∆
τ − σ

s
i∆)
‖∆ − 2kMυ

s ν ρ
s
υ
s

i = ρ
s

f
s

i − [[ρυi(υν − υ
s ν)− Σijνj]] , (48b)

where f and f
s

are due to gravitation. The surface momentum flux σ
s

is decomposed into its

normal and tangential components:

σ
s

i∆ = SΓ∆τi
Γ + S∆νi . (49)

The tensor with the components SΓ∆ is denoted as the surface stress tensor, and the vector
with the components S∆ is the normal stress vector. We neglect internal spin. Given the
symmetry of the Maxwell stress tensor due to the Maxwell–Lorentz aether relations, this
implies the symmetry of the total stress tensors and the vanishing of the normal surface
stress [10], i.e., the assumption implies, for i, j = 1, 2, 3 and Γ, ∆ = 1, 2,

Σij = Σji , SΓ∆ = S∆Γ and S∆ = 0 . (50)

From these balances, several different balances for the momentum ρυ can be derived,
depending on which forces should be accounted for on the right-hand side. Subtracting
from (48) the momentum balance (30) in the quasi-electrostatic limit, or (36) in the quasi-
magnetostatic limit, then yields the momentum balance equations of matter with the
Lorentz force k, respectively k

s
, on the right-hand side. In addition to the Lorentz force,

one might also want to track the Kelvin polarisation force, electrostrictive force, or Korteweg–
Helmholtz force explicitly in the balances (cf. Ref. [7] ), such that the stress tensor then needs
to be modified accordingly.
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4.2.3. Balance of Inner Energy

The energy of matter consists of the inner energy density ρu and the kinetic energy
density ρ|υ|2. The balance equations of the mass and momentum of matter imply the
balances of the kinetic energy in Ω± and on S. Moreover, we postulate that, in the absence
of gravitation, the total energy of the matter and electromagnetic field is a conserved quantity.
This implies the inner energy balances in Ω± and on S as shown in Appendix A, viz.

∂tρu + div(ρu υ + Q) = π − k · υ + div(E ×M) + (Σ− σEM) : ∇υ . (51a)

∂t,νρ
s
u
s
+
(
ρ
s
u
s
) υ

s
∆
τ + q

s

∆)
‖∆ − 2kMυ

s ν ρ
s
u
s
= π

s
− k

s
· υ

s
+ [[(E ×M) · ν]] + σ

s
i∆ υ

s
i
‖∆ (51b)

−
[[

ρu (υν − υ
s ν) + Q · ν

]]
−
[[

1
2 ρ|υ− υ

s
|2(υν − υ

s ν)− (Σ− σEM)(υ− υ
s
) · ν

]]
.

We can write Q = q + E ×M, such that q coincides with the heat flux in the balance of
the inner and kinetic energy when the heat production is given by the Joule heat. Using the
particular form of the Lorentz force and the Joule heat in the quasi-electrostatic limit, we
obtain for the inner energy balance

∂tρu + div
(
ρu υ + Q

)
= JF · E +

(
Σ− σEM − E⊗ P + (E · P)1

)
: ∇υ

+
(

∂tP + (υ · ∇)P
)
· E , (52a)

∂t,ν
(
ρ
s
u
s

)
+
(
ρ
s
u
s

υ
s

∆
τ + q

s

∆)
‖∆ − 2kMυ

s ν ρ
s
u
s
= J

s

F · Ē + σ
s

i∆ υ
s

i
‖∆ (52b)

−
[[(

ρu + 1
2 ρ|υ− υ

s
|2
)
(υν − υ

s ν) + Q · ν
]]

+
[[
(υ− υ

s
) ·
(

Σ− σEM − E⊗ P + (E · P) 1
)
· ν
]]

.

On the other hand, we obtain in the quasi-magnetostatic limit from the explicit Lorentz
force and Joule heat

∂tρu + div
(
ρu υ + Q

)
= JF · (υ× B) +

(
Σ− σEM + M ⊗ B− (M · B)1

)
: ∇υ

−
(

∂tB + (υ · ∇)B
)
·M , (53a)

∂t,ν
(
ρ
s
u
s

)
+
(
ρ
s
u
s

υ
s

∆
τ + q

s

∆)
‖∆ − 2kMυ

s ν ρ
s
u
s
= J

s

F · (υ
s
× B̄) + σ

s
i∆ υ

s
i
‖∆ (53b)

−
[[(

ρu + 1
2 ρ|υ− υ

s
|2
)
(υν − υ

s ν) + Q · ν
]]

+
[[
(υ− υ

s
) ·
(

Σ− σEM + M ⊗ B− (M · B) 1
)
· ν
]]

.

5. Constitutive Equations for the Quasi-Electrostatic Limit

In the quasi-electrostatic limit, the coupled electrothermodynamic system consists
of (29), (47), (48), and (52). To close the coupled system, additional constitutive relations
are needed. These can be obtained from the application of an entropy principle as described
in [8]. Because it allows a straightforward derivation of the entropy production in the
desired form, we assume constitutive functions of the entropy densities of the form:

ρη = ρη̃(ρu, (ρα)α∈I± , P) , ρ
s
η
s
= ρ

s
η̃
s
(ρ

s
u
s
, (ρ

s
α)α∈IS) . (54)

In principle, it would also be possible to include the dependence of ρη̃ on M, such that, by the
application of the entropy principle, one more constitutive equation could be obtained, which
then would allow solving (33) and evaluating the electric current je. In the quasi-electrostatic
limit, however, all explicit dependence of the system (29), (47), (48), and (52) on B and M is
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removed due to the asymptotic smallness of those terms. The application of the entropy
principle builds on this system of equations, and therefore, it should not reintroduce
asymptotically non-negligible dependencies on B and M. Moreover, the terms in the
entropy production depending on B and M would be in the same asymptotic order as the
terms that have been neglected in the system (29), (47), (48), and (52). Therefore, the value
of the constitutive equations based on such small terms in the entropy production must
be questionable. Instead, it seems more advisable to use a constitutive equation relating B
and M, which were derived from another source, which might well be the complementary
quasi-magnetostatic limit in Section 6.

The (absolute) temperature T, T
s

and the chemical potentials µα, µ
s

α are defined as

1
T

=
∂ρη̃

∂ρu
,

µα

T
= −∂ρη̃

∂ρα
, (55a)

1
T
s

=

∂ρ
s
η̃
s

∂ρ
s
u
s

,
µ
s

α

T
s

= −
∂ρ

s
η̃
s

∂ρ
s

α
. (55b)

For the construction of the constitutive equations, it is often beneficial to use the temperature
T, respectively T

s
, as an independent variable, instead of the inner energy density. We, thus,

introduce the free energy densities ρψ and ρ
s
ψ
s

by means of the Legendre transformation of

the entropy density ρη, viz.

ρψ = ρu− T ρη , ρ
s
ψ
s
= ρ

s
u
s
− T

s
ρ
s
η
s

. (56)

For the free energy density and the entropy density, we, thus, have representations as
functions of the temperature as

ρψ = ρψ̌(T, (ρα)α∈I± , P) , ρ
s
ψ
s
= ρ

s
ψ̂
s
(T

s
, (ρ

s
α)α∈IS) , (57)

and in an analogous way for the inner energy and entropy. From the construction (56) and
the definition of the temperature according to (55), we obtain the well-known thermody-
namic relations:

∂ρψ̌

∂T
= −ρη̌ ,

∂

∂T

(ρψ̌

T

)
= −ρǔ

T2 , (58a)

∂ρ
s
ψ̂
s

∂T
s

= −ρ
s
η̂
s

,
∂

∂T
s

(ρ
s
ψ̂
s

T
s

)
= −

ρ
s
û
s

T
s

2 . (58b)

5.1. Constitutive Relations for the Bulk

To determine the entropy production in a straightforward manner, the chain rule
is applied to the time derivative of ρη̃, and the partial mass balances (47) and the inner
energy balance (52) are applied. Then, the choice of the entropy flux fixes the entropy
production. Nevertheless, the entropy production can still be rewritten in such a way that
is most suitable for the derivation of the constitutive relations. We choose the entropy flux
as φ = Q

T −∑α∈I
µα
T Jα. Moreover, we define the viscous stress tensor and the symmetric

velocity gradient as

T = Σ− σEM −
(

ρu− Tρη̃ − E · P− ∑
α∈I±

ραµα

)
1− 1

2 (E⊗ P + P⊗ E) , (59a)

D = 1
2

(
∇υ +∇υT

)
. (59b)
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To account in the derivation of the entropy production for the constraint (45) on the mass
fluxes, we choose in each subdomain one designated constituent as a reference and denote
these constituents by A0− , A0+ , respectively. Moreover, we use a symmetry condition
originating from the transformation properties of the thermodynamic fields, cf. Ref. [8].
Then, we obtain the entropy production as the sum of binary products, viz.

0
!
≤ ξ =

1
T
(
T − 1

3 trace(T )1
)

:
(
D − 1

3 trace(D)1
)

︸ ︷︷ ︸
=ξSV

+
1
3

1
T

trace(T ) · trace(D)︸ ︷︷ ︸
ξVV

(60)

+ Q · ∇
(

1
T

)
− ∑

α∈I±\{A0±}
Jα ·
(
∇
(µα

T
− µ0±

T

)
− 1

T

(
zαe0

mα
− z0±e0

m0±

)
E
)

︸ ︷︷ ︸
=ξTD

+
1
T ∑

k

(
− ∑

α∈I±
γk

α mαµα

)
· Rk

︸ ︷︷ ︸
ξR

+

(
∂ρη̃

∂P
+

1
T

E
)
·
(

∂tP + (υ · ∇)P− 1
2

(
∇υ−∇υT

)
P
)

︸ ︷︷ ︸
ξP

.

We now can identify the dissipation mechanisms related to their specific entropy production.
To reduce the complexity of the constitutive equations, we neglect cross-effects other than
thermodiffusion. Thus, we consider the five dissipation mechanisms: shear viscosity ξSV ,
volume viscosity ξVV , (bulk-)reactions ξR, thermodiffusion ξTD, and polarisation ξP. For
each dissipation mechanism, we apply closure relations to obtain the constitutive equations.

5.1.1. Thermodiffusion

For the heat flux and the mass fluxes, we choose a linear relation with cross-effects.
We chose coefficients κ, Lβ, Mαβ such that the coefficient matrix is symmetric and positive
definite. In particular, the heat conductivity κ and the mobility matrix M are symmetric
and positive definite. We set for α ∈ I± \ {A0±}

Q = − κ

T2∇T − ∑
β∈I±\{A0±}

Lβ

(
∇
(

µβ

T
− µ0±

T

)
− 1

T

(
zβe0

mβ
− z0±e0

m0±

)
E
)

, (61a)

Jα = − Lα

T2∇T − ∑
β∈I±\{A0±}

Mαβ

(
∇
(

µβ

T
− µ0±

T

)
− 1

T

(
zβe0

mβ
− z0±e0

m0±

)
E
)

. (61b)

5.1.2. Reactions

For simplicity, we neglect cross-effects between the different chemical reactions. We
choose positive coefficients Ak, Rk

0 and and apply a nonlinear closure relation to obtain, for
any of the reactions in the volume domains,

Rk = Rk
0

(
1− exp

( Ak

kBT ∑
α∈I±

γk
αmαµα

))
. (62)

5.1.3. Polarisation

We chose a linear closure relation with the relaxation time τP ≥ 0 of polarisation
to obtain

E + T
∂ρη̃

∂P
=

τP

ε0

(
∂tP + (υ · ∇)P− 1

2

(
∇υ−∇υT

)
P
)

. (63)
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5.1.4. Viscosity

Linear relations for the volume viscosity and for the shear viscosity with phenomeno-
logical coefficients ηb, ηs that satisfy (ηb +

2
3 ηs) > 0 and ηs > 0 yield

T = ηb div(υ)1 + ηs

(
∇υ + (∇υ)T

)
. (64)

This implies the constitutive equation for the symmetric stress tensor:

Σ− σEM = T +

(
ρu− Tρη̃ − E · P− ∑

α∈I±
ραµα

)
1 + 1

2 (E⊗ P + P⊗ E) . (65)

5.2. Constitutive Relations for the Surface

We proceed in analogous manner as in the volume and choose the surface entropy

flux as φ
s
=

q
s
T
s
−∑α∈IS

µ
s

α

T
s

J
s

α. We define the tensors T and D with the components:

T
s

∆Γ = SΓ∆ −
(

ρ
s
u
s
− T

s
ρ
s
η̃
s
− ∑

α∈IS

µ
s

αρ
s

α

)
g∆Γ , (66a)

D
s ∆Γ = 1

2
(

gΓΛ υ
s

Λ
τ‖∆ + g∆Λ υ

s
Λ
τ‖Γ
)
− bΓ∆ υ

s ν . (66b)

Moreover, we choose one designated constituent A0 ∈ IS on the surface. Then, we obtain
the surface entropy production as a sum of binary products, viz.

0
!
≤ ξ

s
=

1
T
s

[
T
s

∆Γ
]
·
(
D
s ∆Γ

)
︸ ︷︷ ︸

=ξ
s

τ
V

− 1
T
s

∑
`

(
∑

β∈IS

γ
s

`
β mβµ

s
β

)
· R

s
`

︸ ︷︷ ︸
ξ
s

R

+q
s

∆ ·
( 1

T
s

)
‖∆
− ∑

α∈IS\{A0}
J
s

∆
α,τ ·

((µ
s

α

T
s

−
µ
s

0

T
s

)
‖∆
− 1

T
s

( zαe0

mα
− z0e0

m0

)
g∆ΓĒΓ

τ

)
︸ ︷︷ ︸

=ξ
s

τ
TD

+
[[(

Qν +
(
Tρη̃ + ∑

α∈I±
ραµα

)(
υν − υ

s ν

))
·
( 1

T
− 1

T
s

)]]
︸ ︷︷ ︸

=ξ
s

ν
H

+
1
T
s

[[
(υ− υ

s
) ·
(
T − 1

2 (E⊗ P− P⊗ E)−
(

1
2 ρ|υ

s
− υ|2 + T

s
ρ
(µ0±

T
−

µ
s

0±

T
s

))
1
)

ν
]]

︸ ︷︷ ︸
=ξ

s
ν
V

−
[[

∑
α∈I±\{A0±}

(
Jα,ν + ρα(υν − υ

s ν)
)
·
(µα − µ0±

T
−

µ
s

α − µ
s

0±

T
s

)]]
︸ ︷︷ ︸

=ξ
s

ν
MT

. (67)

We identify six dissipation mechanisms: tangential surface viscosity ξ
s

τ
V , tangential

surface thermodiffusion ξ
s

τ
TD, surface reactions ξ

s
R, heat transport normal to the surface ξ

s

ν
H ,

mass transport normal to the surface ξ
s

ν
MT , and viscosity normal to the surface ξ

s

ν
V . Again,

cross-effects other than the thermodiffusion were neglected.
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5.2.1. Thermodiffusion

We chose phenomenological coefficients κ
s
, L

s β, and M
s αβ, such that the coefficient

matrix is symmetric and positive definite. We set, for α ∈ IS \ {A0},

q
s

∆
τ = −

κ
s

T
s

2 g∆ΓT
s ‖Γ

− ∑
β∈IS\{A0}

L
s β

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1

T
s

( zβe0

mβ
− z0e0

m0

)
Ē∆

τ

]
, (68a)

J
s

∆
α,τ = −

L
s α

T
s

2 g∆ΓT
s ‖Γ

− ∑
β∈IS\{A0}

M
s αβ

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1

T
s

( zβe0

mβ
− z0e0

m0

)
Ē∆

τ

]
. (68b)

5.2.2. Surface Reactions

We neglect cross-effects between the different reactions and apply the nonlinear closure
relations with positive phenomenological coefficients A

s
`, R

s
`
0:

R
s
` = R

s
`
0

(
1− exp

( A
s
`

kBT
s

∑
α∈IS

γ
s

`
αmαµ

s
α

))
. (69)

5.2.3. Surface Viscosity

Linear closure for the trace and for the deviatoric part of the surface stress tensor
T
s

with phenomenological coefficients satisfying η
s

b + η
s

s ≥ 0 and η
s

s ≥ 0 yields the

constitutive equation:

T
s
= η

s
b trace(D

s
g−1) g−1 + 2η

s
s g−1D

s
g−1 . (70)

This implies, for the symmetric surface stress tensor, the constitutive equation:

SΓ∆ =

(
ρ
s
u
s
− T

s
ρ
s
η̃
s
− ∑

α∈IS

µ
s

αρ
s

α

)
g∆Γ + T

s
Γ∆ . (71)

5.2.4. Heat Flux Normal to the Surface

We choose coefficients κ
s
± and obtain from the linear closure:

(
Qν +

(
Tρη̃ + ∑

α∈I±
ραµα

)(
υν − υ

s ν

))±
= ±κ

s
±
(

1
T
− 1

T
s

)±
. (72)

5.2.5. Stress from the Volume

We choose coefficients λ
s
± and η

s

±
∆ > 0, for ∆ = 1, 2, and obtain from the linear closure:

(
ν ·
(
T − 1

2 (E⊗ P− P⊗ E)
)

τΓ gΓ∆
)±

= ±η
s

±
∆

(
υ∆

τ − υ
s

∆
τ

)±
. (73a)

(
ν ·
(
T − 1

2 (E⊗ P− P⊗ E)
)

ν−
(

1
2 ρ|υ

s
− υ|2 + T

s
ρ

(
µ0±

T
−

µ
s

0±

T
s

)))±
= ±λ

s
±ρ±

(
ρ (υν − υ

s ν)
)±

. (73b)

5.2.6. Mass Transport Normal to the Surface

The mass transport normal to the surface can be related to the adsorption, which,
in the context of electrothermodynamics, is formally different from the mass production
due to chemical reactions. However, in experiments, it might not always be clear how to
distinguish between adsorption and surface reactions, and we, therefore, here, also applied
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a nonlinear closure similar to the chemical reactions. We neglect cross-effects and chose for
α ∈ I± \ {A0±} coefficients β±α and M

s
±
α > 0 to obtain, for α ∈ I± \ {A0±},

D±α =

(
µα − µ0± −

T
T
s

(
µ
s

α − µ
s

0±

))±
, (74a)

(
Jα,ν + ρα(υν − υ

s ν)
)±

= ∓M
s
±
α

(
exp

(
β±α
kBT

D±α

)
− exp

(
β±α − 1

kBT
D±α

))
. (74b)

5.3. Discussion of a General Free Energy Model

The obtained constitutive equations are general, in the sense that they were derived
without making use of any particular specific material properties. They only rely on the
universal balance equations and the entropy principle. All material properties of a specific
electrochemical system, thus, have to be incorporated into the constitutive functions of the
entropy and the phenomenological coefficients. We now restrict the constitutive function
for the free energy to the structure:

ρψ = ρ̂ψ(T, (ρα)α∈I ) + ρψ̌pol,P(T, (ρα)α∈I , |P|) , (75)

where the first part is independent of the electromagnetic field and the second part depends
only on the absolute value of P. Different free energy models can be used for the field-
independent free energy contribution ρψ̂, depending on the considered material. For
liquid electrolytes, the model of simple mixtures of solvated ions (cf. [5,17]) appears to be
appropriate. The general construction of suitable free energies and their incompressible
limit is analysed in [18]. The analysis emphasizes the importance of linear approaches with
respect to the partial molar volume and illustrates the possibility of recovering the nonlinear
behaviour of the mixtures based on the nonlinear reaction behaviour. As an example of a
different material model, we refer to [19], which models yttria-stabilised zirconia.

5.3.1. Dielectric Susceptibility and Debye Relaxation

Since it might appear more familiar to formulate constitutional equations in terms of
E instead of P, we introduce a conjugate variable to P which coincides with E in the case of
polarisation equilibrium. We define

EEq :=
∂ρψ̌pol,P

∂P
= −T

∂ρη̌

∂P
. (76)

Then, we consider a change of variables by means of the Legendre transformation:

ρψpol = ρψpol,P − EEq · P , (77)

such that we have the following representation and relations:

ρψpol = ρψ̆pol(T, (ρα)α∈I , |EEq|) ,
∂ρψ̆pol

∂EEq = −P . (78)

We introduce the scalar dielectric susceptibility as

χ = − 1
ε0|EEq|

∂

∂|EEq|
ρψ̆pol(T, (ρα)α∈I , |EEq|) , (79)

such that, by (78), this implies, for the vector of polarisation, that

P = χ(T, (ρα)α∈I , |EEq|) · ε0EEq . (80)



Entropy 2023, 25, 416 17 of 27

Considering the case of vanishing velocity, i.e., υ = 0, the constitutive Equation (63)
reduce to

τP∂tP = +
(

ε0E− 1
χ P
)

, (81)

where the relaxation constant τP > 0 is positive. From div(ε0E + P) = nF, we conclude
that, for the divergence of the constitutive Equation (81), it holds

τP∂t div(P) = nF −
(

1 + 1
χ

)
div(P) . (82)

We conclude that, if nF = 0 in Equation (82), then div(P) vanishes for t → ∞, which is
compatible to stable polarisation relaxation. We remark that the stability of relaxation does
not depend on the applied change of variables.

5.3.2. Pressure, Surface Tension, and Stress Tensor

In the context of electrothermodynamics, the proper definition of pressure is not
obvious. We define here pressure based on only these contributions, which are also present
in the absence of electromagnetic fields. By the Gibbs–Duhem relation known from classical
thermodynamics and its counterpart on the surface (cf. [9,10]), we define pressure and
surface tension as

p̂ = −ρψ̂ + ∑
α∈I±

ραµ̂α , γ
s
= ρ

s
ψ
s
− ∑

α∈IS

ρ
s

αµ
s

α , (83)

where the splitting of the free energy in (75) implies a similar splitting of the chemical
potentials. The Legendre transformation (56) implies

µα =
∂ρψ̂

∂ρα
+

∂ρψ̆pol

∂ρα
= −T

∂ρη̃

∂ρα
, (84a)

µ
s

α =

∂ρ
s
ψ̂
s

∂ρ
s

α
= −T

s

∂ρ
s
η̃
s

∂ρ
s

α
(84b)

With the above definitions of pressure and surface tension, we can rewrite the stress tensor
in the volume in (65) and on the surface in (71) as

Σ− σEM = T −
(

p̂− ρψ̆pol + ∑
α∈I±

ρα
∂ρψ̆pol

∂ρα

)
1 + 1

2 (E⊗ P + P⊗ E) − P · (E− EEq) 1 , (85a)

SΓ∆ = T
s

Γ∆ + γ
s

gΓ∆ . (85b)

Using the scalar susceptibility χ according to (79) and assuming polarisation relaxation
equilibrium, i.e., EEq = E, such that P = χε0E, according to (80), we infer with the Maxwell
stress tensor according to (31) that

Σ = − p̂ 1 + T + σEM + χε0E⊗ E +

(
ρψ̆pol − ∑

α∈I±
ρα

∂ρψ̆pol

∂ρα

)
1 . (86)

Due to the structural similarity to (83), one might refer to the last bracket in (86) as po-
larisation pressure. Nevertheless, we prefer to keep this term separate from the pressure
contribution p̂ to the stress tensor and relate the last terms in (83) to forces in the momentum
balance. In the particular case of constant χ, we check ρψ̆pol = − 1

2 χε0|E|2 such that the
stress tensor further simplifies to Σ = − p̂ 1 + T + (1 + χ)σEM.
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5.3.3. Application to Momentum Balance

We again assumed EEq = E and P = χε0E. The divergence of the Maxwell stress tensor
σEM equals in the quasi-electrostatic limit the Lorenz force neE, and it seems appropriate to
treat also the divergence of the last two terms in (86) as forces in the momentum balance.
Whenever χ is independent of the concentrations, i.e., independent of all ρα for α ∈ I , we
apply ∇ρψ̆pol = −(∇EEq)P = −χ(∇E) ε0E, to conclude, for the divergence of the stress
tensor in the momentum balance,

if χ is independent of all ρα : div(Σ) = −∇ p̂ + div(T ) + div((1 + χ)ε0E)︸ ︷︷ ︸
=nF

E . (87)

Due to its similarity, the term nFE is also referred to as the Lorentz force. On the other hand,
if ρψ̆pol is a homogeneous function of degree one with respect to all ρα for α ∈ I , then χ is
a homogeneous function as well, and the terms in the brackets in (86) cancel. We conclude

if ρψ̆pol is a homogeneous function of ρα : div(Σ) = −∇ p̂ + div(T ) + nFE + χ(∇E)ε0E . (88)

In addition to the Lorenz force, the last term in (88) is referred to as the Kelvin polarisation
force. In the momentum balance on the surface, we have

(σ
s

i∆)
‖∆ = γ

s
‖∆ gΓ∆ τi

Γ + 2γ
s

kM νi . (89)

6. Constitutive Equations for the Quasi-Magnetostatic Limit

The construction of constitutive relations for the quasi-magnetostatic limit follows
largely the same lines as described in the previous section. The entropy principle is now
based on constitutive functions of the entropy density in the form:

ρη = ρη̃(ρu, (ρα)α∈I± , B) , ρ
s
η
s
= ρ

s
η̃
s
(ρ

s
u
s
, (ρ

s
α)α∈IS) . (90)

The (absolute) temperature T, T
s

and the chemical potentials µα, µ
s

α are defined in an analo-

gous way as in (55), and we introduce the free energy in an analogous way as in (56). More
specifically, we restrict the constitutive function for the free energy to the structure:

ρψ = ρ̂ψ(T, (nα)α∈I ) + ρψmag(T, (nα)α∈I , |B|) , (91)

such that the splitting of the free energy implies a similar splitting of the chemical potentials.
As in (83), we define

p̂ = −ρψ̂ + ∑
α∈I±

ραµ̂α , γ
s
= ρ

s
ψ
s
− ∑

α∈IS

ρ
s

αµ
s

α . (92)

6.1. Constitutive Relations for the Bulk

Taking the same entropy flux as above, the entropy production mostly looks the same
as in (60), and we identify, again, five dissipative mechanism, where only polarisation is
now replaced by magnetisation. We proceed in the same way as in Section 5 and apply
the closure relations to each dissipative mechanism. For the reactions, there is no change
to (62).



Entropy 2023, 25, 416 19 of 27

6.1.1. Thermodiffusion

Compared to (61a), there is only a difference in the driving force of the migration term.
We choose coefficients κ, Lβ, and Mαβ such that the coefficient matrix is symmetric and
positive definite. We set

Q = − κ

T2∇T − ∑
β∈I±\{A0±}

Lβ

(
∇
(µβ

T
− µ0±

T

)
− 1

T

( zβe0

mβ
− z0±e0

m0±

)
(υ× B)

)
, (93a)

Jα = − Lα

T2∇T − ∑
β∈I±\{A0±}

Mαβ

(
∇
(µβ

T
− µ0±

T

)
− 1

T

( zβe0

mβ
− z0±e0

m0±

)
(υ× B)

)
. (93b)

6.1.2. Magnetisation

The entropy production due to magnetisation is

ξM = +

(
∂ρη̃

∂B
− 1

T
M
)
·
(

∂tB + (υ · ∇)B− 1
2

(
∇υ−∇υT

)
B
)

. (94)

We choose a linear closure relation with the relaxation time τM > 0 of magnetisation
to obtain

τM 1
µ0

(
∂tB + (υ · ∇)B− 1

2

(
∇υ−∇υT

)
B
)
= T

∂ρη̃

∂B
−M . (95)

We introduce the conjugate variable MEq and the scalar magnetic susceptibility χM as

MEq := −∂ρψ

∂B
= T

∂ρη̌

∂B
,

χM
1 + χM

= − µ0

|B|
∂

∂|B|ρψmag(T, (nα)α∈I , |B|) , (96)

where χM = χM(T, (nα)α∈I , |B|), and we have

MEq =
χM

1 + χM
· 1

µ0
B . (97)

In magnetisation, equilibrium (94) implies MEq = M. When we consider the case of
vanishing velocity, i.e., υ = 0, the constitutive Equation (95) simplifies to

τM 1
µ0

∂tB = −
(
− χM

1+χM
1

µ0
B + M

)
, (98)

From curl( 1
µ0

B−M) = JF, we conclude for the curl of (98) that

τM∂t curl(B) = JF −
(
− χM

1+χM
+ 1
)

curl(B) . (99)

We conclude the stable magnetisation relaxation for JF = 0 and χM > −1, i.e., curl(B)
vanishes for t→ ∞. While χM > 0 represents the paramagnetic material behaviour, χM < 0
characterises diamagnetic materials. The limit χM = −1 represents superconducting
materials.

6.1.3. Viscosity

Taking for the viscous stress tensor the same approach as in (64), i.e., T = ηb div(υ)1+
ηs
(
∇υ + (∇υ)T), yields, for the symmetric total stress tensor Σ in the quasi-magnetostatic

limit, the constitutive equation:

Σ− σEM = T +

(
ρu− Tρη̃ + M · B− ∑

α∈I±
ραµα

)
1− 1

2 (M ⊗ B + B⊗M) . (100)
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With the definition of pressure according to (92), the free energy as in (91) with the scalar
magnetic susceptibility according to (96), and assuming magnetisation relaxation equilib-
rium, i.e., MEq = −M, we obtain

Σ = − p̂ 1 + T + σEM − χM
1+χM

1
µ0

B⊗ B +

(
ρψmag − ∑

α∈I±
ρα

∂ρψmag

∂ρα
+ χM

1+χM
1

µ0
|B|2

)
1 , (101)

where, in the case of constant χM, we have ρψmag = − χM
1+χM

1
2µ0
|B|2 and the stress tensor

further simplifies to Σ = − p̂ 1 + T + 1
1+χM

σEM.
The divergence of the Maxwell stress tensor σEM equals in the quasi-magnetostatic

limit the Lorenz force (neυ + Je)× B, and it seems appropriate to treat also the divergence
of the last two terms in (101) as forces in the momentum balance.

6.2. Constitutive Relations for the Surface

We use the definitions of T
s

and D
s

as in (66) to derive the surface entropy production
in an analogously way as before. For the surface reactions, there is no change to (69), and
for the viscous stress tensor on the surface, there is no change to (70).

6.2.1. Thermodiffusion

With the same choice of the symmetric and positive-definite coefficient matrix, we set,
as in (68) for α ∈ IS \ {A0},

q
s

∆
τ = −

κ
s

T
s

2 g∆ΓT
s ‖Γ

− ∑
β∈IS\{A0}

L
s β

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1

T
s

( zβe0

mβ
− z0e0

m0

)(
υ
s
× B̄

)∆

τ

]
, (102a)

J
s

∆
α,τ = −

L
s α

T
s

2 g∆ΓT
s ‖Γ

− ∑
β∈IS\{A0}

M
s αβ

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1

T
s

( zβe0

mβ
− z0e0

m0

)(
υ
s
× B̄

)∆

τ

]
. (102b)

6.2.2. Stress Coming from the Volume

We choose coefficients λ
s
± and η

s

±
∆ > 0, for ∆ = 1, 2, and obtain, from the linear closure,

(
ν ·
(
T + 1

2 (M ⊗ B− B⊗M)
)

τΓ gΓ∆
)±

= ±η
s

±
∆

(
υ∆

τ − υ
s

∆
τ

)±
, (103a)(

ν ·
(
T + 1

2 (M ⊗ B− B⊗M)
)

ν−
(

1
2 ρ|υ

s
− υ|2 + T

s
ρ
(µ0±

T
−

µ
s

0±

T
s

)))±
= ±λ

s
±ρ±

(
ρ (υν − υ

s ν)
)±

. (103b)

7. Summary and Discussion

By asymptotic considerations, we motivated the formulation of two distinct Galilean
limit systems of the Maxwell equations. Both Galilean limits are well known for volume
domains and, here, were transferred to surfaces. Due to their transformation properties,
each one of these limit systems can easily be coupled in a consistent manner to standard
non-relativistic balance equations of matter that are well suited for most engineering
applications. Then, constitutive equations to close the coupled system can be obtained
from an entropy principle.

7.1. Comparison to the Results of [8]

Considering first the quasi-electrostatic limit, the same results as in Section 5, in
principle, can also be been obtained by [8], where the full Maxwell equations are employed,
and the quasi-electrostatic limit, then, can be taken after the application of the entropy
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principle. However, this procedure is less straightforward, because in [8], the inner energy
density of the coupled system is redefined in order to obtain the entropy production related
to magnetisation as a binary product satisfying a Galilean symmetry principle. Such a
modification of the inner energy as ρu +M · B seems admissible because, in coupled
electrothermodynamics, it is not a priori evident what is the correct definition of the inner
energy. The non-dimensionalisation of Section 3.3 reveals that this modification made to
the inner energy is asymptotically small in the quasi-electrostatic limit and can, therefore,
be neglected.

An alternative application of the entropy principle based on E as the independent
variable was discussed in [8]. It relies on a different definition of the inner energy as
ρu− E · P, and therefore, it is fundamentally different from the change of variables em-
ployed here in Section 5.3. The term E · P is not asymptotically small compared to ρu in
the quasi-electrostatic limit and, thus, implies a non-negligible difference in the definition
of the temperature. Moreover, the application of a linear closure relation then yields an
unstable relaxation of polarisation. In contrast, the change of variables applied here in
Section 5.3 and in the same way also in [7], changing the variables from P to EEq, does not
alter the stability of polarisation relaxation, and in equilibrium, we have EEq = E.

In addition, the entropy principle in [8] also covers magnetisation. We omitted mag-
netisation here in Section 5, because, in the quasi-electrostatic limit, the corresponding
contributions to the entropy production are in the asymptotic order of the terms that we ne-
glected in the balance equations. Without a constitutive equation relating B and M, we are
in general not able to evaluate the electric current je, although, in many experiments, this is
the observable quantity of pivotal importance. Therefore, either an additional constitutive
law has to be obtained from a different source, or we have to apply an additional asymptotic
limit such as the thin double-layer limit, where the contribution to je due to M vanishes.
The relaxation of magnetisation was not discussed in [8]. We note that an analogous ap-
proach as performed here in Section 6, but applied to the main approach of [8] based on
the variables (P,M), would imply the blow up of curl(M) for a diamagnetic material.

In the quasi-magnetostatic limit, we assumed in Section 6 the entropy density to
depend on the independent variable E . This is different than the main approach of [8],
but compatible with the alternative approach discussed there and with [10]. Within the
quasi-magnetostatic limit, the definition of the inner energy as ρu− E · P is a negligible
modification, whereas M · B is not asymptotically small. Accordingly, we observed in
Section 6 the stable relaxation of magnetisation, whereas the approach based on the variable
M would lead to unstable relaxation for a diamagnetic material.

Each of the modifications of the inner energy in [8] implies according changes to the
stress tensor when it is expressed in terms of free energy. Non-constant susceptibility
requires careful treatment of the momentum balance; cf. [7].

7.2. Conclusions for Coupling with General Maxwell Equations

Coupling the full Maxwell equations to the non-relativistic balance equations of matter
appears to be a more general approach than the one presented here. For this general case,
two alternative formulations of the entropy principle were analysed in [8], one based on
the variables (P,M) and the other one based on the variables (E , B). While the (P,M)-
variant allows reaching the quasi-electrostatic Galilean limit where only P remains as a
variable, the (E , B)-variant allows reaching the quasi-magnetostatic Galilean limit with
only B as the remaining variable. Neither of the two variants is capable of covering both
limit cases equally well, as for the (P,M)-variant, magnetisation relaxation is unstable for
a diamagnetic material, whereas, for the (E , B)-variant, polarisation relaxation is unstable.
However, this should not be considered a source of inconsistency for the limit cases, as the
two Galilean limits do not have any relevant overlap. We remark that building the entropy
principle on (P, B) as independent variables does not provide a remedy for the general
case, since P and B do not form an antisymmetric four-tensor in the four-dimensional
formulation of the Maxwell equations. Therefore, we conclude that, if the electric and
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magnetic effects both are relevant in the application, then one is well advised to consider,
in addition to the general Maxwell equations, also a relativistic description of the mixture
of matter. This leaves as an open question how to find appropriate models for, e.g., liquid
metal batteries or magneto-hydrodynamic forces in the electrolyte transport of the Hall–
Heroult process.

7.3. Electrochemical Model in Polarisation Equilibrium

We summarise here the complete system of the model equations for electrochemical
applications under the simplifying assumption of fast polarisation relaxation. An important
feature of electrochemical systems is the formation of double-layers at the contact of
different materials. The double-layer is characterised by a typical width in the range
of nanometres, wherein the electric potential may vary in the order of one Volt. The
magnetic field strength is assumed to be below a guideline value for electromagnetic fields
in electrical household appliances. These reference values:

Bref = 10−3 V s
m2 , Eref = 109 V

m , c0 ≈ 3 · 108 m
s , (104)

imply, for the dimensionless quantity,

β2 ≈ 3 · 10−4 � 1 . (105)

The smallness of β2 suggests the use of the quasi-electrostatic limit, where (29b) implies the
existence of an electrostatic potential ϕ, such that

E = −∇ϕ , [[ϕ]] = const. on S , (106)

where the constant is frequently chosen as zero.
For each volume domain Ω±, we use index sets I± for the constituents of the mix-

ture. The constitutive equations in the volume are built on the free energy density of
the structure:

ρψ = ρ̂ψ(T, (ρα)α∈I ) + ρψpol(T, (ρα)α∈I , |∇ϕ|) , (107)

The chemical potentials for α ∈ I±, pressure, and the inner energy are given in terms of
the free energy as

µα =
∂

∂ρα
ρψ , p = −ρψ̂ + ∑

α∈I±
ραµ̂α , ρu =

(
T2 ∂

∂T
ρψ

T

)
. (108)

The dielectric susceptibility is defined as

χ = − 1
ε0|∇ϕ|

∂

∂|∇ϕ|ρψpol(T, (ρα)α∈I , |∇ϕ|) . (109)

Since polarisation relaxation in liquid electrolytes is typically fast with a time constant in the
range of 10−8 s (cf. [20]), we can assume that polarisation relaxation is in quasi-equilibrium,
i.e., P = −χε0∇ϕ. In the following, we distinguish two cases:

χ is

{
independent of ρα , indicated as (∗) ,
homogeneous of degree one in ρα , indicated as (∗∗) .

(110)



Entropy 2023, 25, 416 23 of 27

In each volume domain, we chose a constituent A0,± ∈ I±. Then, the balance equations are

−div((1 + χ)ε0∇ϕ) = nF , (111a)

∂tρα + div(ραυ + Jα) = mα ∑
k

γk
αRk for α ∈ I± \ {A0±} , (111b)

∂tρ + div(ρυ) = 0 , (111c)

∂t(ρυ) + div
(
ρυ⊗ υ− T

)
+∇p = ρ f − nF∇ϕ +

{
0 , (∗) ,
(D2 ϕ) χε0∇ϕ , (∗∗) ,

(111d)

∂t(ρu) + div(ρu υ + Q) = −JF · ∇ϕ + T : ∇υ − p div(υ)

+
(
∂t(χε0∇ϕ) + (υ · ∇)(χε0∇ϕ)

)
· ∇ϕ (111e)

+ div(υ)

{
χε0|∇ϕ|2 − ρψpol , (∗) ,
χε0|∇ϕ|2 , (∗∗) ,

where D2 ϕ denotes the Hessian containing the second derivatives. The constitutive equa-
tions in the volume are

Q = − κ

T2∇T − ∑
β∈I±\{A0±}

Lβ

(
∇
(

µβ

T
− µ0±

T

)
+

e0

T

(
zβ

mβ
− z0±

m0±

)
∇ϕ

)
, (112a)

Jα = − Lα

T2∇T − ∑
β∈I±\{A0±}

Mαβ

(
∇
(

µβ

T
− µ0±

T

)
+

e0

T

(
zβ

mβ
− z0±

m0±

)
∇ϕ

)
, (112b)

T = ηb div(υ)1 + ηs ·
(
∇υ + (∇υ)T

)
, (112c)

Rk = Rk
0 ·
(

1− exp
( Ak

kBT ∑
α∈I±

γk
α mαµα

))
. (112d)

On the surface with the index set IS for the constituents, the free energy density does
not depend on the electric field. The chemical potentials for α ∈ IS, surface tension, and
the inner energy are given in terms of the free energy as

ρ
s
ψ
s
= ρ

s
ψ̂
s
(T, (ρ

s
α)α∈IS) , µ

s
α =

∂

∂ρ
s

α
ρ
s
ψ̂
s

, γ
s
= ρ

s
ψ
s
− ∑

α∈IS

ρ
s

αµ
s

α , ρ
s
u
s
=

T
s

2 ∂

∂T
s

ρ
s
ψ̂
s

T
s

 . (113)

We choose a constituent A0 ∈ IS and let α ∈ IS \ {A0}. Then, the surface balance equations are

−ε0[[(1 + χ)∇ϕ · ν]] = n
s

F , (114a)

∂t,νρ
s

α +
(
ρ
s

αυ
s

∆
τ + J

s

∆
α,τ
)
‖∆

−2kMυ
s ν ρ

s
α = −[[ρα(υν − υ

s ν) + Jα · ν]] + mα ∑
`

γ
s

`
αR

s
` , (114b)

∂t,νρ
s
+
(
ρ
s
υ
s

∆
τ

)
‖∆ − 2kMυ

s ν ρ
s
= −[[ρ(υν − υ

s ν)]] , (114c)

∂t,ν(ρ
s
υ
s

i) +
(
ρ
s
υ
s

iυ
s

∆
τ − Ts

Γ∆τi
Γ
)
‖∆
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−2kMυ
s ν ρ

s
υ
s

i = −[[ρυi(υν − υ
s ν) + pνi − (T + (1 + χ)σEM) · ν]]

+ 2kMγ
s
νi + γ

s
‖∆ gΓ∆τi

Γ + ρ
s

f
s

i (114d)

+ [[ 1
2 χε0|∇ϕ|2νi]] +

{
[[ρψpolνi]] , (∗) ,
0 , (∗∗) ,

∂t,ν(ρ
s
u
s
) +

(
ρ
s
u
s

υ
s

∆
τ + q

s

∆
)
‖∆

−2kMυ
s ν ρ

s
u
s

= −J
s

F · ∇̄ϕ + (T
s

Γ∆ + γ
s

gΓ∆)τi
Γυ

s
i
‖∆ (114e)

−
[[(

ρu + 1
2 ρ|υ− υ

s
|2
)
(υν − υ

s ν) + Q · ν
]]

+ [[(υ− υ
s
) · (−p1 + T ) · ν]] . +

{
[[(υ− υ

s
)ν ρψpol]] , (∗) ,

0 , (∗∗) .

The constitutive equations are, with α ∈ I± \ {A0±},

q
s

∆
τ = −

κ
s

T
s

2 g∆ΓT
s ‖Γ
− ∑

β∈IS\{A0}
L
s β

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ

+
e0

T
s

( zβ

mβ
− z0

m0

)
∇̄ϕ

∆
τ

]
, (115a)

J
s

∆
α,τ = −

L
s α

T
s

2 g∆ΓT
s ‖Γ
− ∑

β∈IS\{A0}
M
s αβ

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ

+
e0

T
s

( zβ

mβ
− z0

m0

)
∇̄ϕ

∆
τ

]
, (115b)

T
s

∆Γ = η
s

bDs ΛΣ gΛΣ g∆Γ + 2η
s

s gΛ∆D
s ΛΣ gΣΓ , (115c)

with D
s ∆Γ = 1

2
(

gΓΛ υ
s

Λ
τ‖∆ + g∆Λ υ

s
Λ
τ‖Γ
)
− bΓ∆ υ

s ν , (115d)

R
s
` = R

s
`
0 ·
(

exp
(
− β`

kBT
s

D
s
`
)
− exp

(1− β`

kBT
s

D
s
`
))

, (115e)

with D
s
` = A

s
` ∑

α∈IS

γ
s

`
α mαµ

s
α . (115f)

Moreover, there are the boundary conditions:(
Jα,ν + ρα(υν − υ

s ν)
)±

= ∓M
s
±
α

(
exp

(
β±α
kBT

D±α

)
− exp

(
β±α − 1

kBT
D±α

))
, (116a)

with D±α =

(
µα − µ0± −

T
T
s

(
µ
s

α − µ
s

0±

))±
, (116b)

±η
s

±
∆

(
υ∆

τ − υ
s

∆
τ

)±
=
(

gΓ∆τΓ · T ν
)±

, (116c)

±λ
s
±ρ±

(
ρ (υν − υ

s ν)
)±

=

(
ν · T ν− 1

2 ρ|υ
s
− υ|2 − T

s
ρ
(µ0±

T
−

µ
s

0±

T
s

))±
, (116d)

±κ
s
±
(

1
T
− 1

T
s

)±
=
(
Qν + (ρu + p) (υν − υ

s ν)
)± (116e)

−
{(

ρψpol(υν − υ
s ν)
)± , (∗) ,

0 , (∗∗) .

Finally, we remark that the evaluation of the electric current, in general, also requires
knowledge of the magnetic field, although the magnetic field does not have any influence
on the solution of the above system. In order to compute B for a given solution of the above
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model equations, we assume that magnetisation relaxation is fast and, hence, apply the
equilibrium relation obtained in the quasi-magnetostatic case, viz. M = χM

1+χM
· 1

µ0
B. Then,

we have to solve

div(B) = 0 , −(1 + χ)ε0∂t(∇ϕ) + nFυ + JF = 1
µ0

curl( 1
1+χM

B) , (117a)

[[B · ν]] = 0 , −ν× [[υ
s
× ((1 + χ)ε0∇ϕ)]] + J

s

F = 1
µ0

ν× [[ 1
1+χM

B]] , (117b)

and can evaluate the electric current as

je = nFυ + JF − ∂t(χε0∇ϕ) + 1
µ0

curl( χM
1+χM

B) . (118)

For a paramagnetic and a diamagnetic material, typically, |χM| � 1, and thus, the Lorentz
magnetisation is small, such that it often might be appropriate to neglect the magnetic
term, making the evaluation of the electric current je available already without the solution
of (117).
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Appendix A. Balance of Inner Energy

Multiplication of the total mass balance by − 1
2 |υ|2, scalar multiplication of the mo-

mentum balance by υ, and subsequent addition yield the balance of kinetic energy:

∂t(
1
2 ρ|υ|2) + div

(
1
2 ρ|υ|2υ− (Σ− σEM)υ

)
=− (Σ− σEM) : ∇υ + ρ f · υ + k · υ , (A1a)
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( 1

2 ρ
s
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s
|2
)
+
( 1

2 ρ
s
|υ

s
|2)υ

s
∆
τ − σ

s
i∆υ

s
i)
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−2kMυ
s ν

( 1
2 ρ

s
|υ

s
|2
)
=− σ

s
i∆υ

s
i
‖∆ + ρ

s
f
s
· υ

s
+ k

s
· υ

s
(A1b)

− [[ 1
2 ρ|υ|2(υν − υ

s ν)− (Σ− σEM)υ · ν]]

+ [[ 1
2 ρ|υ− υ

s
|2(υν − υ

s ν)− (Σ− σEM)(υ− υ
s
) · ν]] .

Adding the kinetic energy density and the inner energy density, we obtain the energy
density of matter as ρe = ρu + 1

2 ρ|υ|2. Then, the postulation of the total energy of the field
and matter being a conserved quantity in the absence of gravitation implies the forcing
terms in the balance of ρe as the Joule heat according to (13). We split the heat flux as
Q− qEM, where the second term vanishes in the absence of an electromagnetic field.

∂t(ρe) + div
(
ρe υ + (Q− qEM)− (Σ− σEM)υ

)
= π + ρ f · υ (A2a)

∂t,ν(ρ
s
e
s
) +

(
(ρ

s
e
s
)υ

s
∆
τ + q

s

∆ − σ
s

i∆υ
s i)‖∆ − 2kMυ

s ν (ρ
s
e
s
) = π

s
+ ρ

s
f
s
· υ

s
(A2b)

−[[ρe(υν − υ
s ν) +

(
(Q− qEM)− (Σ− σEM)υ

)
· ν]]

Subtracting (A1) from (A2) and setting qEM = E ×M then yield the inner energy bal-
ance (51). The choice of qEM is motivated by the fact that it makes the production terms
in the inner energy balance directly computable within either of the Galilean limits of
the Maxwell equations, as demonstrated below, without having to rely on the additional
remaining Maxwell equations.
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Appendix A.1. Quasi-Electrostatic Limit

In the quasi-electrostatic limit, we have E = E, and it holds

π − k · υ = JF · E + JP · E , π
s
− k

s
· υ

s
= J

s

F · Ē + J
s

P · Ē . (A3)

In the volume, we use that, in this limit, curl(E) = 0 and apply

JP · E = (∂tP + υ div(P) + curl(M) + curl(P× υ)) · E , (A4a)

div(E ×M) = − curl(M) · E , (A4b)

curl(P× υ) = div(υ)P + (υ · ∇)P− div(P)υ− (P · ∇)υ , (A4c)

to obtain (52a) from

π − k · υ + div(E ×M) = JF · E + (∂tP + (υ · ∇)P) · E + div(υ)P · E− (P · ∇)υ · E . (A5)

On the surface, we use that ν× [[E]] = 0 and that (34) implies

J
s

P · Ē = ν× [[M · E]]− ν× [[((υ− υ
s
)× P) · E]] , (A6)

to obtain (52b) from

π
s
− k

s
· υ

s
+ [[E ×M]] · ν = J

s

F · Ē− [[P · ν (υ− υ
s
) · E− (υ− υ

s
) · ν P · E]] . (A7)

Appendix A.2. Quasi-Magnetostatic Limit

In the quasi-magnetostatic limit, we have M = M, and it holds

π − k · υ = (JF + JP) · (υ× B) , π
s
− k

s
· υ

s
= (J

s

F + J
s

P) · (υ
s
× B̄) . (A8)

In the volume, we use that curl(E) = −∂tB is not small and apply

JP · (υ× B) = curl(M) · (υ× B) , (A9a)

div(E ×M) = −(∂tB + curl(B× υ)) ·M − curl(M) · (υ× B) , (A9b)

curl(B× υ) = div(υ)B + (υ · ∇)B− (B · ∇)υ , (A9c)

to obtain (53a) from

π − k · υ + div(E ×M) = JF · (υ× B)− (∂tB + (υ · ∇)B) ·M − div(υ) B ·M + (B · ∇)υ ·M . (A10)

On the surface, we use ν× [[υ
s
× B]] = 0 and

J
s

P · (υ
s
× B̄) = ν× [[M]] · (υ

s
× B̄) = ν× [[M · (υ

s
× B)]]

= ν× [[M · (υ× B)]]− ν× [[M · ((υ− υ
s
)× B)]]

= ν× [[M · E ]]− ν× [[((υ− υ
s
)× B) ·M]] (A11)

to obtain (53b) from

π
s
− k

s
· υ

s
+ [[E ×M]] · ν = J

s

F · (υ
s
× B̄)− [[B · ν (υ− υ

s
) ·M − (υ− υ

s
) · ν B ·M]] . (A12)
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